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Abstract

The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex

geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iter-

ation, which makes them numerically very demanding. Bjorkman and Wood recently proposed a frequency distribution

adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by

choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-

emitted photons. Though, the method appears to yield correct results, we argue that its theoretical basis is not com-

pletely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether

it is just a good and convenient approximation. We critically study the general problem of how an already sampled

distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution.

We show that this adjustment is not always possible, and that it depends on the shape of the original and desired dis-

tributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equi-

librium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method

of Bjorkman and Wood, and we demonstrate that this method provides the correct frequency distribution through the
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additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show

that it can easily be combined with the presence of additional heating sources and the concept of photon weighting.

However, the method may fail if small dust grains are included, or if the absorption rate is estimated from the mean

intensity of the radiation field.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Monte Carlo method is a very powerful

method to solve complicated radiative transfer

problems. Apart from allowing virtually any geo-

metrical distribution of sources and sinks, it has

the potential to address a number of additional
problems which form a serious challenge to the

more conventional ray-tracing techniques. Possi-

ble problems that can be addressed include the cal-

culation of polarization of scattered radiation

(Code and Whitney, 1995; Bianchi et al., 1996),

the correct treatment of kinematical information

in the radiative transfer problem (Matthews and

Wood, 2001; Baes and Dejonghe, 2002; Baes
et al., 2003), and inclusion of the clumpiness of

the interstellar medium (Boissé, 1990; Witt and

Gordon, 1996; Bianchi et al., 2000b).

In this paper, we concentrate on another typical

radiative transfer problem, the self-consistent heat-

ing and re-emission of an absorbing/scattering

medium in thermal equilibrium with the radiation

field. When dust grains1 absorb (mainly optical or
UV) radiation from the ambient radiation field,

they are heated, and they re-emit this absorbed

energy at longer wavelengths, thereby altering

the ambient radiation field. Hence, the radiative

transfer problem requires a simultaneous calcula-

tion of both the temperature distribution of the

dust and the ambient radiation field.

As long as the geometry of the system is not too
complicated, this problem can be solved with con-
1 In principle, any heating and opacity source can be

accounted for, as long as the optical properties of the opacity

source are independent of temperature. We will focus on the

heating of dust grains which are heated by an ambient stellar

radiation field.
ventional techniques. In spherical geometry, the

problem can be solved in a rather straightforward

way using the traditional radiative transfer tech-

niques (Rowan-Robinson, 1980; Yorke, 1980;

Wolfire and Cassinelli, 1986; Rogers and Martin,

1986; Ivezić and Elitzur, 1997). However, for more

general two- and three-dimensional geometries the
problem is much more difficult, and obtaining an

exact solution becomes much harder with these

conventional techniques (Efstathiou and Rowan-

Robinson, 1990, 1991; Sonnhalter et al., 1995;

Men�shchikov and Henning, 1997; Steinacker

et al., 2003). This can be overcome with the Monte

Carlo method, where there are no geometrical

restrictions. The Monte Carlo method for radia-
tive equilibrium radiative transfer calculations

was pioneered more than two decades ago (Lefevre

et al., 1982, 1983). Since then, various new tech-

niques, optimizations and extensions have been

proposed (Lucy, 1999; Bjorkman and Wood,

2001; Misselt et al., 2001; Ercolano et al., 2003b;

Niccolini et al., 2003) and the method has been

applied to widely different environments, including
stellar atmospheres (Lucy, 1999; Wood et al.,

2002), dusty galaxies (Bianchi et al., 2000a; Misselt

et al., 2001), planetary nebulae (Ercolano et al.,

2003a) and protostellar cores (Wolf et al., 1999;

Stamatellos and Whitworth, 2003).

One of these optimizations, proposed by Bjork-

man and Wood (2001, hereafter BW), seems par-

ticularly interesting. These authors describe a
technique in which iteration, which is an undesir-

able but necessary ingredient of the standard radi-

ative equilibrium Monte Carlo techniques, can be

avoided. However, it is not completely clear, in

our opinion, whether the frequency distribution

adjustment (hereafter FDA) technique, which the

BW method employs, is an exact rigorous method,
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or whether it is just a good and convenient approx-

imation. This narrow distinction is quite impor-

tant, not only from an academic point of view.

For example, Ercolano et al. (2003b) have devel-

oped an iterative Monte Carlo code for radiative
equilibrium calculations in which the opacity of

the obscuring medium depends on its temperature.

They adopt the FDA technique in each iteration

step. Any small deviations from the correct answer

could culminate in larger errors after performing

the same method at each iteration step.

It is therefore important to obtain a thorough

theoretical understanding of the FDA method,
and to investigate its advantages and limitations.

This is the goal of the current paper. In Section

2, we will describe the problem of radiative and

thermal equilibrium Monte Carlo radiative trans-

fer, and we focus on the FDA procedure proposed

to avoid iteration. In Section 3, we investigate the

basis of the FDA procedure. We do this in a

broader framework, and investigate the general
problem of how a sampled distribution can be ad-

justed to a desired distribution by adding data

points sampled from an adjustment distribution.

We apply this to radiative equilibrium Monte

Carlo radiative transfer in Section 4, and compare

the results with the method of BW. In Section 5 we

discuss the results and present the advantages and

limitations of the FDA procedure.
2. Radiative equilibrium Monte Carlo radiative

transfer

The basic idea of Monte Carlo radiative transfer

is that a very large number ofL-packets (often called

photons or photon packets) are followed individu-
ally throughout the system while being emitted,

scattered or absorbed. Each step in the lifetime of

a single L-packet is governed by random events.

First, we divide the total luminosity L emitted by

the radiation sources into a very large number N

of packets of equal luminosity dL = L/N. Next, the

dust medium is divided into a number of dust cells,

each of them representing a physical dust entitywith
a specific massM and temperature T (the latter still

has to be determined). We then start the actual

Monte Carlo simulation by launching each of these
N packets randomly in the dusty medium. Each of

them is assigned a random initial position r accord-
ing to the geometry of the sources, a random initial

propagation direction k and a random frequency m.
During its journey through the dusty medium, the
position and propagation direction of each L-pack-

et changes, until it either leaves the system (and can

be detected) or is absorbed by a dust grain.

2.1. Solution using iteration

In the standard application of the radiative

equilibrium Monte Carlo calculations, we launch
all direct source L-packets, follow them until they

leave the system or are absorbed, and record the

cell in which each absorption takes place. After

launching and following all source L-packets, we

calculate the dust temperature of each cell from

the cell mass and the amount of absorbed luminos-

ity. If k packages have been absorbed in a dust cell,

the temperature of this cell can be determined
from the requirement that the total absorption rate

(Cabs) in the cell must equal the total emission rate

(Cem) from the cell. The former can be estimated

by multiplying the number of L-packets that have

been absorbed with the luminosity fraction dL per

L-packet, i.e.,

Cabs ¼ kdL ¼ k
L
N
; ð1Þ

whereas the latter is obtained from

Cem ¼ 4pM
Z 1

0

jmBmðT Þ dm: ð2Þ

From the requirement that the absorption and

emission rate balance each other,

Cem ¼ Cabs; ð3Þ

the new temperature T of the cell can be deter-

mined. In order to conserve radiative equilibrium,

we must launch a new set of k L-packets, which

should be distributed according to the emissivity

of the dust cell,

jm ¼ jmBmðT Þ: ð4Þ

Hence each re-emitted L-packet must be

assigned a frequency determined from the proba-

bility density function (hereafter PDF)
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pðmÞ dm ¼ jmBmðT Þ dmR1
0

jmBmðT Þ dm
: ð5Þ

By emitting these k L-packets we assure that radi-
ative equilibrium is satisfied in each cell.

Each of these re-emitted L-packets is again fol-

lowed through the dust grid until either it is ab-

sorbed or it leaves the system. Again, we record

the number of absorption events in each cell. This

allows us to update the temperature of each cell, to

determine the new emissivity, etc. This procedure

naturally leads to an iteration, which stops when
the temperature of each dust cell converges.

Unfortunately, Monte Carlo radiative transfer

is a numerically demanding method, and so it

would be very useful if somehow the iteration in

this method could be either accelerated or avoided

completely. Lucy (1999) has proposed a device to

optimize the iteration. He argues that a much fas-

ter convergence can be achieved by applying a
temperature correction and re-emission immedi-

ately after each individual absorption event. Thus,

every single time an L-packet is absorbed, the tem-

perature T of the cell is updated to a new temper-

ature T + DT and a new L-packet is re-emitted

with the new emissivity of the cell jmBm(T + DT).
This L-packet is then followed until either it leaves

the system or it is absorbed again. Hence, the
re-emitted L-packets enter the radiative transfer

alongside the source L-packets, and also contrib-

ute to the heating of the dust. As a consequence,

the temperature distribution and the radiation

field of the system after the last L-packet leaves

the system are closer to the equilibrium state,

and fewer iterations are necessary to reach

convergence.
2.2. Solution using the FDA method

Even with the improvements made by Lucy

(1999), iteration remains necessary. Indeed, during

the calculation, the temperature in each cell grad-

ually increases, and the L-packets re-emitted in

the beginning of the simulation are hence emitted
from an incorrect frequency distribution (corre-

sponding to a temperature which is too low). An

extension of the idea of Lucy (1999) has been pro-

posed by BW. Their aim is to correct, during each
re-emission event, for the incorrect frequency dis-

tribution of the L-packets that have been re-emit-

ted before. If this succeeds, then the system is in

radiative and thermal equilibrium at all moments

during the simulation, and after the last L-packet
leaves the system, the correct temperature distribu-

tion and spectrum are obtained without any itera-

tion at all.

Consider some stage in the Monte Carlo

process, when k L-packets have already been

absorbed and re-emitted in a certain cell. The tem-

perature of the cell has been gradually increasing

from zero to T, and assume we somehow have
managed to fine-tune the re-emission frequencies

such that they all correspond to the emissivity

jmBm(T). Now assume a (k + 1)th L-packet is

absorbed, which increases the dust cell tempera-

ture to T + DT, so that the emissivity changes to

jmBm(T + DT). To preserve radiative equilibrium,

a new L-packet must be emitted with luminosity

dL. Its frequency must be chosen in such a way
that the ensemble of the (k + 1) re-emitted L-pack-

ets from this cell correspond to the new emissivity

jmBm(T + DT). BW argue that this can be satisfied

if the (k + 1)th frequency corresponds to the differ-

ence emissivity

Djm ¼ jm BmðT þ DT Þ � BmðT Þ½ �: ð6Þ
Hence, the (k + 1)th frequency should hence be

drawn from the normalized PDF

~qðmÞ dm ¼ jm½BmðT þ DT Þ � BmðT Þ� dmR1
0

jm½BmðT þ DT Þ � BmðT Þ� dm
: ð7Þ

Note that this PDF is positive everywhere,

because the Planck function is a monotonically
increasing function of temperature. When the dif-

ference DT between the two temperatures is small,

this expression can be approximated by

~qðmÞ dm � jmB0
mðT Þ dmR1

0
jmB0

mðT Þ dm
; ð8Þ

where B0
mðT Þ is the temperature derivative of the

Planck function.
BW have implemented their technique and

tested it on the set of benchmark models presented

by Ivezić et al. (1997). They find good agreement

with the benchmark results, and conclude that
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their FDA method works well. Furthermore, we

have tested this method against the thermody-

namic equilibrium test and shown that the method

is indeed accurate: the temperature structure of a

system embedded in an isotropic black-body radi-
ation field was found to be uniform, with an accu-

racy which could be reduced to less than 0.1 K by

simulating enough L-packets (Stamatellos and

Whitworth, 2003).

Two arguments, however, made us doubt

whether this method is really an exact rigorous

method, or whether it is just a very good and con-

venient approximation:

(1) Eq. (7) suggests that one can always adjust

the spectrum of k emitted frequencies from

one PDF (corresponding to T) to another

(corresponding to T + DT) by simply adding

one single frequency. Intuitively we expect

that this is possible if the difference between

these two temperatures is small, but that it
will be very hard or impossible if the temper-

ature difference is large. For example, when

the temperature is very low, most of the

radiation will be emitted at far-infrared or

sub-millimeter wavelengths. When the tem-

perature increase is sufficiently high, the

new emissivity requires that most L-packets

are emitted at optical or near-infrared wave-
lengths. Consequently, there is a limit on the

temperature increase allowed by this

method.

(2) It seems logical that adjusting a sampled dis-

tribution by adding one more data point is

much harder if many frequencies have been

sampled before, than when only a small

number of frequencies have been sampled.
Therefore, one would in general expect that

the ‘‘adjustment PDF’’ ~qðmÞ dm would be an

explicit function of the number k of previ-

ously emitted L-packets.

In order to investigate this in detail, we study

the issue of adjusting the behavior of a set of data

points by adding new data points in a more gen-
eral context in the following section, and apply

the results to radiative equilibrium Monte Carlo

radiative transfer afterwards.
3. Adjusting a previously sampled distribution

Assume p(x) dx and r(x) dx are two arbitrary

PDFs, and consider the following question: is it

possible to construct a third PDF q(x) dx which
satisfies the condition that any set of n + m data

points, where the first n data points are drawn ran-

domly from p(x) dx and the last m ones are drawn

randomly from q(x) dx, represents a set of data

drawn randomly from r(x) dx? In other words,

can we find an ‘‘adjustment PDF’’ that adjusts

an arbitrary original PDF into an arbitrary altered

PDF?
The solution to this problem is based on the

definition that the probability that any data point

lies between x and x + dx, when drawn randomly

from a PDF p(x) dx, equals p(x) dx. Hence, when

we draw n random data points from this PDF, the

expected number of them between x and x + dx is

np(x) dx. Applying this to the total data set of

m + n data points, we can find the form of the
required PDF. As we can simply add the number

of data points in each interval, the expected num-

ber of data points between x and x + dx is given

by

dNðxÞ ¼ npðxÞ dxþ mqðxÞ dx: ð9Þ
On the other hand, this sample of m + n data

points should represent a sample drawn randomly

from the PDF r(x) dx, and therefore we can also

write

dNðxÞ ¼ ðnþ mÞrðxÞ dx: ð10Þ
From these two expressions, we find that the

adjustment PDF should have the form

qðxÞ dx ¼ 1þ n
m

� �
rðxÞ dx� n

m
pðxÞ dx: ð11Þ

However, it is not always guaranteed that this

function is a valid PDF, because there is no a

priori guarantee that it is positive over its entire

domain. If this function does become negative, this

means that it is impossible to adjust the PDF
p(x) dx to r(x) dx by adding m data points.

Whether or not it is possible to adjust one PDF

into another depends both on the particular PDFs

involved and on the ratio k ” n/m of the number of

data points already sampled to the number of data

points which can be added. Logically, it will be
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easier to transform one PDF to another if the dis-

tributions are very similar, than when they are very

different. Also, it will in general be easier to change

one distribution into another one if many data

points can be added to a few data points sampled
before (m � n), than when only a few new data

points can be added to a large set of already exist-

ing data points (n � m).

In Appendix A, we demonstrate the adjust-

ment of one PDF to another for gaussian distri-

butions. If we want to adjust the original

gaussian distribution into another gaussian distri-

bution with the same dispersion but a different
mean, we show that the resulting adjustment

PDF will always be negative at some point, no

matter how small the shift in the mean or the rel-

ative number of data points to be added. On the

other hand, if we want to alter the original gauss-

ian PDF to a gaussian PDF with the same mean

but a larger dispersion, we find that this is possi-

ble in some cases. When the relative number of
data points to add is too small or when the dis-

persion increase is too large, however, the adjust-

ment is not possible.
4. Application to radiative equilibrium Monte Carlo

radiative transfer

4.1. Determination of the adjustment PDF

With the general theorem from the previous sec-

tion, we can return to the radiative equilibrium

problem addressed in Section 2.2. What we need

to do is to adjust a sample of k frequencies drawn

randomly from the PDF

pðmÞ dm ¼ jmBmðT Þ dmR1
0

jmBmðT Þ dm
; ð12Þ

to a sample of k + 1 frequencies drawn from the

PDF

rðmÞ dm ¼ jmBmðT þ DT Þ dmR1
0

jmBmðT þ DT Þ dm
; ð13Þ

by just adding one single frequency L-packet.

Applying the general formula (11), we find that

the last emitted L-packet should have a frequency

drawn from the adjustment PDF
qðmÞ dm ¼ ð1þ kÞ jmBmðT þ DT Þ dmR1
0

jmBmðT þ DT Þ dm

� k
jmBmðT Þ dmR1
0

jmBmðT Þ dm
: ð14Þ

This formula can be easily interpreted in a physical

way. When the (k + 1)th L-packet is absorbed, the

temperature rises from T to T + DT. This last

L-packet should then be re-emitted with a fre-

quency sampled from the PDF corresponding to

the new temperature, i.e.,

Pkþ1ðmÞ dm ¼
jmBmðT þ DT Þ dmR1
0

jmBmðT þ DT Þ dm
: ð15Þ

Additionally, we should account for the L-

packets that were emitted previously with the

incorrect frequency. Thus, we should re-emit the

previous k L-packets with a frequency sampled

from the difference between the new and the old

PDF,

P jðmÞ dm ¼
jmBmðT þ DT Þ dmR1
0

jmBmðT þ DT Þ dm

� jmBmðT Þ dmR1
0

jmBmðT Þ dm
ðj ¼ 1 . . . kÞ: ð16Þ

The above procedure is equivalent to emitting just

one L-packet with the combined PDF as given by

Eq. (14).

However, it is not guaranteed that this function
corresponds to a valid PDF, because it can be neg-

ative. This is illustrated in Fig. 1, where we plot the

adjustment PDF q(m) for T = 20 K and different

values of the parameters DT and k. The opacity

function adopted is a simple power law of fre-

quency, jm � m2. For small values of k, the adjust-

ment PDF is positive for a large range of

temperature shifts. However, when the number
of previously generated frequencies k is high, the

adjustment PDF will be positive only for the

smallest values of DT. This behavior is also illus-

trated in Fig. 2, where we explicitly show the

region in (k,T,DT) parameter space where adjust-

ment is possible. The solid diagonal lines (different

lines are shown for different values of T, but there

is hardly any dependence on T) mark the border
between positive and negative adjustment PDFs.

For each number of data points k and each



Fig. 1. Examples of the adjustment PDF (14), corresponding to an opacity function jm � m2 and T = 20 K. The four different panels

show the adjustment PDF for various values of k. In each panel, the different curves correspond to different values of the temperature

increase, corresponding to DT = 0.02 K (light grey), 0.1, 0.2, 0.4, 1 and 2 K (black). For small values of k and DT, the adjustment PDF

is a positive function, and adjustment is possible. For large values of k and/or DT, the adjustment PDF is negative at long wavelengths,

and adjustment is not possible.

Fig. 2. Region in (k,T,DT) parameter space in which the

adjustment PDF (14) is positive. The opacity function is again

jm � m2. Different solid grey lines correspond to different values

of the temperature T, but there is hardly any dependence on T.

Each line shows for a given T and k the maximum temperature

increase DT such that the adjustment PDF is positive. Hence,

underneath the solid grey lines, adjustment is possible, above

these lines, adjustment is impossible. The dotted line indicates

the relative temperature increase expected from the radiative

equilibrium requirement (see Section 4.2).
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temperature T, there is a maximum temperature

increase DTmax(T,k) that can be allowed for add-

ing one (k + 1)th frequency L-packet. As expected,
this maximum temperature increase strongly de-

creases with increasing k.

4.2. Comparison with the BW adjustment PDF

The calculation in the previous subsection

showed that the adjustment PDF (7) proposed

by BW is in general not the same as the adjustment
PDF (14). Moreover, we have shown that the lat-

ter does not represent a proper PDF for all of the

parameters (k,T,DT). Indeed, for a given k and T

there is a critical value of DT, above which the

adjustment PDF becomes negative. This observa-

tion suggests that the method by BW is an approx-

imation rather than a rigorous solution, and even

that the exact FDA procedure in Monte Carlo
radiative transfer might not always be possible.

It is important to realize however, that not the

entire (k,T,DT) parameter space will be covered

during a simulation. Indeed, if a dust cell has a

given temperature T after absorbing and re-emit-

ting k L-packets, and the (k + 1)th L-packet is

absorbed, the temperature rise DT is determined

by the requirement of radiative equilibrium (3),Z 1

0

jmBmðT þ DT Þ dm ¼ ðk þ 1ÞdL
4pM

: ð17Þ

For the opacity function jm � m2, the tempera-

ture increase DT can be calculated explicitly for

each T and k. Using the expression



530 M. Baes et al. / New Astronomy 10 (2005) 523–533
Z 1

0

m2BmðT Þ dm / T 6; ð18Þ

one obtains after some algebra

DT ðT ; kÞ ¼ T 1þ 1

k

� �1=6

� 1

" #
: ð19Þ

This function is plotted as the dotted line in Fig. 2.

This plot shows that DT(T,k)<DTmax(T,k), i.e., at

every step in the Monte Carlo simulation, the tem-

perature increase is always small enough such that

the adjustment PDF is positive. This proves that

the FDA method in radiative equilibrium Monte

Carlo radiative transfer works.
Knowing that the adjustment PDF (14) will

always be positive for the expected temperature

increase, we can compare the results with those

of BW. From Eq. (17), we obtain thatR1
0

jmBmðT þ DT Þ dmR1
0

jmBmðT Þ dm
¼ k þ 1

k
: ð20Þ

If we use this expression to eliminate k from the
adjustment PDF (14), we obtain

qðmÞ dm ¼ jm½BmðT þ DT Þ � BmðT Þ� dmR1
0

jm½BmðT þ DT Þ � BmðT Þ� dm
� ~qðmÞ dm; ð21Þ

i.e., we recover the adjustment PDF proposed by
BW.
5. Discussion

5.1. Efficiency of the method

The analysis in the previous section demon-

strates that the FDA procedure proposed by BW

provides the correct distribution of frequencies of

the re-emitted L-packets. This demonstrates that

the FDA algorithm is robust, and that at every
step in the Monte Carlo simulation, the spectrum

of the re-emitted L-packets is in agreement with

the temperatures of the dust medium. As it avoids

computationally costly iteration, the method is

probably the most efficient way of doing thermal

equilibrium radiative transfer calculation for arbi-

trary geometries.
One competitor might be the method pioneered

by Niccolini et al. (2003), in which the determina-

tion of the temperature structure is separated from

the Monte Carlo radiative transfer procedure.

With the results of a single radiative transfer run
with an initially guessed temperature distribution,

they determine the correct temperature distribu-

tion and then scale the radiation field by the corre-

sponding factors. Although their method also

avoids performing several Monte Carlo simulation

runs in an iterative loop, it still contains an itera-

tive procedure to determine the temperature distri-

bution. When the number of cells is small, this
iteration is fairly quick, and this method is proba-

bly competitive with the FDA method of BW.

When the number of cells is large, however, which

may be necessary in realistic three-dimensional

geometries without obvious symmetries, this itera-

tive loop to determine the temperature distribution

might be very difficult and time-consuming. This

probably makes the FDA method the most effi-
cient method for the general three-dimensional

radiative equilibrium radiative transfer problem.

5.2. Extensions and optimizations

Althoughwe have demonstrated that themethod

presented by BW represents the correct way to ad-

just the frequency distribution of the previously
emitted L-packets, it should be kept in mind that

the correct behavior is due to the additional require-

ment of local thermal and radiative equilibrium, as

given in Eq. (17). Whenever deviations are made

from this requirement, the extended technique

might fail.

5.2.1. Photon weighting

We have assumed so far that all L-packets are

luminosity packets with the same luminosity dL.
When such an L-packet is absorbed, a new

L-packet with a different frequency but with the

same luminosity must be re-emitted. As such, the

Monte Carlo simulation can be very inefficient in

regions with low density. One option is to make

the cells bigger such that more absorptions occur,
but this decreases the spatial resolution. A more

intelligent option is to drop the requirement that

all L-packets must have the same luminosity, or
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equivalently, to introduce L-packet weights. By

doing this, devices which reduce Poisson noise

can be built into the Monte Carlo code, such as

the principle of forced interaction or a peel-off tech-

nique (e.g., Cashwell and Everett, 1959; Witt, 1977;
Yusef-Zadeh et al., 1984; Niccolini et al., 2003).

We should consider whether such techniques are

compatible with the FDA technique. To answer

this question, assume that k L-packets with lumi-

nosity dL have been absorbed in a cell, that the

temperature of the cell is T, and that a k + 1th L-

packet is absorbed with a different luminosity,

wdL. Clearly, an L-packet with this luminosity will
have to be re-emitted, but what will be the shape of

the adjustment PDF in this case? In Section 3 we

saw that the adjustment PDF corresponding to

adding m data points to a set of n existing data

points only depends on the relative number

k = m/n of existing data points. Translating this

to the current case means that the adjustment

PDF corresponding to adding an L-packet with
luminosity wdL to a set of k L-packets with lumi-

nosity dL, is equivalent to adding one L-packet

with luminosity dL to a set of k/w L-packets with

luminosity dL. The same formula (14) will be

appropriate but with k replaced by k/w. We should

in general not consider k as an integer number cor-

responding to the number of L-packets absorbed

by the dust cell before the last absorption event,
but rather as a real number corresponding to the

ratio of the luminosity of the last absorbed L-pack-

et to the total luminosity absorbed by the dust cell

before the last absorption event. Because k has nat-

urally the same meaning in Eq. (1) for the absorp-

tion rate, the BW adjustment PDF will still be

valid. L-packet weighting can therefore be com-

bined easily with the FDA method.

5.2.2. Additional heating sources

The technique described in this paper, considers

the calculation of the temperature distribution of

dust grains, which are in radiative equilibrium with

the radiation field. In realistic astrophysical situa-

tions, heating by the ambient radiation field is of-

ten not the only source of dust heating. Dust
grains can be heated by a variety of other astro-

physical processes, such as viscous or compres-

sional heating, collisions with hot electrons in an
X-ray halo or collisions with cosmic rays. In this

case, the condition of radiative equilibrium (3) is

not satisfied, and should now be replaced by a

more general equation

Cem ¼ Cabs þ Cadd; ð22Þ

where Cadd represents the amount of energy per

unit time (the luminosity) gained by the dust cell
due to other processes. If we assume that this fac-

tor in general depends on the position, size, etc., of

the dust cell, but not on its temperature, it remains

constant during the Monte Carlo simulation.

Although radiative equilibrium is not satisfied,

it is straightforward to see that the FDA method

is fully compatible with such additional heating

sources. Indeed, it suffices, as in Section 5.2.1, to
consider k as the ratio of the luminosity of the last

absorbed L-packet to the total luminosity gained

by the dust cell before the last absorption event.

In particular, this means that the temperature T0

of the dust cell at the beginning of the simulation

is not zero, but is determined byZ 1

0

jmBmðT 0Þ dm ¼
Cadd

4pM
: ð23Þ

The FDA method can therefore be combined

easily with additional heating sources.

5.2.3. Very small dust grains

Another case where condition (17) is not satis-

fied occurs when the contribution of small dust
grains is important. These dust grains undergo

transient heating to temperatures well beyond the

equilibrium temperature (Guhathakurta and

Draine, 1989). This means that the grains within

a dust cell have a range of time-dependent temper-

atures characterized by a temperature probability

function P(T) rather than a single equilibrium tem-

perature. Although more complex physics are in-
volved here, their inclusion in Monte Carlo

radiative transfer calculation is in principle similar

to the normal radiative equilibrium radiative

transfer (e.g., Misselt et al., 2001). So in principle,

the FDA technique could also be applied to this

more difficult problem. However, it can be

expected that the relative temperature increase of

small dust grains may be so large that negative
adjustment PDFs are obtained. Therefore, in the
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case of transient heating by small dust grains, iter-

ation can probably not be avoided.

5.2.4. An alternative estimate for the absorption rate

In this Monte Carlo method, we have estimated
the absorption rate by multiplying the number of

L-packets that have been absorbed with the lumi-

nosity fraction dL per L-packet, as in Eq. (1).

However, this way of estimating the absorption

rate performs rather poorly in low density environ-

ments. A better way of estimating the absorption

rate is to use its direct link to the mean intensity

of the radiation field,

Cabs ¼ 4pM
Z 1

0

jmJ m dm: ð24Þ

As Lucy (1999) argues, the mean intensity in a

given cell can be estimated through its relation to

the energy density of the radiation field. We only

have to add a path length counter in each cell
and determine the total path length covered by

all L-packets in the cell (see also Niccolini et al.,

2003). The advantage of this method is that all

L-packets entering the dust cell will contribute to

the estimate of the absorption rate. Since generally

only a small number of the L-packets entering a

cell will be absorbed, it is clear that this method

will give a better estimate of the absorption rate,
and hence of the temperature of the dust cells.

If we estimate the absorption rate in this way

however, the relation (17) will not generally be

valid anymore, and there is no reason why the

adjustment PDF (14) should be equal to the BW

PDF (7). Therefore, for the FDA method to work

correctly, it is necessary to estimate the absorption

rate as in Eq. (1), which might be rather inefficient
in environments with a low density. When perform-

ing radiative equilibriumMonte Carlo simulations,

it is hence strongly recommended to construct the

dust cells in such a way that the absorption proba-

bility is more or less equal in each of the cells.
6. Conclusions

We have evaluated critically the frequency dis-

tribution adjustment (FDA) method, a technique

proposed by Bjorkman and Wood (2001) to opti-
mize radiative equilibrium Monte Carlo radiative

transfer simulations.

We first investigated the more general problem

of trying to adjust the spectrum of a set of data

points sampled from an arbitrary distribution by
adding extra data points, such that the combined

data set appears to be sampled from an arbitrary

third distribution. We have determined the general

shape this distribution must have, and shown that

it is not always possible to adjust a set of data

points in an arbitrary way. Whether this is possi-

ble, depends on the shape of the distributions

and on the relative number of data points that
have already been sampled.

We use this general theorem to investigate the

theoretical basis of the FDA method. We demon-

strate that the FDA method provides the correct

frequency distribution for the re-emitted L-pack-

et, because of the additional requirement of radi-

ative equilibrium. We also show that the method

can be easily extended with the use of weighted
L-packets, and that additional heating mecha-

nisms can be included in the simulation without

violating the FDA method. However, the method

may fail if small dust grains are included, or if

the absorption rate is estimated in an alternative

way.
Appendix A. Example of adjusting a gaussian

distribution

Suppose that we have sampled a set of n data

points from a gaussian PDF,

pðxÞ dx ¼ 1ffiffiffiffiffiffi
2p

p
r
exp �ðx� lÞ2

2r2

" #
dx; ðA:1Þ

and we want to add a number m = n/k data points

such that the total data set represents a sample

taken from a different gaussian PDF.

First, assume the required PDF is a gaussian
with the same dispersion, but we shift the mean

over a distance Dl > 0

rðxÞ dx ¼ 1ffiffiffiffiffiffi
2p

p
r
exp �ðx� l� DlÞ2

2r2

" #
dx: ðA:2Þ
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Using expression (11), we find the resulting

adjustment PDF q(x) dx. It is a straightforward

exercise to see that this function will always be

negative in the range

x < lþ r2

Dl
ln

k
1þ k

� �
� Dl

2
: ðA:3Þ

So, no matter how small k or Dl, the function

q(x) dxwill never represent a proper PDF, such that

it is (in theory) impossible to shift the mean of a

gaussian distribution by adding more data points.

Next, assume the required PDF is a gaussian
with the same mean, but with a different dispersion

r 0 = (1 + d)r,

rðxÞ dx ¼ 1ffiffiffiffiffiffi
2p

p
ð1þ dÞr

� exp � ðx� lÞ2

2ð1þ dÞ2r2

" #
dx: ðA:4Þ

Again, the appropriate adjustment PDF q(x) dx
can be obtained using Eq. (11). A similar exercise

shows that this function becomes negative if,

ðx� lÞ2 < 2ð1þ dÞ2r2

ð1þ dÞ2 � 1
ln

ð1þ dÞk
1þ k

� �
: ðA:5Þ

This condition will, however, never be satisfied

if the right-hand side of this equation is negative,

i.e., when d < 1/k. In this case, the function q(x)
will therefore be positive for all values of x and

represents a valid PDF.
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