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Abstract. We discuss the kinematical structure of a two-parameter family of isotropic models with a central black hole. The
family contains the slope of the central density cusp and the relative black hole mass as parameters. Most of the basic kine-
matical quantities of these models can be expressed analytically. This family contains three distinct models where also the
distribution function, differential energy distribution and spatial LOSVDs can be expressed completely analytically. Each of
these models shows a drastically different behaviour of the distribution function. Although the effect of a black hole on the
distribution function is very strong, in particular for models with a shallow density cusp, the differential energy distribution
is only marginally affected. We discuss in detail the effects of a central black hole on the LOSVDs. The projected velocity
dispersion increases with black hole mass at small projected radii, but the effect of a black hole on the shape of the LOSVDs
(characterized by the h4 parameter) is less straightforward to interpret. Too much reliance on the wings of the LOSVDs and the
value of the h4 parameter to determine black hole masses might hence be dangerous.
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1. Introduction

During the past decade, various observational discoveries have
changed our view on galactic nuclei rather drastically. Firstly,
galactic nuclei are generally observed to have a cuspy density
distribution at small radii, with densities behaving as ρ(r) ∝
r−γ. The observed cusp slopes are far from uniform and range
from zero to more than 2 (Lauer et al. 1995; Gebhardt et al.
1996; Ravindranath et al. 2001; Seigar et al. 2002; Genzel et al.
2003; Scarlata et al. 2004). Secondly, high-resolution imaging
has revealed that a substantial fraction of the galactic nuclei in
both spiral and elliptical galaxies show small-scale structure,
in the form of bars, mini-spirals or dust lanes (Phillips et al.
1996; Malkan et al. 1998; Carollo et al. 1998; Tran et al. 2001;
Martini et al. 2003). Thirdly, there is now enough credible ev-
idence that (nearly) all nearby galaxies harbor a supermassive
black hole in their centre. Intriguingly, the masses of these pu-
tative black holes are tightly coupled to large-scale parameters
of the host galaxies (Kormendy & Richstone 1995; Ferrarese
& Merritt 2000; Gebhardt et al. 2000; Graham et al. 2001;
McLure & Dunlop 2002; Ferrarese 2002; Baes et al. 2003a;
Marconi & Hunt 2003). Clearly, these various aspects are not
isolated features, they all play part in the processes that shape
galactic nuclei and galaxies in general. Unfortunately, we still
know little about the formation processes and evolutionary sce-
narios of galactic nuclei and their black holes. For example, it is
still unclear when and how supermassive black hole are being

fuelled and what the mutual influence is between black holes
and the central density cusps in galactic nuclei. Various relevant
processes probably play at scales which are beyond (or at the
limit of) the current observational capabilities. In order to in-
crease our understanding, more detailed theoretical modelling,
for example using N-body of SPH simulations, is necessary.

As a starting point or general framework for such studies,
one needs a set of reference models which are simple enough
and still can present a wide enough variety in structural char-
acteristics. Because of the observed cuspy nature of galaxy
centers, well explored models such as the Plummer model
(Plummer 1911; Dejonghe 1987) and the isochrone sphere
(Hénon 1959, 1960) are less suitable. Scale free models are
a useful alternative. Such models have a density profile that de-
creases as r−γ, and they include the singular isothermal sphere
as a special case. Because of the simplicity of these models,
their dynamical structure can be easily studied, even in axisym-
metric or triaxial generalizations (e.g. Toomre 1982; Evans
1994; Qian et al. 1995; de Bruijne et al. 1996; Evans et al. 1997;
Jalali & de Zeeuw 2001). Unfortunately, scale free models al-
ways have an infinite total mass, with the mass diverging in the
centre for γ ≥ 3 and at large radii for γ ≤ 3.

A set of models that does not suffer from this disadvantage
is the family of γ-models, introduced independently by Dehnen
(1993) and Tremaine et al. (1994). These models have a cen-
tral r−γ density cusp (γ < 3) and the density falls at r−4 at large
radii, such that the total mass is always finite. Special cases are
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the well-known Hernquist and Jaffe models (Hernquist 1990;
Jaffe 1984). Many interesting dynamical properties such as
the intrinsic and projected velocity dispersions, the distribution
function and the differential energy distribution can be calcu-
lated analytically for the γ-models, under the assumption of
a self-consistent isotropic dynamical structure. Extensions to-
wards an anisotropic distribution functions or flattened geome-
try have been presented (e.g. Dehnen & Gerhard 1994; Hiotelis
1994; Carollo et al. 1995; Zhenglu 2000; Baes et al. 2002a;
Zhenglu & Moss 2002).

As supermassive black holes appear to the present in nearly
all galactic nuclei, it would be very interesting to extend the
family of γ-models with a central black hole. In principle this
is quite straightforward: one just has to add an extra con-
tribution from the black hole to the stellar potential and re-
calculate the dynamical properties with this new potential. In
fact, Tremaine et al. (1994) consider the case where a central
black hole is present in the γ-models. They present analytical
expressions for the velocity dispersions and discuss the effect
of a black hole on the distribution function. Unfortunately, they
do not seek for analytical expressions for the distribution func-
tion and they leave some of the most interesting kinematical
properties such as the differential energy distribution and the
LOSVDs undiscussed. Ciotti (1996) provides a first attempt to
construct completely analytical dynamical models for galax-
ies with a central black hole. Extending the work by Carollo
et al. (1995), he considers a set of Hernquist models embed-
ded in a dark matter halo. Setting the dark halo radius to zero
reduces this halo to a central black hole. He demonstrates that
many of the interesting dynamical quantities, including the dis-
tribution function and the differential energy distribution, can
be calculated analytically (albeit as rather complicated func-
tions involving Jacobian functions). Baes & Dejonghe (2004)
present a one-parameter family with a steep γ = 5

2 cusp slope
and the black hole mass as a parameter. Almost all interesting
properties of this family of models can be written in terms of
elementary functions.

In this paper, we present a detailed analysis of
a two-parameter family of spherical isotropic dynamical mod-
els based on the γ-models. The family contains as parameters
the slope of the central density cusp γ and the ratio µ of the
central black hole mass to the total mass of the system. The
parameter space covered by these models goes from weakly
cusped models to very centrally concentrated models with an
infinite stellar potential well, and from self-consistent models
without black hole to systems where the dynamical structure
is completely dominated by the central black hole. In Sect. 2
we define the models. In Sect. 3 we derive some basic proper-
ties, most of which can be calculated completely analytically.
In Sect. 4 we discuss the energy budget of the models and look
at the virial theorem. In Sect. 5 we derive expressions for and
discuss the distribution function and the differential energy dis-
tribution. In Sect. 6 we study the LOSVDs of the models in
our family and discuss the observational signature of a black
hole. In the last section we summarize the results, and in the
Appendices we present some mathematical expressions which
might be useful for people who wish to use these models as
input for further theoretical studies.

2. Definition of the models

The γ-models have a luminosity density

ρ(r) =
3 − γ

4π
1

rγ(1 + r)4−γ · (1)

The parameter γ determines the density slope of the system at
small radii; it can assume values between 0 and 3. All models
have a luminosity density that behaves as r−4 at large radii, such
that the total luminosity is finite.

The gravitational potential of the models we consider is
the sum of two contributions: the stellar mass and a central
black hole. We introduce the parameter µ as the relative im-
portance of the black hole mass to the total mass in the system,
such that µ can only assume values between 0 and 1. Note that
the convention we use is similar to the one adopted by Baes
& Dejonghe (2004), but different from the convention used in
e.g. Tremaine et al. (1994) and Zhao (1996). In these papers, µ
denotes the black hole mass relative to the stellar mass and the
normalization is such that the stellar mass is set to unity. We
prefer to set the total mass of the galaxy equal to unity how-
ever, because all models then have the same behaviour at large
radii.

In the limit µ = 0 there is no black hole and we recover the
self-consistent γ-models described in detail by Dehnen (1993)
and Tremaine et al. (1994). The potential reduces to the stellar
potential

Ψ(r)→ Ψ∗(r) =
1

2 − γ
[
1 −

( r
1 + r

)2−γ]
. (2)

This expression is not valid for γ = 2, the Jaffe model. If we
take the limit γ → 2 in the previous expression we obtain the
Jaffe potential Ψ∗(r) = ln(1 + 1/r). This special case divides
the family of γ-models in two classes: self-consistent γ-models
with γ < 2 have a finite potential well with depth Ψ0 = 1/(2 −
γ), whereas the stellar potential well is infinitely deep for the
models with 2 ≤ γ < 3.

The other extreme case on the range of possible black hole
masses is µ = 1, corresponding to systems where the entire
mass resides within the central black hole. In this case, the total
gravitational potential reduces to a Kepler potential,

Ψ(r)→ Ψ•(r) =
1
r
· (3)

Although these systems where the dynamics are dominated by
a central black hole do not form a realistic representation of
real galaxies, they are useful in order to investigate the maxi-
mal effect of a black hole on the dynamical properties of the
γ-models.

The general case 0 < µ < 1 is intermediate between these
two extreme cases. We can write the cumulative mass function
and the potential of the γ-models as

M(r) = (1 − µ)
( r
1 + r

)3−γ
+ µ, (4)

Ψ(r) =
1 − µ
2 − γ

[
1 −

( r
1 + r

)2−γ]
+
µ

r
. (5)
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The two Eqs. (1) and (5) form a two-parameter family of
potential-density pairs. Each pair of parameters (γ, µ) com-
pletely defines a dynamical model. The study of these models
as a function of the parameters γ and µ is the goal of this paper.

3. Basic properties

3.1. The surface brightness

The surface brightness profile of a γ-model can be found by
projecting the luminosity density on the plane of the sky,

I(R) = 2
∫ ∞

R

ρ(r) r dr√
r2 − R2

· (6)

At large radii, the surface brightness falls as R−3. In the cen-
tral regions, models with γ < 1 have a finite central surface
brightness (in spite of the divergence of the luminosity den-
sity), whereas models with γ > 1 have a surface brightness pro-
file that diverges as R1−γ. The surface brightness can be eval-
uated analytically for all integer and half-integer values of γ.
Analytical expressions and other photometric quantities such
as the cumulative surface brightness and the half-light radius
can be found in Hernquist (1990), Dehnen (1993), Tremaine
et al. (1994) and Baes & Dejonghe (2004).

3.2. The velocity dispersion

For a spherical isotropic system, the intrinsic velocity disper-
sion profile can be found using the solution of the lowest-order
Jeans equation (Dejonghe 1986; Binney & Tremaine 1987),

σ2(r) =
1
ρ(r)

∫ ∞

r

M(r) ρ(r) dr
r2

· (7)

After substitution of the general cumulative mass function (4)
and some algebra, we obtain the expression

ρ(r)σ2(r) = (1 − µ)Wγ(r) + 2µW 3+γ
2

(r), (8)

where the function Wγ(r) is defined as

Wγ(r) =
3 − γ

4π

∫ ∞

r

r1−2γdr
(1 + r)7−2γ

· (9)

From Eq. (8) we see that Wγ(r) is nothing but the velocity dis-
persion ρ(r)σ2∗(r) of the self-consistent γ-model, which can be
evaluated in terms of elementary functions for all values of γ
(see Appendix A).

3.3. The projected velocity dispersion

The projected velocity dispersion profile σp(R) can be found
by projecting the intrinsic dispersion on the plane of the sky,

σ2
p(R) =

2
I(R)

∫ ∞

R

ρ(r)σ2(r) r dr√
r2 − R2

· (10)

This expression can be written in a form very similar to Eq. (8),

I(R)σ2
p(R) = (1 − µ)Yγ(R) + 2µY 3+γ

2
(R), (11)

with (Tremaine et al. 1994)

Yγ(R) =
3 − γ

2π

∫ ∞

R

r1−2γ
√

r2 − R2 dr
(1 + r)7−2γ

· (12)

The function Yγ(R) represents the projected velocity disper-
sion I(R)σ2

p,∗(r) of the self-consistent γ-model. It can be ex-
pressed analytically for all integer and half-integer values of γ,
and has to be calculated numerically for the other values of γ.
A useful transformation for the numerical calculation of the in-
tegral can be found in Appendix B of Dehnen (1993).

4. The energy budget and the virial theorem

The (scalar) virial theorem states that any steady-state system
satisfies the relation

2K = U, (13)

where K is the total kinetic energy and U = −W is the total
(binding) potential energy of the system. It is easy to verify
that the γ-models without a central black hole satisfy the virial
theorem. For a self-consistent spherical system the total poten-
tial and kinetic energy can be found as

U∗ = 2π
∫ ∞

0
ρ(r)Ψ∗(r) r2 dr. (14)

K∗ = 6π
∫ ∞

0
ρ(r)σ2

∗(r) r2 dr (15)

= 2π
∫ ∞

0
ρ(r) M∗(r) r dr, (16)

where the second expression for the kinetic energy is derived
by substituting Eq. (7) into the first expression and partial inte-
gration. Through substitution of the expressions (1), (2) and (4)
into these formulae, one finds that the self-consistent γ-models
have an infinite energy budget for γ ≥ 5

2 , whereas for γ < 5
2 we

obtain (Tremaine et al. 1994)

U∗ = 2K∗ =
1

5 − 2γ
· (17)

For systems with a central black hole, the total kinetic energy
can still be calculated using Eq. (15) or (16), with the contribu-
tion of the black hole taken into account in the dispersion or the
cumulative mass distribution. The total potential energy, how-
ever, cannot be found by just replacing the stellar potential by
the total potential, as the expression (14) is derived under the
assumption that the system is self-consistent. The correct ex-
pression for the potential energy consists of an internal and an
external contribution (Binney & Tremaine 1987, problem 8.2),

U =
1
2

�
ρ(r)Ψint(r) dr +

�
ρ(r) |r · ∇Ψext(r)| dr. (18)

In our present case, the external potential is the gravitational
potential from the central black hole, such that these formulae
reduce to

U = 2π (1 − µ)
∫ ∞

0
ρ(r)Ψ∗(r) r2 dr + 4πµ

∫ ∞

0
ρ(r) r dr, (19)
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or equivalently,

U = 2π
∫ ∞

0
ρ(r)Ψ(r) r2 dr + 2πµ

∫ ∞

0
ρ(r) r dr. (20)

Comparing this expression to the equivalent formula (14) of
the self-consistent models, we notice that the black hole mass
adds an extra contribution to the potential energy apart from its
contribution to the potential of the system. Using the expres-
sions (1), (5) and (4), one finds that the total energy budget is
infinite for γ ≥ 2, whereas for γ < 2 we obtain

U = 2K =
1

5 − 2γ

[
1 + µ

(
3 − γ
2 − γ

)]
· (21)

The virial theorem is thus satisfied.

5. The distribution function and the differential
energy distribution

All the kinematical information on a given system is contained
in the distribution function f (r, u), which represents the number
density of stars in six-dimensional phase space. For spherical
isotropic systems, the distribution function depends only on the
binding energy E = Ψ(r) − v2/2. The key to calculating the
distribution function f (E) of isotropic spherical models is the
augmented density ρ̃(Ψ), i.e. the luminosity density written as a
function of the potential. The Eddington formula specifies how
the distribution function can be calculated from the augmented
density,

f (E) =
1√
8π2

d
dE

∫ E

0

dρ̃
dΨ

dΨ√E −Ψ (22)

=
1√
8π2

∫ E

0

d2ρ̃

dΨ2

dΨ√E −Ψ +
1√

8E π2

(
dρ̃
dΨ

)
Ψ=0

. (23)

The distribution function obviously is an important character-
istic of the dynamical structure of galaxies. However, it is not
straightforward to physically interpret the meaning of the dis-
tribution function when expressed as a function of binding en-
ergy. A more natural diagnostic quantity is the differential en-
ergy distribution (DED) N(E), which describes the number of
stars per unit binding energy. For isotropic systems, the DED
is simply the product of the distribution function f (E) and the
density-of-states function g(E), defined as the phase space vol-
ume accessible for a star with binding energy E. This function
can be calculated as

g(E) = 16
√

2 π2
∫ Ψ0

E

∣∣∣∣∣r2 dr
dΨ

∣∣∣∣∣
√
Ψ − E dΨ, (24)

and depends only on the potential of the system, not on the
density profile (Binney & Tremaine 1987).

5.1. Models without a central black hole (µ = 0 )

For γ-models without a black hole, we can calculate the distri-
bution function f∗(E) directly by substituting Eqs. (1) and (2)
into the Eddington relation (22). We obtain the expression

f∗(E) =
3 − γ

16
√

2π3

d
dE

∫ E

0

(1 − t)3 [(4 − γ) t + γ] dΨ∗
t2
√E −Ψ∗

, (25)

where t ≡ t(Ψ∗) is defined as

t(Ψ∗) =


[1 − (2 − γ)Ψ∗]1/(2−γ) if γ � 2,

e−Ψ∗ if γ = 2.
(26)

This integral can generally be expressed in terms of hypergeo-
metric functions,

f∗(E) =
3 − γ√

8 π3

√E
[
(4 − γ) 2F1

(
1,
−γ

2 − γ ;
3
2

; (2 − γ)E
)

−2 (3 − γ) 2F1

(
1,

1 − γ
2 − γ ;

3
2

; (2 − γ)E
)

+2 (1 − γ) 2F1

(
1,

3 − γ
2 − γ ;

3
2

; (2 − γ)E
)

+γ 2F1

(
1,

4 − γ
2 − γ ;

3
2

; (2 − γ)E
)]
. (27)

For γ = 2 ± 1/n with n a natural number, the distribution
function can be written as a combination of elementary func-
tions. In particular, the self-consistent γ-models with γ = 1,
3
2 and 5

2 have fairly simple distribution functions (Hernquist
1990; Dehnen 1993; Tremaine et al. 1994; Baes & Dejonghe
2004). The γ = 2 model is a particular case: its distribution
function can be expressed most conveniently in terms of the
error function and Dawson’s integral (Jaffe 1983).

The calculation of g(E) is also straightforward for the
self-consistent γ-models. Substituting the potential (5) in
Eq. (24) one immediately obtains (Dehnen 1993)

g∗(E) = 16
√

2π2
∫ Ψ0

E
t1+γ
√
Ψ∗ − E dΨ∗

(1 − t)4
, (28)

with t ≡ t(Ψ∗) as in Eq. (26). The integral in this equation is
quite similar to the integral in Eq. (25). A closed expression
for g∗(E) for general γ in terms of hypergeometric functions
cannot be obtained, but the integral can be expressed analyti-
cally for all γ = 2 ± 1/n with n a natural number. Examples
of such closed expressions can be found in Dehnen (1993) and
Baes & Dejonghe (2004).

5.2. Models dominated by a central black hole (µ = 1 )

For models where the potential is completely dominated by the
central black hole, the distribution function can also be calcu-
lated by a straightforward application of Eddington’s formula.
The result can generally be expressed in terms of hypergeomet-
ric functions,

f•(E) =
4
√

2(3 − γ)
315π3

E5/2
[
63 2F1

(
3, 6 − γ; 7

2
;−E

)

−36(1 − γ)E 2F1

(
3, 6 − γ; 9

2
;−E

)

−4γ(1 − γ)E2
2F1

(
3, 6 − γ; 11

2
;−E

)]
. (29)

For half-integer or integer values of γ, the distribution function
can be written in terms of elementary functions. In the central
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regions of the galaxy (E → ∞), this distribution function has
the asymptotic behaviour

f•(E) ∼ 3 − γ
2(2π)5/2

Γ(γ + 1)

Γ(γ − 1
2 )
Eγ−3/2. (30)

It is interesting to compare these results with those obtained by
de Bruijne et al. (1996). They consider a set of axisymmetric
cuspy densities in a spherical potential and present two differ-
ent analytical families of three-integral distribution functions.
For the special case of isotropic spherical galaxies dominated
by a black hole potential (q = δ = 1 and β = 0) the expres-
sion (30) is recovered, after correction for the different normal-
ization conventions.

Since the density-of-states function only depends on the po-
tential of the system, we recover the simple and well-known
expression g•(E) =

√
2π3 E−5/2, independent of γ.

A particularly interesting case is the model with γ = 1
2 .

This model has a simple distribution function and differential
energy distribution,

f•(E) =

√
8
π3

E5/2

(1 + E)5
, (31)

N•(E) =
4

(1 + E)5
· (32)

For γ-models with a central black hole, this model is the one
with the smallest possible cusp slope. Indeed, γ-models with
γ < 1

2 cannot support a central black hole when they have an
isotropic dynamical structure, because stars at each binding en-
ergy level will induce a r−1/2 cusp at small radii (Tremaine et al.
1994).

5.3. The general case (0 < µ < 1 )

For the general case, a direct calculation of the augmented den-
sity is not the best way to calculate the distribution function.
Instead, we use an approach based on the analysis of Ciotti
(1996), who showed a convenient way to calculate the distri-
bution function of a set of two-component models. If we invert
the relation (2) to r = r(Ψ∗), and substitute it into the expres-
sion (5), we obtain

Ψ = ω(Ψ∗) ≡ (1 − µ)Ψ∗ + µ (1 − t)
t
, (33)

with t ≡ t(Ψ∗) as in expression (26). The relation (33) links
the stellar potential Ψ∗ at a given position in the system to
the total potential Ψ. We can also regard it more generally as
the definition of a mapping function ω, which maps the inter-
val [0,Ψ0] onto the positive real axis. It is a monotonically in-
creasing function, and therefore the inverse functionω−1 exists.
Transforming the Eddington formula (22) to an integration with
respect to the stellar potential we obtain

f (E) =
1√
8π2

[
dω
dE∗ (E∗)

]−1 dQ
dE∗ (E∗) (34a)

with E∗ = ω−1(E) and Q a function defined by the integral

Q(x) =
∫ x

0

dρ̃
dΨ∗

dΨ∗√
ω(x) − ω(Ψ∗)

· (34b)

This expression is similar to the formula used by Ciotti (1996)
to calculate the distribution function of his two-component
Hernquist models. Whether this integration can be performed
analytically depends on the complexity of both factors of the
integrand. It appears that this integration can be performed an-
alytically (only) for the models with γ = 1, 3

2 and 5
2 . For these

three models, both the augmented density ρ̃(Ψ∗) and the map-
ping function ω(Ψ∗) are rational functions. For γ = 1 and
γ = 3

2 , the factor under the square root can be reduced to a cu-
bic polynomial, while for γ = 5

2 it can be reduced to a quadratic
polynomial in Ψ∗. As a result, the function Q(x) and the distri-
bution function can be expressed by means of elliptic integrals
for the former two models, and completely in terms of elemen-
tary functions for the latter model. More details can be found
in Appendix B.

For other values of γ (including γ = 2), an analytical eval-
uation of the integral (34b) is not possible, and the distribu-
tion function has to be calculated numerically. For this goal,
the expression (34a) is not particularly useful, because it in-
volves a differentiation of a numerically determined function.
A more convenient formula for numerical integration can be
obtained by using the alternative form (23) of the Eddington
equation. The second term in this expression vanishes for all
γ-models, because ρ̃(Ψ) ∝ Ψ4 at large radii. If we do the sub-
stitution Ψ→ Ψ∗ in this last equation, we obtain

f (E) =
1√
8π2

∫ E∗

0

d
dΨ∗

[
dρ̃

dΨ∗

/ dω
dΨ∗

]
dΨ∗√

ω(E∗) − ω(Ψ∗)
· (35)

Combined with a numerical solution of the equation E∗ =
ω−1(E), this formula makes it possible to evaluate the
distribution function numerically using standard quadrature
techniques.

In order to calculate the density-of-states function for
γ-models with a black hole, we can apply the same technique
as for the calculation of the distribution function. If we rewrite
Eq. (24) as an integral with the stellar potential as the integra-
tion variable, we obtain

g(E) = 16
√

2 π2
∫ Ψ0

E∗

∣∣∣∣∣r2 dr
dΨ∗

∣∣∣∣∣
√
ω(Ψ∗) − ω(E∗) dΨ∗. (36)

This integral shows many similarities with the integral in
the expression (34b), and the prospects to find an analyti-
cal solution are very similar. One can demonstrate that the
density-of-states function can be written in terms of elliptic in-
tegrals for γ = 1 and γ = 3

2 , and completely in terms of elemen-
tary functions for γ = 5

2 . For all other values of γ, including the
Jaffe model, the density-of-states function cannot be expressed
analytically.

5.4. Asymptotic expansions

We can get a better insight into the behaviour of the distribution
function and the DED of the γ-models with a central black hole
by studying the asymptotic behaviour. In the limit E → 0, i.e. in
the outer regions of the system, a black hole has no effect on the
dynamics of the γ-models, as the asymptotic expansion of
the potentialΨ→ r−1 is independent of µ. The behaviour of the
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Fig. 1. The distribution function (top row) and differential energy distribution (bottom row) for γ-models without and with a central black hole.
The value of γ is indicated in each panel. The black curves correspond to the self-consistent models, the colored curves correspond to models
with various black hole masses: µ = 0.001 (yellow), µ = 0.01 (green), µ = 0.1 (cyan) and µ = 1 (red).

distribution function and the DED in the low binding-energy
limit is

f (E) ∼ 4
√

2(3 − γ)
5π3

E5/2, (37)

N(E) ∼ 8(3 − γ)
5

· (38)

More interesting is the asymptotic behaviour of the distribu-
tion function and the differential energy distribution in the high
binding-energy limit. To find asymptotic expansions for the
self-consistent γ-models, we must separately consider the mod-
els with a modest and those with a strong central density cusp.
The self-consistent γ-models with a modest density cusp γ < 2
have a finite potential well Ψ0 = (2 − γ)−1, and after some al-
gebra one finds that in the limit E → Ψ0,

f∗(E) ∼
√

2
8π5/2

γ (3 − γ)
(2 − γ) 4−γ

2−γ

Γ
(

6−γ
4−2γ

)
Γ
(

4−γ
2−γ

) (Ψ0 − E)−
6−γ

4−2γ , (39)

N∗(E) ∼ 2γ (3 − γ)
(2 − γ) 3−2γ

2−γ

Γ
(

6−γ
4−2γ

)
Γ
(

3
2−γ

)
Γ
(

4−γ
2−γ

)
Γ
(

12−3γ
4−2γ

) (Ψ0 − E)
1

2−γ . (40)

The self-consistent models with a central density cusp slope
γ > 2 have an infinitely deep potential well, and for these mod-
els one finds in the limit E → ∞

f∗(E) ∼
√

2
8π5/2

γ (3 − γ) (γ − 2)
4−γ
γ−2

Γ
(

2
γ−2

)
Γ
(

2+γ
2γ−4

) E 6−γ
2γ−4 , (41)

N∗(E) ∼ 2γ (3 − γ)
(γ − 2)

2γ−3
γ−2

Γ
(

2
γ−2

)
Γ
(

8−γ
2γ−4

)
Γ
(

2+γ
2γ−4

)
Γ
(
γ+1
γ−2

) E− 1
γ−2 . (42)

Finally, for the Jaffe model γ = 2, the model that separates
these two classes, the expansion in the limit E → ∞ reads

f∗(E) ∼ 1
4π5/2

e2E, (43)

N∗(E) ∼ 2
√

6
9

e−E. (44)

When the γ-models contain a black hole, the potential well is
infinitely deep for all values of the cusp slope γ. The asymp-
totic behaviour of the distribution function and the differential
energy distribution changes to

f (E) ∼ 3 − γ
2(2π)5/2

Γ(γ + 1)

Γ(γ − 1
2 )
µ−γ Eγ−3/2, (45)

N(E) ∼
√
π (3 − γ)

8
Γ(γ + 1)

Γ(γ − 1
2 )
µ3−γ Eγ−4. (46)

These expressions are valid for all models with a central black
hole (0 < µ ≤ 1) and for all values of γ > 1

2 . For the limiting
case γ = 1

2 , the leading terms from Eqs. (45) and (46) vanish
and the asymptotic expansion for E → ∞ reads

f (E) ∼
√

8
π3

1√
µ
E−5/2, (47)

N(E) ∼ 4µ5/2 E−5. (48)

5.5. Discussion

In the top panels of Fig. 1 we plot the distribution function of
various γ-models with various black hole masses. A black hole
drastically changes the behaviour of the distribution function,
particularly for the models with a shallow cusp slope (γ < 2)
which have a finite stellar potential well. For these models,
the self-consistent distribution function is a strongly increas-
ing function of energy, which diverges for E → Ψ0 accord-
ing to formula (39). When a central black hole is present in
these model, stars of all binding energies populate the galaxy.
The behaviour of the distribution function in this new territory
depends on the cusp slope, as prescribed by the asymptotic
expression (45). For models with γ < 3

2 , the distribution
function decreases as a function of binding energy in the neigh-
borhood of the black hole. The distribution function of such
models thus has two regimes: it converges to zero both in the
low and high binding energy limit and has a maximal value at
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binding energies around the depth of the stellar potential well.
The larger the black hole mass, the larger the value of the bind-
ing energy where the distribution function becomes maximal
and the smoother the transition between the two regimes. For
the γ = 3

2 model, the distribution function becomes asymp-
totically flat in the high binding energy limit. For models with
a steeper cusp slope, the distribution function is a monotoni-
cally increasing function of binding energy, and the differences
between a model without and with black hole become less pro-
nounced. In particular for models with γ ≥ 2 the presence of
a black hole does not drastically change the behaviour of the
distribution function. Both without and with a central black
hole the distribution function is a monotonically increasing
function of binding energy, diverging in the high energy limit.
Equations (41) and (45) show that the slope of the distribution
function in the high energy limit changes from (6− γ)/(2γ− 4)
to γ − 3

2 when a black hole is present.
In the bottom row of Fig. 1 we plot the differential en-

ergy distribution N(E) for the same models as in the top row.
For all models, N(E) converges to a finite value 8(3 − γ)/5
in the low binding energies limit. Typically, N(E) is hardly
affected for low binding energies, where it is a decreasing func-
tion of increasing black hole mass. Only at high binding ener-
gies does the effect of a black hole become visible, in partic-
ular for models with a shallow density cusp. The differential
energy distribution N∗(E) of the models without black hole
suddenly drops to zero when E approaches the depth of the
potential well, in spite of the divergence of the distribution
function (see Eq. (40)). In the presence of a black hole, where
stars can populate orbits with arbitrarily high binding energies,
N(E) smoothly decreases as Eγ−4 in the high energy limit. For
γ-models with a steeper cusp slope, in particular the models
with an infinitely deep stellar potential well, the effect on the
differential energy distribution is weaker.

Although the effect of a black hole on the shape of the dis-
tribution function is severe, it thus appears that the effect on the
differential energy distribution is rather modest, even for the
models with a finite stellar potential well. In the energy region
that was off limits for the self-consistent models,N(E) assumes
very low values. Although the addition of a black hole opens up
a huge range for possible binding energies, the number of stars
that actually populate these orbits is thus fairly small. This can
be quantified by calculating the mean binding energy 〈E〉 of
stars in the models. The mean binding energy is defined as

〈E〉 =
∫ ∞

0
N(E)E dE. (49)

A more straightforward way to calculate the mean binding en-
ergy is through the formula

〈E〉 =
�

dr
�

f (r, u)
[
Ψ(r) − 1

2
u2

]
du (50)

= 4π
∫ ∞

0
ρ(r)

[
Ψ(r) − 3

2
σ2(r)

]
r2 dr. (51)

Using similar algebra as in Sect. 4, we find

〈E〉 = 3
4(5 − 2γ)

[
1 + µ

(
4 − γ

3(2 − γ)
)]
· (52)

Numerical integration of Eq. (49) for a selection of models
gives identical results. For a Hernquist model (γ = 1), the ratio
〈E〉/〈E〉∗ equals 1 + µ, so the mean binding energy for a model
with µ = 0.001 is only 0.1% larger than the mean binding en-
ergy of the self-consistent model.

Another characteristic that can be used to quantify the im-
portance of a central black hole on the energy distribution is the
fraction θ of stars on orbits with a binding energy larger than
the potential well of the corresponding self-consistent model,

θ =

∫ ∞

Ψ0

N(E) dE. (53)

For a γ = 1 model with black hole masses µ = 0.001 and
µ = 0.01, numerical integration yields θ = 1.63 × 10−4 and
θ = 1.81 × 10−3 respectively.

These numbers clearly demonstrate that the effect of a black
hole on the global energy distribution is actually quite small, al-
though the distribution function when represented as a function
of the binding energy is affected in a very significant way.

6. The LOSVD

The LOSVD (also called line profile or velocity profile)
φp(R, v‖) is the distribution of line-of-sight velocities at a given
projected radius R. From an observer’s point of view, this is
definitely one of the most important kinematical quantities of
a galaxy model, because a LOSVD contains all kinematic in-
formation that can be obtained from a galaxy at a given line of
sight and LOSVDs are in principle directly observable.

6.1. Calculation of the LOSVDs

The LOSVD can be found through the formula

φp(R, v‖) =
2

I(R)

∫ ∞

R

ρ(r) φ(r, v‖) r dr√
r2 − R2

, (54)

where the function φ(r, v‖) represents the spatial LOSVD. In
general, the spatial LOSVD φ(r, k, v‖) describes the distribu-
tion of line-of-sight velocities at a position r in an arbitrary
direction k. It can be found by integrating the distribution func-
tion over the two velocity components perpendicular to k and
normalizing the resulting distribution

φ(r, k, v‖) =
1
ρ(r)

�
f (r, u) du⊥. (55)

For general anisotropic systems, these integrations are usually
very cumbersome, and an analytical evaluation of the spatial
LOSVD can only be obtained for a limited number of mod-
els (e.g. Carollo et al. 1995; Baes & Dejonghe 2002b). For
isotropic models, however, the spatial LOSVD is independent
of the direction k and can be written as φ(r, v‖). The expres-
sion (55) can then be transformed to

φ(r, v‖) =
2π
ρ(r)

∫ y

0
f (E) dE, (56)

where y = Ψ(r) − v2‖/2. If we substitute the Eddington for-
mula (22) into this equation, we obtain

φ(r, v‖) =
1√

2π ρ(r)

∫ y

0

dρ̃
dΨ

dΨ√
y −Ψ · (57)
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Fig. 2. The observed LOSVDs for γ-models without and with a central black hole. The top panels are the LOSVDs at a projected radius R = 1,
the middle panels correspond to R = 0.1 and the bottom panels are the LOSVDs at R = 0.01. The value of γ is indicated each panel and the
colour code is the same as in Fig. 1.

Comparing this expression with the Eddington formula (22),
we see that the spatial LOSVD of an isotropic dynamical model
can be calculated analytically if the same is true for the distri-
bution function. In fact, the spatial LOSVD is obtained almost
automatically during the calculation of the distribution func-
tion. This means that the spatial LOSVD of the self-consistent
γ-models can generally be expressed in terms of hypergeo-
metric functions, and in terms of elementary functions for
γ = 2 ± 1/n with n a natural number. The spatial LOSVD
of the black-hole-dominated γ-models can also be expressed
in terms of hypergeometric functions, and in terms of standard
functions for integer and half-integer values of γ. To calculate
the spatial LOSVD for the γ-models with a black hole, we use
a similar method as for the calculation of the distribution func-
tion. Changing the integration variable fromΨ toΨ∗ in Eq. (57)
we find

φ(r, v‖) =
1√

2π ρ(r)
Q(y∗), (58)

with y∗ = ω−1(y) and the function Q defined in Eq. (34b). For
the models with γ = 1, γ = 3

2 and γ = 5
2 , both the inverse of

the mapping function ω and the function Q can be expressed
analytically, such that the spatial LOSVD can be written com-
pletely in analytical form (including elliptic integrals for the
γ = 1 and γ = 3

2 models). For the other values of γ, both of
these operations must be done numerically.

Summarizing, the calculation of the LOSVDs requires only
one single quadrature for all self-consistent and black hole
dominated models, and for the γ-models with a black hole if

γ = 1, γ = 3
2 or γ = 5

2 . For the remaining γ-models con-
taining a central black hole, the calculation of the LOSVDs
requires a double quadrature. We calculated the LOSVDs with
the Monte Carlo integration routines built into the SKIRT code
(Baes et al. 2003b).

6.2. Discussion

In Fig. 2 we plot a number of LOSVDs for a set of γ-models for
various values of the black hole mass µ. As expected, the influ-
ence of a (realistic) black hole is negligible at large projected
radii. At gradually smaller projected radii the influence of a
black hole becomes more important. The signature of the pres-
ence of the black hole is primarily a broadening of the LOSVD.
The degree of the broadening depends on the black hole frac-
tion and on the central slope.

A quantitative investigation of the effects of a black hole
on the LOSVDs is more easy when we study the moments
of the LOSVDs. The first and second-order moments of the
LOSVDs are nothing but the mean rotation and the projected
dispersion. Rather than the true higher-order moments, one
usually utilizes the coefficients hi from a Gauss-Hermite expan-
sion to further characterize the shape of the LOSVDs (Gerhard
1993; van der Marel & Franx 1993). In Fig. 3 we plot the pro-
jected velocity dispersion profile and the h4 profile for a set
of γ-models without and with black holes of various masses
(all odd moments are zero).

The projected dispersion profile of models with a shallow
central density slope are most sensitive to a black hole. As a
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Fig. 3. The moments of the LOSVDs for γ-models without and with a central black hole. The top row shows the projected dispersion pro-
file σp(R), the bottom row shows the Gauss-Hermite shape parameter h4(R). The value of γ is indicated in each panel and the colour code is the
same as in Fig. 1.

result of the presence of a black hole, the stars in the very cen-
tre of the galaxy will obtain large velocities, including veloci-
ties which are not possible in the finite central potential wells
of the self-consistent models. This causes a dramatic increase
in the velocity dispersion at small radii, resulting in the usual
R−1/2 divergence. Note that this divergence is maintained in
spite of the smoothing effect of the projection along the line
of sight: the projected dispersion is a weighted integral of the
intrinsic dispersion along the line of sight, such that the pro-
jected dispersion at small projected radii contains a significant
contribution from stars at large radii.

The projected dispersion profile for models with a steep
cusp slope is much less affected by a central black hole. Even
without a black hole, these models already have steep stellar
potential wells where stars can obtain arbitrarily high veloc-
ities. The limit case is the (degenerate) model with γ → 3,
where the self-consistent potential is already a point potential,
and the addition of a black hole does not alter the kinematical
structure of the galaxy at all.

The effect of a black hole on the h4 shape parameter of
the LOSVD is less straightforward to interpret. For the models
with a shallow cusp, the central black hole does significantly
affect the h4 profile, but there is no clear trend with increasing
black hole mass. For the models with a steep density cusp, the
effect of a black hole on the h4 profile is negligible. This trend,
or rather the non-existence of a clear trend, contrasts with the
signature of a dark matter halo on the observed kinematics at
large radii. In elliptical galaxies, which lack a ubiquitous and
straightforward tracer population such as the H gas in spiral
galaxies, the stellar kinematics are one of the most important
tracers for dark matter. The most obvious signature of dark
matter on the stellar kinematics is the behaviour of the pro-
jected velocity dispersion at large radii: dark matter causes the
σp profile to remain flat or to decrease more slowly than ex-
pected from the photometry alone (Saglia et al. 1992, 1993).
This observational signature suffers from a mass-anisotropy
degeneracy, however: a tangential stellar orbital structure can

cause a similar signature (Gerhard 1993). The key to discrimi-
nate between these possibilities is the behaviour of the h4 pro-
file. Carollo et al. (1995) studied in some detail the effect of a
dark matter halo on the h4 shape parameter. They found that,
both for isotropic and radially anisotropic models, the h4 pa-
rameter increases at large projected radii due to the presence of
a dark matter halo. On the other hand, a tangential orbital struc-
ture causes a negative h4 profile at large radii. The measure-
ment of the projected dispersion and the h4 profile at large radii
would therefore in principle suffice to constrain the dark mat-
ter content in ellipticals (Rix et al. 1997; Gerhard et al. 1998;
Kronawitter et al. 2000), although systematic effects caused
by dust, non-sphericity etc. might further complicate this issue
(Baes & Dejonghe 2001; Sanchis et al. 2004). There is appar-
ently no analogy for this situation for the detection of black
holes in galactic nuclei: as the signature of a central black hole
on the h4 profile does not follow a clear trend, the projected ve-
locity dispersion is by far the most obvious observational sig-
nature by which a black hole can be detected in non-rotating
stellar nuclei.

7. Discussion and conclusion

Galactic nuclei observed in real galaxies show a variety of
structure, with central density cusps ranging from flat cores
to steep cusps. The main goal of this paper was to construct
simple dynamical models for spherical systems with a central
black hole, reflecting the variety of central structure observed
in real galactic nuclei. We have performed a detailed study of
a two-parameter family of dynamical models based on the fam-
ily of γ-models introduced by Dehnen (1993) and Tremaine
et al. (1994). The family contains as parameters the slope of
the central density cusp γ and the ratio µ of the central black
hole mass to the total mass of the system. By varying these
parameters, we have been able to study a very wide range of
models, going from weakly cusped models to very centrally
concentrated models with an infinite stellar potential well, and
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ranging from self-consistent models without black hole to sys-
tems where the dynamical structure is completely dominated
by the central black hole. We have only considered models with
an isotropic dynamical structure, which do not cover the range
of orbital structure observed in real galactic nuclei. It is pos-
sible to generalize the isotropic models presented in this pa-
per to anisotropic models with a constant anisotropy or with
an Osipkov-Merritt type distribution function (Osipkov 1979;
Merritt 1985). For such models, the calculation of the most im-
portant dynamical properties is not much more demanding than
for isotropic models. The construction of general anisotropic
dynamical models is much more complicated, however, and
falls beyond the scope of this paper.

For this two-parameter family of isotropic dynamical mod-
els, we have calculated the most important kinematical quan-
tities, such as the intrinsic and projected velocity dispersions,
the total energy budget, the distribution function, the differen-
tial energy distribution and the LOSVDs. Many of these quan-
tities could be calculated completely analytically for all values
of γ and µ. For the models without black hole and the black
hole dominated models, the distribution function, the differen-
tial energy distribution and the spatial LOSVDs can be calcu-
lated completely analytically. The same is true for three distinct
γ-models with a central black hole – these three models each
form an analytical one-parameter family with the central black
hole mass as an explicit parameter. Although these three mod-
els differ only by the slope of the central density profile, their
kinematical properties are very different. We therefore believe
that the set of γ-models discussed in this paper, and in particu-
lar the three completely analytical models, answer the need for
dynamical models which are on the one hand relatively sim-
ple and on the other hand reflect the range of central structure
observed in the nuclei of real galaxies.

As most of the kinematics can be calculated completely an-
alytically, the presented models make it possible to investigate
the effect of a central black hole on the kinematics of galactic
nuclei. In general, the effect of a black hole depends on the cen-
tral density cusp (the parameter γ). Models with a steep density
cusp are least affected by the presence of a black hole. They
already have a steep and infinitely deep potential well and a
strong central density concentration, and the kinematical effect
of a black hole is quite marginal. The distribution function re-
mains a monotonically increasing function of binding energy;
only the slope in the high-energy limit is altered by the presence
of a black hole. Models with a shallow central density cusp on
the other hand are more strongly affected by the presence of a
black hole. They have a less concentrated density profile and
therefore only a finite central potential well. The influence of
a black hole on the distribution function can be important. For
example, models with γ < 3

2 have distribution functions which
tend to zero both in the low and high binding energies regime.
The differential energy distribution, which gives a better physi-
cal insight in the orbital structure of the system, is less affected
by the presence of a black hole. For realistic black hole masses,
the shift in the mean binding energy of the stars or the fraction
of stars on orbits with binding energies exceeding the depth
of the stellar potential well is marginal. Nevertheless, the dif-
ferent behaviour of the distribution function is important, as it

bears direct consequences for the stability of the γ-models with
a black hole. A monotonically rising distribution function as a
function of binding energy is a sufficient condition for stability
against radial and non-radial perturbations. This means that the
γ-models with a black hole with γ ≥ 3

2 are stable. The mod-
els with a shallower cusp slope have a decreasing distribution
function in the high binding energy limit, and their stability is
hence uncertain. This interesting issue can only be investigated
in a detailed N-body or linear mode analysis studies.

Finally, we can wonder whether these three models are
unique or whether other simple dynamical models could eas-
ily be found for which most of the kinematical properties can
be expressed analytically. It is rather straightforward to con-
struct models with a black hole in which the (intrinsic and/or
projected) velocity dispersions can be expressed analytically, as
the velocity dispersion is just a linear function of the black hole
mass. The construction of models where more complicated dy-
namical properties such as the distribution function and the spa-
tial LOSVDs can be expressed analytically is more difficult. A
direct integration of the Eddington equation does not seem the
most obvious way to proceed [however, see Baes & Dejonghe
(2004) for a case where this is doable]. A more promising path
is the idea of mapping the total potential onto the stellar poten-
tial, proposed by Ciotti (1996) and adapted by us in the present
paper. Nevertheless, the conditions on the mapping function in
order to allow an analytical evaluation of the distribution func-
tion are quite stringent, and they probably do not apply for a
large set of models. Out of the range of γ-models, we found that
only three different models satisfy these conditions. We also
searched for other models in the large family of the so-called
(α, β, γ)-models (Zhao 1996), an extension of the γ-models, but
no other models satisfied the necessary conditions.
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Appendix A: The function Wγ(r)

The function Wγ(r) is defined in Eq. (9) as

Wγ(r) =
3 − γ

4π

∫ ∞

r

r1−2γdr
(1 + r)7−2γ

, (A.1)

where it is assumed that r is a real number and the parameter γ
assumes values between 0 and 3. Formally, it can conveniently
be expressed in terms of the incomplete Beta function or the
hypergeometric function. It can also be written completely in
terms of elementary functions. If γ is not equal to 1, 3

2 , 2 or 5
2 ,

we obtain an algebraic expression

Wγ(r) =
3 − γ

4π

4∑
j=0

(
4
j

)
(−1) j

2 + j − 2γ

[
1 −

( r
1 + r

)2+ j−2γ
]
· (A.2)

For the four special values of γ, we can obtain a closed ex-
pression for Wγ(r) through direct integration of Eq. (A.1) or
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through application of the reduction formulae of hypergeomet-
ric functions. The results are

W1(r) =
1

2π
ln

(
1 + r

r

)
− 25 + 52 r + 42 r2 + 12 r3

24π (1 + r)4
, (A.3)

W3/2(r) = − 3
2π

ln

(
1 + r

r

)
+

3 + 22 r + 30 r2 + 12 r3

8π r (1 + r)3
, (A.4)

W2(r) =
3

2π
ln

(
1 + r

r

)
+

1 − 4 r − 18 r2 − 12 r3

8π r2 (1 + r)2
, (A.5)

W5/2(r) = − 1
2π

ln

(
1 + r

r

)
+

1 − 2 r + 6 r2 + 12 r3

24π r3 (1 + r)
· (A.6)

Appendix B: The function Q(x) for some selected
models

B.1. The γ = 1 model

For the Hernquist model we find a simple augmented density,

ρ̃(Ψ∗) =
1

2π
Ψ4∗

1 − Ψ∗ , (B.1)

and for the mapping function we find

ω(Ψ∗) = Ψ∗
(
1 +

µΨ∗
1 − Ψ∗

)
· (B.2)

If we substitute the expressions (B.1) and (B.2) into Eq. (34b),
we obtain

Q(x) =
1

2π
√

1 − µ
∫ x

0

Ψ3∗ (3Ψ∗ − 4) dΨ∗√
(x − Ψ∗) (1 − Ψ∗)3 (ζ − Ψ∗)

, (B.3)

where ζ = 1+µ/(1−µ)(1−x). The integrand in this expression is
basically the combination of a rational function and the square
root of a cubic polynomial. The function Q (and hence the dis-
tribution function) can therefore be expressed completely in
terms of elliptic integrals. An explicit form requires a reduc-
tion of this elliptic integral to a combination of the standard
elliptic integrals. For the Hernquist model, one finds that the
distribution can be written as

f (E) = A1 + A2F(φ, k) + A3E(φ, k), (B.4)

where Ai are algebraic functions of E and µ, F and E are
Legendre’s incomplete elliptic integrals of the first and second
kind, and the arguments of the elliptic integrals are

φ = arcsin
√E, (B.5)

k =

[
1 +

(1 − µ)(1 − E)2

µ

]−1/2

· (B.6)

For the calculation of the density-of-states function, similar for-
mulae apply. Practically, it is easiest to use a symbolic mathe-
matical package such as Maple or Mathematica. These pack-
ages return an explicit form for most elliptic integrals, and the
expressions can be converted immediately to Fortran or C code
using internal conversion routines.

B.2. The γ = 3
2 model

For γ = 3
2 we obtain

ρ̃(Ψ∗) =
3

256π
(4 −Ψ∗)4Ψ4∗

(2 − Ψ∗)3
, (B.7)

ω(Ψ∗) = Ψ∗
[
1 +
µΨ∗ (3 − Ψ∗)

(2 − Ψ∗)2

]
· (B.8)

Substitution of Eqs. (B.7) and (B.8) into formula (34b) yields

Q(x) =
3

256π
√

1 − µ
×

∫ x

0

Ψ3∗ (4 −Ψ∗)3 (32 − 20Ψ∗ + 5Ψ2∗) dΨ∗
(2 −Ψ∗)3

√
(x − Ψ∗) (ζ− −Ψ∗) (ζ+ −Ψ∗)

, (B.9)

where the roots of the cubic polynomial under the square root
are

ζ± = 2 +
2µ

(1 − µ) (2 − x)2

1 ±
√

1 − (1 − µ) (2 − x)3

µ

 · (B.10)

Since the integrand of Q is the product of a rational function
and the square root of a cubic polynomial, the integral can be
written in terms of elliptic integrals.

B.3. The γ = 5
2 model

The γ = 5
2 model has an augmented density very similar to that

of the γ = 3
2 model,

ρ̃(Ψ∗) =
1

256π
(4 + Ψ∗)4Ψ4∗

(2 + Ψ∗)3
· (B.11)

The mapping function ω(Ψ∗) is very simple

ω(Ψ∗) = Ψ∗
(
1 +
µΨ∗

4

)
, (B.12)

and substitution of these expressions into Eq. (34b) gives

Q(x) =
1

128π
√
µ

×
∫ x

0

Ψ3∗ (4 + Ψ∗)3 (32 + 20Ψ∗ + 5Ψ2∗) dΨ∗
(2 + Ψ∗)4

√
(x −Ψ∗)(Ψ∗ − ζ)

, (B.13)

where ζ = −(x + 4/µ). As the integrand in this expression
is the product of a rational function and the square root of
a quadratic polynomial, the function Q (and the distribution
function) can be expressed completely in terms of elementary
functions. Explicit expressions for the distribution function, as
well as for the density-of-states function, in terms of elemen-
tary functions can be found in Baes & Dejonghe (2004).
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