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ABSTRACT

Accurate and efficient methods to evaluate cosmological distances are an important tool in
modern precision cosmology. In a flat A cold dark matter (CDM) cosmology, the luminosity
distance can be expressed in terms of elliptic integrals. We derive an alternative and simple
expression for the luminosity distance in a flat ACDM based on hypergeometric functions.
Using a timing experiment, we compare the computation time for the numerical evaluation
of the various exact formulae, as well as for two approximate fitting formulae available in
the literature. We find that our novel expression is the most efficient exact expression in the
redshift range of z = 1. Ideally, it can be combined with the expression based on Carlson’s
elliptic integrals in the range of z < 1 for high-precision cosmology distance calculations over
the entire redshift range. On the other hand, for practical work where relative errors of about
0.1 per cent are acceptable, the analytical approximation proposed by Adachi & Kasai (2012)
is a suitable alternative.
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1 INTRODUCTION

The calculation of cosmological distances is one of the most fun-
damental tasks in cosmological studies. As the conversion between
distance and redshift depends on the parameters of the underlying
cosmological model, distance measurements are one of the key in-
gredients for cosmological tests. Accurate and efficient methods to
evaluate these distances are an important tool in modern precision
cosmology.

The relation between cosmological distance and redshift can be
derived from the solution of the Friedmann equation, and involves an
integral over the expansion history that depends on the cosmological
model (e.g. Carroll, Press & Turner 1992). In a general A cold
dark matter (CDM) cosmological model, the luminosity distance,
possibly the most important distance scale from an observational
point of view,' cannot be expressed as a simple analytical formula of
redshift and the cosmological parameters. Even in a cosmological
model with zero curvature, as the current observations convincingly
suggest (Hinshaw et al. 2013; Planck Collaboration XIII 2016), the
luminosity distance-redshift relation can only be written as a non-
trivial integral that cannot be evaluated using elementary functions.

Obviously, this integral can be evaluated numerically using stan-
dard quadrature algorithms, but these can become computationally
demanding when high numerical accuracy is required.

* E-mail: maarten.baes @ugent.be
! Other distance scales such as angular diameter distance or proper distance
are easily calculated from the luminosity distance (e.g. Weinberg 1972).
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One option to avoid numerical quadrature is to use analytical ap-
proximations for the luminosity distance. Several analytical recipes
to approximate the luminosity distance in a flat cosmology have
been put forward. Pen (1999) presented an algebraic fitting formula
that has a relative error of less than 0.4 per cent for 0.2 < Q,, < 1
for any redshift, and a global relative error of less than 4 per cent
over the entire parameter space. Wickramasinghe & Ukwatta (2010)
and Liu et al. (2011) used a similar approach and presented alterna-
tive analytical approximations that are show smaller error variations
than Pen (1999). Finally, Adachi & Kasai (2012) used the technique
of Padé approximants to come to an analytical formula with even
smaller error variations (see also Wei, Yan & Zhou 2014).

An alternative option, particularly when higher accuracy is re-
quired, is to make use of exact analytical expressions for the lu-
minosity distance. These will necessarily involve transcendental
or special functions, which are more demanding to evaluate nu-
merically than elementary functions. However, numerical software
libraries such as Boost? (Schiling 2014), NaG® (Phillips 1987),
GNU Scientific Library (csL)* (Galassi et al. 2011) or scipy’
(Oliphant 2007) contain specialized algorithms to evaluate such
special functions in a very efficient way, up to arbitrary precision.
In the past few years, several authors have presented analytical
expressions for the luminosity distance in a flat cosmology, all

2 http://www.boost.org
3 http://www.nag.com
4 http://www.gnu.org/software/gsl/
> http://www.scipy.org
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involving elliptic integrals (Eisenstein 1997; Liu et al. 2011;
Mészéros & Ripa 2013; Zaninetti 2016).

In this paper, we derive and present an alternative and simple
expression for the luminosity distance in a flat ACDM cosmology,
based on hypergeometric functions. This is done in Section 2. In
Section 3, we test the numerical performance of this new formula
against the existing exact formulae, and against two of the approx-
imate recipes that have been proposed. Section 4 sums up.

2 ANALYTICAL EXPRESSIONS
The general expression for the luminosity distance in a flat ACDM
cosmology is given by

c(l+z) [F dr
di(z) = / ,
Hy  Jo /Qu(1+13+ (1 — Q)

where Q,, = 1 — Q, is the matter density of the Universe. If we
introduce
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and we apply the substitution u = s/(1 + ), this expression can
conveniently be written as
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with the function 7(x) defined as
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In spite of its apparent simplicity, this integral cannot be expressed
in terms of elementary functions. The function 7(x) is a smooth
function that continuously rises from 7y = 0 at x = 0 to a finite
value
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in the limit x — oo (see also Pen 1999). The asymptotic behaviour
at small and large values of x is

1
T(x)~2ﬁ(1—ﬂx3+-~) x k1 (6)
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2.1 Expressions in terms of elliptic integrals

Recently, Mészdros & Ripa (2013) derived an analytical expression
for the function 7T(x):

1 1 1—-4/3 s

T(x) = = F | arccos M , COS (—) , 8)
V3 1+ ++3)x 12

where F(¢, k) is the Legendre incomplete elliptical integral of the

first kind.® Legendre elliptic integrals are typically evaluated nu-
merically using infinite series or polynomial expansions, or using

6 Mészéros & Ripa (2013) mentioned that they found nothing in the literature
about the non-numerical integration of this equation, and hence that their
result is new and original. In fact, exactly the same equation had already been
presented by Eisenstein (1997), but, although well cited, this contribution
apparently never appeared in the refereed literature.
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Newton—Raphson integration schemes (Byrd & Friedman 1971;
Lemczyk & Yovanovich 1988).

Two years before Mészdros & Ripa (2013) published their work,
and Liu et al. (2011) presented an alternative analytical expression
for the function 7T(x):

T()=4Re (m,m+3—243,m+3+2V3) )

with

24/x2 — 1 2
m:xix—i—_{_i_l (10)
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Rather than the most common form of elliptical integrals, the stan-
dard Legendre format, this expression uses the Carlson elliptic in-
tegral of the first kind Rg(x, y, z) (Carlson 1977). The advantage of
using Carlson’s form of elliptical integrals compared to the standard
Legendre form is that the former have a number of interesting sym-
metry properties. In particular, the so-called duplication theorem is
extremely useful, and guarantees that the integrals can be calculated
in a fast and robust way (Carlson 1979; Carlson 1995).

For the sake of completeness, a third formulation in terms of the
elliptic integrals was recently presented by Zaninetti (2016). This
expression was substantially more complicated than the expressions
given above, and involves a Legendre incomplete elliptical integral
of the first kind with complex arguments. It therefore seems of little
practical use.

2.2 Expressions in terms of hypergeometric functions

An alternative, and to the best of our knowledge, novel expression
for the function 7(x), and hence for the luminosity distance in a flat
cosmology, can be obtained by applying the transformation

-

to expression (4). This yields
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1
T(x) = —/x _
3 0 §5/6 (1 +x3 t)

This integral can be recognized as an Euler-type representation of
a hypergeometric function. It results in the simple expression

117
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In general, the numerical evaluation of the hypergeometric function
is notoriously difficult, in particular, when one has the ambition
of finding an expression for all complex values for the parameters
and the argument (e.g. Michel & Stoitsov 2008; Doornik 2015).
The main reasons are that the power series expansion of the hy-
pergeometric function is thwarted by instabilities induced by can-
cellations between very large terms, and that certain regions in the
complex plane are hard to include into the convergence domain
(Buhring 1986; Lépez & Temme 2013).

For the case of purely real parameters that avoid certain combina-
tions, such as equation (13), the numerical evaluation is much more
straightforward. The main disadvantage of this expression is that the
argument of the hypergeometric function is negative and that it can
fall outside the convergence domain of the corresponding hyperge-
ometric series. However, it is easy to apply hypergeometric function
transformation formulae to obtain equivalent expressions in which



the argument falls within the convergence domain. Following the
recommendations from Forrey (1997), one obtains

I+x?
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For all positive x, the argument of the hypergeometric functions
in (14) falls in the range between zero and one-half. This means that
the power expansion series not only converges, but that it converges
rapidly.
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x> 1.

3 NUMERICAL TESTS

We implemented the three expressions (8), (9) and (14) in C++, in
order to test their relative performance. We used the implementa-
tions of the Legendre and Carlson elliptic integrals and the hyper-
geometric function from the GsL.

As a comparison, we also implemented two of the analytical
approximations that have appeared in the literature. First, we used
the original approximation put forward by Pen (1999). Converting
his notation to the one used in this paper, the approximation can be
written as
T(x)~ 2Vx (15a)

\8/1 +aix + arx? + azx* + azx*

with

a; = —0.1540, (15b)
a; = 0.4304, (15¢)
a3 = 0.19097, (15d)
as = 0.066941. (15e)

Secondly, we use the approximation based on Padé approximants
proposed by Adachi & Kasai (2012). In our notation,

2 + b1x3 + bz.)CG + b3x9

T(x)~ 16

(0~ Vx < 1+ cix3 + cox0% + c3x° (162)
where the coefficients are given by
by =2.64086441, (16b)
by = 0.883044401, (16¢c)
b3 = 0.0531249537, (16d)
¢ = 1.39186078, (16e)
c; = 0.512094674, (16f)
c3 = 0.0394382061. (16g)

3.1 Accuracy

The accuracy of the three different analytical expressions was read-
ily verified: Over the entire range, the three expressions yielded
values that are compatible up to the last significant digit. Their ac-
curacy was also tested by evaluating the same expressions using
MATHEMATICA With much higher precision. For what concerns the
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Figure 1. A comparison of the calculation time of the function 7(x) for
different redshifts varying from z = 0.01 to 1000. The different curves
correspond to the approximate solutions (15) and (16) proposed by Pen
(1999) and Adachi & Kasai (2012), respectively, and the exact expressions
using the Legendre elliptic integral (8), using the Carlson elliptic integral
(9) and using the hypergeometric function (14).

approximate solutions (15) and (16), we confirm the findings al-
ready discussed in the literature: The approximations are generally
accurate to less than half a percent at the lowest redshifts, and typi-
cally an order of magnitude more accurate at z > 1 (see e.g. fig. 1
of Adachi & Kasai 2012).

3.2 Speed

The main goal of our numerical tests is a comparison of the effi-
ciency of the different exact formulas to evaluate the function 7(x).
For this goal, we set up a timing experiment, where we accurately
timed the execution time of each of the three exact formulae and
the two approximations. For this experiment, we fixed the value of
the matter density to 2, = 0.308 (Planck Collaboration XIII 2016).
We calculated each implementation 10 million times in 101 points
distributed logarithmically in redshift space, between zp;, = 0.01
and zm,x = 1000. We used a setup of the timing exercise similar
to the one described in Saftly et al. (2013). The actual run times
were determined using the chrono functionality available in the
c++11 standard library (Gregoire, Solter & Kleper 2011, Ch. 16).

The results of this timing experiment are shown in Fig. 1. The
evolution of the computation time as a function of redshift for both
expressions based on the elliptic integrals has a similar behaviour:
The computations are relatively expensive at low redshifts, and
gradually become more efficient at larger z. The pattern is charac-
terized by a number of discrete jumps between different plateaus,
corresponding to a decrease or increase of the number of itera-
tions in the calculation. The corresponding line for the hypergeo-
metric formula (14) shows quite a different pattern. The computa-
tion time first increases as z increases, until it reaches a maximum
value, and then it continuously decreases sharply with increasing
z. The maximum corresponds to x = 1, and hence to the point
where the calculation swaps from the second to the first branch in
expression (14). At this maximum, the argument of the hypergeo-
metric functions is equal to one-half, and this corresponds to the
poorest convergence of the power series. For x increasingly further
away from this value on either side, the argument of the hypergeo-
metric function gets increasingly smaller, and hence fewer terms in
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the power series need to be calculated to reach convergence. Finally,
the computation time for each of the approximations is obviously
independent of the redshift, as a fixed number of operations needs
to be performed, without a convergence criterion.

Comparing the actual values of the timing, it is clear that the
expression using Legendre’s elliptic integral derived by Eisenstein
(1997) and Mészaros & Ripa (2013) has the poorest efficiency
overall. It is about two times less efficient than the version of Liu
et al. (2011) based on Carlson’s symmetric elliptic integral. This is
not very surprising given the efficiency with which Carlson’s elliptic
integrals can be evaluated (Carlson 1979; Carlson 1995). More
surprising is that our novel expression using the hypergeometric
function is numerically the fastest one for z = 1. For redshifts
between about 3 and 100, it is another factor two faster than the
implementation based on Carlson’s elliptic integral. Interestingly,
the new analytical formula is as fast as the simple approximation
by Pen (1999) for z 2 10 and even more efficient for z 2 60.
The rational function approximation by Adachi & Kasai (2012),
however, is always the fastest method to evaluate the luminosity
distance (but it remains an approximation of course). In the low-
redshift regime (z < 1) it beats the exact methods by an order of
magnitude, and also at high redshift it remains a factor three faster
than the new method based on hypergeometric functions.

4 DISCUSSION AND CONCLUSIONS

We have derived a novel and simple analytical expression for the
luminosity distance in a flat ACDM cosmology that makes use of
hypergeometric functions. Given that these functions are readily
available from different numerical software libraries, our expres-
sion forms a useful alternative for quadrature formulae (which can
be numerically expensive) or for analytical approximations (which
remain approximations).

Apart from our novel formula, we have implemented two other
exact analytical formulae for the luminosity distance, both based on
elliptic integrals, and two analytical approximate fitting formulae.
We have set up a timing experiment to determine the computation
speed of the various possible exact and approximate formulae. The
results of this experiment, and the corresponding implications, are
as follows:

(1) The expression using Legendre’s elliptic integral derived by
derived by Eisenstein (1997) and Mészaros & Ivh’pa (2013) is the
least efficient method of the three exact methods. Its use is hence
not encouraged for numerical evaluation.

(ii) The expression using Carlson’s symmetric elliptic integral,
first derived by Liu et al. (2011), is a factor two more efficient than
the one using Legendre’s elliptic integral. It is the most efficient
exact formula at z < 1. On the other hand, our novel expression
involving the hypergeometric function is about a factor two faster
at z 2 1. Ideally, both functions can be combined for high-precision
cosmology distance calculations.

(iii) The rational function approximation of the luminosity dis-
tance proposed by Adachi & Kasai (2012) remains a significantly
faster alternative. It is a factor three faster than the relatively pop-
ular fitting function proposed by Pen (1999). The approximation
is roughly an order of magnitude faster than any exact method at
z < 1 and still a factor of three at the highest redshifts. For practical
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work where relative errors of ~0.1 per cent are allowed, this seems
the most intelligent option.

As a final remark, we note that the results obtained in this paper,
which strictly deal with a flat cosmology, can also be useful for a
more general ACDM cosmology. For example, Mészéros & Ripa
(2015) showed that the expression for the luminosity distance in cos-
mological models with a small curvature can expanded in a power
series, and that the dominant term is equivalent to the expression
studied in this paper.
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