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ABSTRACT
We present SKIRT (Stellar Kinematics Including Radiative Transfer), a new Monte Carlo ra-
diative transfer code that allows the calculation of the observed stellar kinematics of a dusty
galaxy. The code incorporates the effects of both absorption and scattering by interstellar dust
grains, and calculates the Doppler shift of the emerging radiation exactly by taking into account
the velocities of the emitting stars and the individual scattering dust grains. The code supports
arbitrary distributions of dust through a cellular approach, whereby the integration through the
dust is optimized by means of a novel efficient trilinear interpolation technique.

We apply our modelling technique to calculate the observed kinematics of realistic models
for dusty disc galaxies. We find that the effects of dust on the mean projected velocity and
projected velocity dispersion are severe for edge-on galaxies. For galaxies which deviate
more than a few degrees from exactly edge-on, the effects are already strongly reduced. As
a consequence, dust attenuation cannot serve as a possible way to reconcile the discrepancy
between the observed shallow slopes of the inner rotation curves of low surface brightness
galaxies and the predictions of cold dark matter cosmological models. For face-on galaxies,
the velocity dispersion increases with increasing dust mass owing to scattering, but the effects
are limited, even for extended dust distributions. Finally, we show that serious errors can be
made when the individual velocities of the dust grains are neglected in the calculations.

Key words: radiative transfer – dust, extinction – galaxies: kinematics and dynamics – galaxies:
spiral.

1 I N T RO D U C T I O N

During the last decade of the past century there has been a vivid
discussion about the opacity of spiral galaxies. This discussion
was initiated by Disney, Davies & Phillipps (1989) and Valentijn
(1990), who countered the conventional view that spiral galaxies
are optically thin over their entire optical discs (Holmberg 1958; de
Vaucouleurs, de Vaucouleurs & Corwin 1976; Sandage & Tammann
1981). This issue has not yet been settled, although an overall con-
sensus seems to be emerging that spiral galaxies are, in general, at
least moderately optically thick within their optical disc, i.e. that
they have central face-on optical depth of at least unity. We will not
repeat a detailed overview of the different points of view and the
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large variety of observational tests, and refer to Davies & Burstein
(1995), Xilouris et al. (1997), Kuchinski et al. (1998) and Calzetti
(2001) for excellent reviews. We just wish to point out an important
observational constraint that, in our opinion, is not always given
enough attention: the far-infrared (FIR) emission of spiral galaxies.
This emission originates from the absorption of starlight by dust
grains, which is thermally re-emitted at longer wavelengths. The
most recent results show that about 30 per cent of the bolometric
luminosity of late-type galaxies is FIR emission by interstellar dust
(Popescu & Tuffs 2002). Notice that this figure refers to normal qui-
escent spiral galaxies; special classes of galaxies such as starburst
galaxies emit even higher fractions of their energy at FIR wave-
lengths. These facts demonstrate quite convincingly that interstellar
dust forms an important constituent of spiral galaxies.

The physical processes of absorption and scattering by dust grains
should hence be taken into account when interpreting and modelling
the observed optical properties of galaxies. We would like to stress
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that all optical observables will to some extent be affected by dust,
including the observed kinematics. Indeed, when interstellar dust
grains absorb or scatter photons, the kinematical information con-
tained within these photons, in the form of the Doppler shift, will also
be absorbed or scattered. It is important to realize that most of the
kinematical data of galaxies are optical measurements. First, stellar
kinematics are always measured from optical absorption lines. In
principle, the attenuation effects of interstellar dust could be min-
imized by using the sensitive 12CO absorption feature at 2.29 µm
(Gaffney, Lester & Doppmann 1995). Measuring stellar kinemat-
ics at near-infrared (NIR) wavelengths is, however, observationally
extremely difficult owing to the high sky surface brightness. Sec-
ondly, the vast majority of spatially resolved rotation curves of spiral
galaxies have been measured using optical emission lines (usually
the Hα line). They can also be measured using the H I or CO lines,
where dust extinction is not an issue. However, these methods are
observationally much more expensive than the more straightforward
Hα observations.

Currently, the only way to investigate the effects of dust attenua-
tion on the observed kinematics of galaxies is by means of detailed
radiative transfer modelling. Many different approaches exist to han-
dle the radiative transfer problem, and various teams have adopted
different techniques to study the effect of dust on the photometry
and spectral energy distributions (SEDs) of galaxies (e.g. Bruzual,
Magris & Calvet 1988; Witt, Thronson & Capuano 1992; Byun,
Freeman & Kylafis 1994; Wise & Silva 1996; Bianchi, Ferrara &
Giovanardi 1996; Corradi, Beckman & Simonneau 1996; Baes &
Dejonghe 2001a). The effect of dust attenuation on the observed
kinematics, however, is largely unexplored, and limited to the rota-
tion curves of spiral galaxies. Davies (1990) argued that the effects
of dust absorption on the observed optical rotation curve of a disc
galaxy can lead to a severe underestimation of the true rotational ve-
locity in the inner regions. This argument was quantified by Bosma
et al. (1992), who calculated the effect of dust absorption on the ob-
served rotation curve of edge-on galaxies. The most detailed work
on this subject comes from Matthews & Wood (2001), who calculate
the effects of dust attenuation on the rotation curve of low surface
brightness (LSB) galaxies through Monte Carlo simulations.

We have embarked on a programme to systematically investi-
gate the effects of dust on the observed kinematics of galaxies. In
previous papers we focused on the effects of dust attenuation on
the observed stellar kinematics of elliptical galaxies. Initially, we
only considered absorption by dust grains in our models (Baes &
Dejonghe 2000; Baes, Dejonghe & De Rijcke 2000). The inclusion
of absorption in the calculation of the observed kinematics is a fairly
simple procedure: it basically adds a weight to the contribution of
each individual star along a line of sight. The radiative transfer prob-
lem becomes much more complicated however when scattering is
also included. In this case, photons can leave their original path, such
that any star can contribute to the observed kinematics in any line of
sight. Moreover, not only the stellar velocities but also the individual
dust grain velocities should be taken into account in the calculation
of the observed kinematics. We argue that the Monte Carlo method
is the only radiative transfer modelling method in which kinematical
information can be included in an elegant and straightforward way.
Using a one-dimensional spherical Monte Carlo code, we found that
the effects of dust scattering are fairly important: dust attenuation
can serve as an additional or alternative explanation for the stellar
kinematical evidence of a dark matter halo around ellipticals (Baes
& Dejonghe 2001b, 2002a).

In this paper, we tackle the more complicated problem of inves-
tigating the effect of dust attenuation on the observed kinematics

of disc galaxies. We have written a new Monte Carlo code (SKIRT,
acronym for Stellar Kinematics Including Radiative Transfer) that
can handle any geometry of stars and dust. This code is presented
in Section 2, and tested in Section 3. We present our model and the
results of our Monte Carlo simulations in Section 4. These results
are discussed in Section 5, and Section 6 presents our conclusions.

2 D E S C R I P T I O N O F T H E S K I RT C O D E

The basic characteristics of Monte Carlo radiative transfer have been
explained at length by various authors (e.g. Cashwell & Everett
1959; Mattila 1970; Witt 1977; Fischer, Henning & Yorke 1994;
Bianchi et al. 1996). In essence, a Monte Carlo radiative transfer
code follows the life of a very large number of individual photons.
A photon is, at each stage in its existence, characterized by various
quantities, such as its position r, propagation direction k, wavelength
λ and Doppler shift u as measured in a frame of rest.1 After being
emitted, photons propagate on straight lines through the interstel-
lar medium until they either interact with a dust grain or leave the
galaxy. The various interactions alter the properties of the photon,
according to random numbers generated from the appropriate prob-
ability functions. When at last the photon escapes from the galaxy,
its final properties are recorded. After recording a large numbers of
photons in this way, the global observed properties of the system
can be calculated.

We will not repeat an in-depth description of the principles and
the numerous equations of Monte Carlo radiative transfer here, as
they are well described in the articles listed above. Instead, we will
focus on a number of aspects which make our code different from
the existing ones. These differences are mainly our choice of the
dust grid and the possibility to include kinematical information into
the radiative transfer calculations.

2.1 The emission process

When no kinematical information is included in the radiative trans-
fer calculations, photons are characterized at each moment by a
wavelength λ, a position r and a direction k. Initial values for these
quantities must be generated randomly from the emitting stellar sys-
tem, which can be composed of several stellar components.2 The
initial emission direction k0 can be sampled from the unit sphere,
the initial position r 0 is sampled from the spatial distribution of the
stellar component, and the initial wavelength λ0 is sampled from
the SED of the stellar component at the position r 0. The SKIRT code
contains a library with a set of common stellar components (in-
cluding spherical Jaffe, Hernquist, Plummer and de Vaucouleurs
models, and axisymmetric exponential, sech, isothermal disc mod-
els), from which it is straightforward to sample a random position
(see Appendix A). Another library contains a set of SEDs, includ-
ing Planck functions and realistic tabulated stellar and galaxy SEDs
(Kinney et al. 1996; Pickles 1998). This library also contains so-
called monochromatic SEDs, which are described by a Dirac delta

1 Throughout this paper, we will make no distinction between the measured
Doppler shift �λ and the corresponding line-of-sight velocity u, which are
related by the expression �λ/λ0 = u/c.
2 We describe the code as adopted for radiative transfer calculations in a
dusty galaxy. The code can, however, equally well be applied to any other
environment. Terms like ‘stellar component’ must therefore be interpreted
in a broad way, and can also refer to a single star, emitting gas, an AGN,
etc., i.e. any source of photons of high enough energy.
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function. Sampling a random wavelength from the latter is trivial,
because all photons are emitted with the same wavelength.

When the SKIRT code is used to calculate the observed kinematics
of a dusty galaxy, photons must also carry with them the kinematic
signature of the star that has emitted them, in the form of a Doppler
shift. Because this is a one-dimensional quantity, not all kinemati-
cal information of the star can be transmitted to the observer, and
it is important to consider how the observed Doppler shift relates
to the velocity vectors of the star and the scattering dust grains.
This problem was discussed in detail in Section 2.3 of Baes &
Dejonghe (2002a), where it is shown that the general expression
for the Doppler shift after M scattering events is

uM = v∗ · k0 +
M∑

i=1

vdi · (ki − ki−1), (1)

where v∗ and vdi are the velocity vectors of the emitting star and
the ith dust grain respectively. The initial value of the Doppler shift
attached to the photon is hence the component of the star in the
direction of the original emission, u0 = v∗ · k0.

To complete the initialization of a photon, we also need to generate
a line-of-sight velocity from the appropriate probability distribution.
In this case, this function is the spatial line-of-sight velocity distri-
bution (LOSVD) φ∗(r 0, k0, u), which describes the probability for a
star at a position r 0 to have a velocity component u in the direction
k0. In general, the spatial LOSVD is a marginal probability distri-
bution of the stellar distribution function F∗(r , v), which describes
the probability density of the stellar component in six-dimensional
phase space,

φ∗(r , k, u) = 1

n∗(r )

∫ ∫
F∗(r ,v) dv⊥1 dv⊥2 , (2)

where n∗(r ) is the stellar number density and the integration covers
the entire velocity space perpendicular to the direction k. Thus, in
order to be of use for a kinematical Monte Carlo run, each stellar
component must allow the generation of a velocity from its spatial
LOSVDs for arbitrary r and k.

The spatial LOSVDs can be calculated analytically for a number
of self-consistent spherical models. Apart from isotropic models
(e.g. Plummer 1911; Hénon 1959; Jaffe 1983; Hernquist 1990),
this is possible for the anisotropic families of Plummer and Hern-
quist models described by Dejonghe (1987) and Baes & Dejonghe
(2002b). For more complicated dynamical models, however, an an-
alytical evaluation of the spatial LOSVDs is not possible. For such
models, we approximate the velocity distribution at each position in
the galaxy as a local Gaussian distribution. This means that at each
position r , the distribution function can be written as

F∗(r ,v) = n∗(r )

(2π)3/2σ1σ2σ3

× exp

[
− (v1 − v̄1)2

2σ 2
1

− (v2 − v̄2)2

2σ 2
2

− (v3 − v̄3)2

2σ 2
3

]
. (3)

Here (v̄1, v̄2, v̄3) and (σ 1, σ 2, σ 3) represent the mean velocities and
velocity dispersions in the directions (e1, e2, e3), the principle axes
of the velocity ellipsoid at the position r . The orientation of the ve-
locity ellipsoid and the values of the mean velocities and velocity
dispersions can vary from position to position, such that the distri-
bution function (3) represents a fairly general distribution function.
But a distribution function of this form has the advantage that the
spatial LOSVDs can be calculated exactly for any direction k by
applying the formula (2). We find that the spatial LOSVD will also
be a Gaussian distribution,

φ∗(r , k, u) = 1√
2πσu

exp

[
− (u − ū)2

2σ 2
u

]
, (4)

with parameters

ū = k1v̄1 + k2v̄2 + k3v̄3, (5)

σ 2
u = k2

1σ
2
1 + k2

2σ
2
2 + k2

3σ
2
3 , (6)

where obviously (k1, k2, k3) are the components of the vector k with
respect to the orthonormal reference system (e1, e2, e3). If hence, for
each stellar component, we specify the orientation and parameters of
the velocity ellipsoid at each position r , we can easily sample line-of-
sight velocities from the spatial LOSVDs in an arbitrary direction,
and hence initialize the initial Doppler shifts of the photons.

2.2 The dust iteration

The life of a single photon can be thought of as a loop, whereby at
each iteration (representing a physical process) we must update its
position r , propagation direction k, wavelength λ and Doppler shift
u. The initial values are determined randomly at the emission phase,
and change at every scattering event. As we only consider coherent
scattering, and we are not taking into account the re-emission of
photons at longer wavelength,3 the only wavelength change of a
photon along its path is due to the varying Doppler shift. These
wavelength variations are so tiny that the optical properties of the
dust (extinction curve, dust albedo and asymmetry parameter) do
not vary. The wavelength of a photon can hence be considered fixed
throughout its lifetime. We must therefore only update the three
quantities r , k and u at each iteration, from their old values (r i−1. . .)
to the new ones (r i . . .). This proceeds in several steps.

The first step in the iteration consists of determining whether an
interaction with a dust grain will take place or whether the photon
will leave the galaxy. To do this, we sample an optical depth τ λ

from an exponential distribution and compare it with τ path,λ, the
total optical depth along the path. When τ λ > τ path,λ, the photon
will leave the galaxy; in the other case, the photon will interact
with a dust grain. This interaction can either be a scattering or an
absorption event, which is determined by the scattering albedo. In
the former case, the photon will continue its journey through the
galaxy, in the latter case, the loop is ended.

The second step in the loop, if the photon is scattered, is the
determination of the position of the scattering. Therefore we have
to translate the sampled optical depth τ λ to a physical path length
s. With this path length known, the new position is r i = r i−1 +
ski−1.

The third step in the iteration is the determination of the new
propagation direction ki of the photon. It is found by sampling a
direction from the probability density p(ki ) = �λ(ki−1, ki ), which
represents the scattering phase function. Various phase functions are
built into the SKIRT code, including the isotropic phase function and
the anisotropic Henyey–Greenstein phase function. The sampling of
a direction from these phase functions can be performed analytically.

The final step is to update the photon’s Doppler shift. The rel-
ative orientation of the propagation directions before and after the
scattering event cause a change in Doppler shift (from equation 1)

ui − ui−1 = vdi · (ki − ki−1). (7)

3 For the present study, we are primarily interested in the attenuation of
starlight by interstellar dust at optical wavelengths, where the contribution
of re-emitted photons is negligible.
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To calculate the updated Doppler shift, we need to sample a dust
grain velocity from the dust velocity distribution. Therefore, the
dust components in the SKIRT library must not only be specified by
a spatial distribution, but also by the entire phase space distribution
Fd(r , v). Analogous to the stellar distribution function, we assume
that the dust velocity field can be described by a trivariate Gaussian
distribution. Because the dispersions in the interstellar medium are
fairly small compared with the rotational velocities however, we
restrict ourselves to assuming an isotropic dispersion tensor, such
that

Fd(r ,v) = nd(r )

(2π)3/2σ 3
d

exp

[
− (v− v̄)2

2σ 2
d

]
, (8)

with v̄ and σ d being the mean velocity vector and the velocity dis-
persion of the dust. Similarly to the stellar case, we do not have
to sample a full three-dimensional velocity vector for the dust, but
only a component in the direction

k′
i = ki − ki−1

‖ki − ki−1‖ . (9)

This means that we just have to sample a velocity from a one-
dimensional Gaussian distribution with mean velocity ū = v̄ · k′

i

and dispersion σ u = σ d.

2.3 Integration through the dust

The first step in the iteration described in the previous subsection
requires the calculation of the total optical depth along a given path.
It is found through the integral

τpath,λ(r , k) =
∫ ∞

0

κλ(r + sk) ds, (10)

where κλ(r ) represents the total (absorption plus scattering) opacity
of the dust at a position r . To execute the second step in the iteration,
we need to convert an optical depth τ λ into a physical path length
s(r , k, τ λ) along a given path, which is done by solving the equation∫ s

0

κλ(r + s ′k) ds ′ = τλ (11)

for s = s(r , k, τ λ). Only for a few simple geometries, such as
constant density or some spherical dust distributions, can these in-
tegrations be performed analytically. In general, the calculation of
the two quantities τ path,λ(r , k) and s(r , k, τ λ) must be performed nu-
merically. These integrations are usually the most time-consuming
part of Monte Carlo codes. Therefore, it is important to think about
an efficient and flexible way to do this; we have considered two
approaches.

2.3.1 The UDD grid

In order to allow a completely arbitrary distribution of dust (in-
cluding clumpy dust distributions), most modern radiative transfer
Monte Carlo codes adopt an approach that can be described as a
uniform dust density (UDD) grid. It consists of dividing space into
a number of cells, and attaching a uniform dust density to each cell,
for example the value at the centre of the cell. This uniform density
(and hence opacity) makes it very easy to calculate the optical depth
(equation 10) along a given path: simply calculate the distance that
the photon runs through each cell it crosses, multiply this distance
with the opacity in the cell, and add all the pieces together. The
inversion of the equation (11) is not much more difficult. First, look
for the cell in which the interaction will take place. Since the opacity

increases linearly with path length within a single cell, this inversion
of the equation is then straightforward.

In the SKIRT code, a UDD grid is included based on a three-
dimensional Cartesian grid. The grid cells can be chosen arbitrarily,
in order to achieve an efficient grid for a variety of dust distributions.
An algorithm is included to construct clumpy dust distributions
from an underlying smooth dust distribution, as described in Witt &
Gordon (1996) and Bianchi et al. (2000).

2.3.2 The IDD grid

In addition to the UDD grid, we explore a new approach to handle the
integration through the dust: an interpolated dust density (IDD) grid.
The basis is the same: we divide space into a number of Cartesian
grid cells, but, instead of attaching a uniform opacity to each cell,
we use the correct values of the opacity at the eight border points
of the cells, and we apply a simple trilinear interpolation routine
to determine the opacity in each of the points within a grid cell.
Consider a photon at the position r = (x , y, z), a position within the
(i , j , k)th cell with border points xi � x � xi+1, etc. We define the
dimensionless quantities p, q and r as

p = x − xi

xi+1 − xi
, q = y − y j

y j+1 − y j
, r = z − zk

zk+1 − zk
. (12)

Since p increases linearly from 0 to 1 as x moves linearly from xi

to xi+1, and similarly for q and r, the trilinear interpolation rule for
the opacity simply reads

κλ(r ) = (1 − p)(1 − q)(1 − r )κi, j,k

+ (1 − p)(1 − q)rκi, j,k+1

+ · · ·
+ pqrκi+1, j+1,k+1, (13)

where κ i, j,k , etc. represent the opacity in the border points. Now
consider the fraction of the path that remains in this cell. This path
can be parametrized using the expression r + sk, with the path
length s as a free parameter. In each of the points along this path (as
long as we remain in the same cell), we can calculate the opacity by
a similar formula as (13),

κλ(r + sk) = [1 − p(s)][1 − q(s)][1 − r (s)]κi, j,k

+ [1 − p(s)][1 − q(s)]r (s)κi, j,k+1

+ · · ·
+ p(s)q(s)r (s)κi+1, j+1,k+1, (14)

where the parameters p, q and r are now linear functions of the path
length s,

p(s) = x + skx − xi

xi+1 − xi
, (15)

q(s) = y + sky − y j

y j+1 − y j
, (16)

r (s) = z + skz − zk

zk+1 − zk
. (17)

Along a path within a single cell, the opacity is thus a cubic poly-
nomial in s, the distance traveled along the path,

κλ(r + sk) =
3∑

m=0

amsm, (18)
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with constant coefficients am. With this expression for the opacity,
the calculation of the optical depth τ path,λ(r , k) is very straightfor-
ward. Indeed, it is sufficient to calculate, for each cell the path passes
through, the two boundary positions. This enables us to calculate
the path length s within the cell and the coefficients am. Given these
coefficients, the portion of the optical depth in that cell is found by
substitution into the quartic polynomial
∫ s

0

κλ(r + s ′k)ds ′ =
4∑

m=1

amsm

m
. (19)

Also, the calculation of the path length s(r , k, τ λ) is straightfor-
ward. First, we determine the cell in which the optical depths at
the border points bracket the value of τ λ, in a similar way as de-
scribed above to calculate the total optical depth along the path. The
determination of s then comes down to finding the root of a quar-
tic equation. The obvious way of finding this root is by means of a
Newton–Raphson iteration, because we can easily compute both the
function values and the derivatives of this function. This routine has
a very fast quadratic convergence (the number of significant digits
approximately doubles with each iteration). Usually, no more than
two iterations are necessary.

2.3.3 Comparison of the grids

To compare the accuracy and efficiency of the two approaches, we
applied both techniques to a simple spherical dust geometry, char-
acterized by an opacity

κλ(r ) ∝
(

1 + r 2

c2

)−α/2

. (20)

The integrations through the dust, i.e. the calculation of the two
functions τ path,λ(r , k) and s(r , k, τ λ), can be performed exactly
for such a dust component with α = 2, 3 or 5 (see Baes 2001 for
details). These exact results were compared with the results from
the UDD and IDD grids. In Fig. 1 we plot the relative error of
the calculated values of the opacity, the total optical depth along
a path and the path length corresponding to a given optical depth
for 1000 randomly generated photons for such a model. For a given
number of dust grid cells, the accuracy of the integrations in the
IDD grid is much better than those in the UDD grid. However, in
terms of computational efficiency, comparing the two grids with
the same numbers of cells is not fair, because the integrations in
the UDD grid are less complicated and hence faster. We found that
the IDD grid integrations are a factor of 3 slower in the mean. On
the other hand, in order to reach a similar accuracy as the IDD
grid, many more cells are necessary in the UDD grid. Apart from
slowing down the integrations, this will also increase the memory
requirements significantly. After several tests, we found that the IDD
grid is computationally preferable above the UDD grid, in particular
when the system harbours a large dynamical range of dust densities
(such as an exponential profile which is appropriate in disc galaxies).
It should be noted however, that the UDD grid still remains a very
useful alternative, in particular to include clumpy dust distributions
into the SKIRT code.

2.4 Optimization of the code

The procedure described at the beginning of the previous section
is the most basic version of a Monte Carlo iteration step. When
executed as such, however, it would be very inefficient. Throughout
the years a number of ‘intelligent tricks’ have been presented which

increase the computational efficiency considerably. Most of them
attach a weight to each photon, which can be altered during its
lifetime. We incorporate three such techniques into our SKIRT code.

The first optimization to the basic Monte Carlo scenario is to turn
all interactions into scattering events. In reality, of course, the inter-
action between a photon and a dust grain can either be an absorption
or a scattering event; the nature of this event is determined by the
albedo ωλ of the dust grains. The problem with absorptions is that
the photon is lost, and therefore does not contribute to the observed
radiation field anymore. To overcome this problem, we force each
interaction to be a scattering event and alter the weight of the photon
after each scattering by a factor ωλ in order to compensate for the
fraction of absorbed photons.

The second technique is the peeling-off procedure introduced by
Yusef-Zadeh, Morris & White (1984). In the basic Monte Carlo
iteration, each photon leaves the galaxy at a certain stage, and it
can be classified in bins according to its position and direction. This
approach has a number of disadvantages. First, if we are interested
in only one single observing position, most of the photons are not
used. Secondly, if the observer has the misfortunate of being located
in a direction in which not many photons leave the galaxy, he might
have to wait for a very long time to detect enough photons to obtain
good statistics. Thirdly, if one wants to compare the view of a system
from two observing positions close to each other, the direction bins
must be chosen to be very small, which requires a very large number
of photons. The peeling-off technique can be used to tackle these
problems. It consists of creating a new photon during each scattering
[resp. emission] process, which is scattered [resp. emitted] exactly
in the direction of the observer. This photon will be detected by the
observer. Its weight is altered by a factor �(k, k obs) [resp. 1] to
compensate for the probability of scattering [resp. emission] in the
direction kobs, and a factor exp [ −τ path,λ(r , kobs)] to compensate for
extinction along the line of sight.

The third optimization we apply is the principle of forced first
scattering (Witt 1977), which is useful in the relatively low optical
depth regime. A problem in such systems is that most of the pho-
tons leave the galaxy directly without a single interaction with a
dust grain, and therefore many photons need to be generated in or-
der to have a good statistics of the scattered radiation. To overcome
this problem, we split the emitted photon into two parts. The first
part of the photon directly leaves the galaxy and obtains a weight
exp (−τ path,λ) (because we adopt the peeling-off technique, we do
not have to consider this fraction anymore). The other part of the pho-
ton with the remaining weight is forced to be scattered at least once,
which is achieved by sampling an optical depth τ λ such that τ λ <

τ path,λ. This technique is called the principle of forced first scat-
tering, but nothing prevents us applying it only to freshly emitted
photons: it can equally well be applied to scattered photons (Bianchi
et al. 1996). The number of forced scatterings we apply in our cal-
culations is usually 3, but this value can be set arbitrarily according
to the studied system.

2.5 The detection and data reduction processes

The last phase in the Monte Carlo cycle is the detection phase,
whereby the information contained in the photon is transmitted to
the observer. Because of the peeling-off procedure, the number and
position of the observers can be chosen randomly. At each observing
position, the user can choose from several simulated instruments to
detect the photons: photometers, low-resolution and high-resolution
spectrographs. Each instrument consists of a number of pixels on the
plane of the sky and they come in two geometries: rectangular and
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Figure 1. A comparison of the accuracy of the integrations through a UDD
dust grid (constant density) and the IDD dust grid (trilinear interpolation).
The three panels contain the relative errors of the opacity κλ(r ), the optical
depth along a path τ path,λ(r , k) and the path length s(r , k, τλ) for 1000
random photons. The dust grids in both cases contain the same cells. The
different colors correspond to dust grids with 1003 (green), 2003 (blue) and
3003 (red) cells respectively.

circular. Each pixel contains a detector, the nature of which depends
on the kind of instrument.

The photometers are the most simple instruments, whereby the
detector in each pixel is just a counter. Every time a photon hits
the pixel and its wavelength is within the detector’s bandwidth,
its weight is added to the intensity. At the end of the simulation,
the 2D surface brightness image of the system is directly obtained.
The photometers are designed such that each photon remembers
the number of scatterings it has undergone, and this information is
also used by the photometric detectors. This allows us to construct
images for each individual scattering (direct emission, photons that
have been scattered once, etc.), which can be useful to disentangle
the effects of absorption and scattering.

The low-resolution spectrographs work in a very similar way,
except that there is not just one detector, but a range of detectors
corresponding to different wavelength bins. In this way a data cube
is produced (actually a set of data cubes, one for every scattering),
very similar to the data cubes obtained by radio or Fabry–Perot
observations. The high-resolution spectrographs basically produce
similar data cubes, with Doppler shift bins replacing the wavelength
bins. Combining the different Doppler shift bins at a given position x
on the sky, we obtain the LOSVD or line profile φp (x, u), which de-
scribes the entire projected velocity distribution. From the LOSVDs,
the 2D mean projected velocity field vp(x) and projected velocity
dispersion field σ p(x) can be calculated.

From a conceptual point of view, high-resolution and low-
resolution spectrographs work in a very similar way. Both sepa-
rate the incoming photons in different bins according to the extra
information carried by the photon, which is the wavelength in the
former and the Doppler shift in the latter case. From a computational
point of view, however, there is an important difference between the
two. Indeed, the wavelength of the photon is actively used through-
out the Monte Carlo iteration, because the optical properties of the
dust grains depend on the photon’s wavelength. On the contrary, a
photon’s path does not depend on its Doppler shift. Moreover, the
changes in Doppler shift experienced by a photon when it moves

through the dust are independent of the initial stellar Doppler shift.
Therefore, we can optimize our code in the following way. Instead
of initializing the photon’s Doppler shift by generating a u0 from the
stellar spatial LOSVD, we postpone this contribution of the stellar
velocity until later and initialize u0 to zero. When the photon leaves
the galaxy after M scattering events, it will then carry a Doppler
shift

ud
M =

M∑
i=1

vdi · (ki − ki−1), (21)

where we still have to add the stellar Doppler shift in order to obtain
the correct value. Instead of generating a single initial stellar Doppler
shift u0 from the spatial LOSVD φ∗(r 0, k0, u), we split the photon
over all velocity bins. Each fraction will then be weighted by a
weight factor that represents the probability that the final Doppler
shift of the photon will fall within the corresponding bin. In order to
fall within a bin with boundaries uk and uk+1, the photon must have
an initial stellar Doppler shift satisfying uk � u0 + ud

M � uk+1. The
weight factor corresponding to the kth bin will hence equal

wk =
∫ uk+1−ud

M

uk−ud
M

φ∗(r 0, k0, u) du. (22)

When we substitute the Gaussian spatial LOSVD (4) into this ex-
pression, we can evaluate this weight factor exactly:

wk = 1

2

[
erf

(
uk+1 − ud

M − ū√
2σu

)
− erf

(
uk − ud

M − ū√
2σu

)]
. (23)

This method is of the same kind as the optimization techniques
described in Section 2.4 and also increases the efficiency of the
SKIRT code in a significant way.

2.6 General architecture and performance

The SKIRT code is implemented in the ANSI standard C++ language
and makes optimal use of the object-oriented structure of this lan-
guage. The output of the code consists of FITS files, which are created
by means of the FITSIO and CCFITS packages.

The run time of the SKIRT code with reliable output depends criti-
cally on the number of photons, the number of observing directions,
the spatial and velocity resolution of the instruments and the number
of cells in the dust grid. For the simulations described in Section
4, we found that about 5 × 107 photons are necessary to obtain
accurate results. The code spends 60 per cent of the time moving
through the dust grid, while most of the remaining time is spent
in the calculation of the spatial LOSVDs. When run on a modern
Pentium IV PC, the run time of a single simulation (with 7 observing
positions) is of the order of 50 to 100 h.

3 T E S T I N G T H E C O D E

The code was first run without dust included in order to test the pro-
jection algorithm and the calculation of the observed kinematics.
We used simple non-rotating spherical geometries which allow an
analytical expression of the surface brightness and projected veloc-
ity dispersion profiles (Dejonghe 1987; Hernquist 1990; Jaffe 1983;
Baes & Dejonghe 2002b). Also the surface brightness profiles of
face-on and edge-on exponential discs (which can be calculated an-
alytically) are accurately recovered. Moreover, when we attach a
simple velocity structure to an exponential disc, with a flat rota-
tion curve and exponentially decreasing velocity dispersions, the
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Figure 2. The B-band surface brightness distribution of an edge-on disc
galaxy, for various values of the optical depth. The model is similar to the
BT0.3 model described by Byun et al. (1994), i.e. an exponential stellar disc
with scalelength h∗ = 4 kpc and scaleheight z∗ = 0.35 kpc, a de Vaucouleurs
bulge with Re = 1.6 kpc and a bulge-to-total luminosity ratio of 0.3. The
dust is also exponential with scalelength hd = 4 kpc and zd = 0.14 kpc, and
the face-on central optical depths in the different plots are τV = 0, 0.5, 1, 2,
5 and 10 (from top to bottom). Surface brightness contours are shown with
a step of �µ = 1 mag kpc−2.

observed kinematics can be also calculated analytically in the face-
on and edge-on directions. These are recovered very well, proving
the correct behaviour of the code.

Next, we compared the results of the SKIRT code with our previ-
ous Monte Carlo calculations of the observed kinematics of elliptical
galaxies (Baes & Dejonghe 2001b, 2002a). The Monte Carlo code
used in these papers also allowed for the calculation of the observed
kinematics, but only for spherical models, chosen such that the inte-
grations through the dust could be performed analytically. We found
an excellent agreement between these results and those calculated
with the new SKIRT code.

Finally, we compared our (photometric) results with the radia-
tive transfer calculations of other authors. In Fig. 2 we plot the
two-dimensional edge-on surface brightness distribution of an Sb
galaxy model in the B band for various values of the optical depth.
The models are the same models as the BT0.3 models of Byun et al.
(1994), and they consist of a stellar disc, a stellar bulge and a dust
disc. Comparing this figure with their fig. 4(b), we find an excellent
agreement between the two results. Notice that Byun et al. (1994)
adopted a completely different approach to solve the radiative trans-
fer problem.

4 T H E O B S E RV E D K I N E M AT I C S O F D U S T Y
D I S C G A L A X I E S

We apply the SKIRT code to investigate the effect of dust absorption
and scattering on the photometry and the stellar kinematics of normal
galactic discs. We limit our modelling only to a stellar disc and do
not include a bulge, because we are primarily interested in the disc
kinematics.

4.1 Presentation of the model

Our model consists of a simple axisymmetric double exponential
disc galaxy, with stellar emissivity

�λ(r ) = Lλ

4πh2∗z∗
exp

(
− R

h∗

)
exp

(
−|z|

z∗

)
. (24)

The luminosity Lλ is a free scaling parameter in our models, as
both the input emissivity and the output light profile scale with the
luminosity. For the scalelength and scaleheight we chose the values
adopted by Byun et al. (1994) to describe the Milky Way, h∗ = 4 kpc
and z∗ = 350 pc. As we focus on the observed kinematics, which
are always measured in a very narrow wavelength region, we chose
a trivial monochromatic SED centred on the V band.

In order to run a kinematical simulation for such a disc galaxy,
we also need to provide details on the kinematical structure of the
disc. We assume that the stellar velocities at each position in the
disc can be represented by a trivariate Gaussian distribution,

F∗(r ,v) ∝ exp

[
− v2

R

2σ 2
R

− (vϕ − v̄ϕ)2

2σ 2
ϕ

− v2
z

2σ 2
z

]
. (25)

Such a velocity distribution was first proposed by Schwarzschild
(1907) to describe the distribution of stellar velocities in the solar
neighbourhood. The mean azimuthal velocity and the three velocity
dispersion components can vary from position to position. The entire
kinematical structure of the disc will be completely determined if
we have expressions for the four functions v̄ϕ(r ), σR(r ), σϕ(r ) and
σ z(r ). Since the system is axisymmetric, these quantities will depend
only on the cylindrical radius R and the height z. Moreover, because
stellar discs are thin and the contribution of photons high above or
under the symmetry plane of the galaxy will be quite small owing
to the vertical exponential decrease, we will assume that these four
functions are a function of R only.

For the v̄ϕ profile, we assume the arctan profile, a simple two-
parameter fitting function that fits the observed rotation curves of
disc galaxies fairly well (e.g. Courteau 1997),

v̄ϕ(r ) = 2vmax

π
arctan

(
R

R0

)
. (26)

We have adopted an amplitude vmax = 220 km s−1 and a scale radius
R0 = 0.5 kpc, which results in a rotation curve that has a steep initial
gradient and reaches its flat part fairly quickly. The internal velocity
dispersion profiles in disc galaxies are not well constrained. For a
thin self-gravitating disc, the Jeans equations yield that the vertical
velocity dispersion scales with the square root of the surface density.
If we assume a constant mass-to-light ratio, we obtain the following
parametrization,

σz(r ) = σz0 exp

(
− R

2h∗

)
. (27)

As all dispersions in a stellar disc are thought to exist from the grad-
ual stellar heating of an initial cold disc, it makes sense to assume
that the velocity dispersions in the other direction are intimately
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coupled to the vertical dispersion. Therefore, we assume a constant
axis ratio of the velocity ellipsoid in our model, such that σ R and
σϕ have the same spatial variation as σ z . Notice that such behaviour
is found to be in agreement with the sparse existing data on the
velocity dispersions in external galaxies (Gerssen, Kuijken & Mer-
rifield 1997, 2000). The only remaining quantities that need to be
set are normalizations of the dispersions. We adopted the values
(σ R0, σϕ0, σ z0) = (100, 75, 50) km s−1. At a galactocentric radius
of 8 kpc, this gives velocity dispersions of (37, 28, 18) km s−1,
which roughly corresponds to the measured velocity dispersions in
the solar neighbourhood.

The dust was chosen to be distributed in a similar way to the
stellar distribution,

κλ(r ) = τλ

2zd
exp

(
− R

hd

)
exp

(
−|z|

zd

)
, (28)

whereby τ λ (here) represents the face-on optical depth through the
centre of the galaxy,

τλ =
∫ ∞

−∞
κλ(r ) dz. (29)

For the dust scalelength and scaleheight, we again choose the values
from Byun et al. (1994), hd = 4 kpc and zd = 140 pc. Notice that the
dust is hence significantly more confined to the plane of the galaxy,
a feature which gives rise to the well-known dust lanes in edge-on
galaxies. For the velocity field of the dust grains, we assumed an
isotropic Gaussian distribution,

Fd(r ,v) ∝ exp

[
−v2

R + (vϕ − v̄ϕ)2 + v2
z

2σ 2
d

]
. (30)

We assumed the same mean velocity as the stellar distribution, and
a velocity dispersion σ d = 8 km s−1, which is a typical value for
the dispersion of the cold gas in the interstellar medium (Sofue &
Rubin 2001). Finally, for the optical properties of the dust we took
the average Galactic values (Gordon, Calzetti & Witt 1997).

These functions and parameters completely determine our model,
except for the one free parameter τV, the central face-on optical

Figure 3. The effect of dust attenuation on the projected mean velocity field of our galaxy disc models. Each single panel is a diagram with contours of equal
projected mean velocity (the so-called spider diagram). The total field of view along the major axis is 40 kpc, i.e. 5 scalelengths at each side of the galaxy
centre. The different contours in the panels are drawn with a step �vp = 20 km s−1. The five rows correspond to different inclination angles, ranging from i =
60 (top row) over i = 80, 85, 88 to the edge-on i = 90 (bottom row). The three different columns correspond to different values of the optical depth: the left
column is the dust-free model, whereas the middle and right ones correspond to τV = 1 and τV = 5 respectively.

depth in the V band (the corresponding optical depth at other wave-
lengths is determined by the assumed optical properties of the dust).
As discussed in the Introduction, the optical depth in spiral galaxies
is still a matter of debate. We ran our models for the optical depth
values τV = 0, 0.5, 1, 2, 5 and 10, in order to cover a wide range of
possible scenarios.

4.2 Modelling results

In this section we present and describe the results of our Monte
Carlo simulations. We will not discuss the effects of dust on the
photometry, since such results have been discussed at length by
other authors, such as Byun et al. (1994), Corradi et al. (1996) and
Bianchi et al. (1996). Instead we concentrate on the effects of dust
on the observed kinematics, in particular on the mean projected
velocity vp(x) and the projected velocity dispersion σ p(x).

In Figs 3 and 4 we compare, at various inclination angles, the
2D mean projected velocity and projected velocity dispersion fields
of an optically thin galaxy (left) with the corresponding fields of a
dusty galaxy with optical depth τV = 1 (centre) and τV = 5 (right)
respectively. Notice that the mean projected velocity field is not
plotted in the face-on direction, as there is no rotation perpendicular
to the galactic plane. To facilitate the interpretation of these 2D
kinematical fields, we plotted in Fig. 5 the major and minor axis
kinematical profiles of our models at various inclination angles,
explicitly as a function of the optical depth.

4.2.1 Edge-on galaxies

For edge-on galaxies, the effects of dust on both the mean projected
velocity and the projected velocity dispersion are very strong, as is
obvious from the bottom row panels of Figs 3 and 4, and the panels
in the right column of Fig. 5. The projected mean velocity profile
along the major axis rises more and more slowly as the optical depth
increases, and tends towards a solid body rotation. These trends were
expected, and in agreement with the arguments of Davies (1990) and
the absorption-only calculations of Bosma et al. (1992). To quantify
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Figure 4. The effect of dust attenuation on the projected velocity dispersion field of our galaxy disc models. Each single panel is a diagram with contours of
equal projected velocity dispersion. The different contours are drawn with a step �σ p = 5 km s−1. The layout of this figure is similar to Fig. 3, except that an
extra panel at the top is added representing the face-on direction.

this change of slope, we have calculated, for each optical depth, the
major axis radius at which the mean projected velocity reaches half
of its maximum value vmax

p = 220 sin i km s−1. These values are
tabulated in the second column of Table 1, and demonstrate that the
effects of dust attenuation are very severe, even for small optical
depths. The reason for this shallower slope of the rotation curve is

Table 1. The effect of dust attenuation on the slope of the mean projected
velocity curve. This slope is expressed through the major axis radius at which
the rotation curve reaches half of the asymptotic value vmax

p = 220 sin i km

s−1. These radii are tabulated for the various inclinations and optical depths
considered in our simulations. For a infinitely thin and dust-free galaxy, the
intrinsic value would be 0.5 kpc, independent of the inclination angle.

τV i = 90 i = 88 i = 85 i = 80 i = 60

0 2.05 1.58 1.24 0.96 0.66
0.5 4.25 2.22 1.35 0.95 0.66
1 5.69 2.93 1.69 1.04 0.65
2 7.26 3.71 2.10 1.24 0.65
5 9.23 4.77 2.72 1.56 0.70
10 10.63 5.58 3.21 1.82 0.75

that we mainly see the radiation from the optically thin part of the
galaxy, which is more and more restricted to the outer part of the
galaxy as the optical depth increases.

In the same way, we can understand the effects of dust attenuation
on the projected velocity dispersion profile, where also a prominent
dust lane is visible in the contour plot: we mainly see the light (and
hence the Doppler shift) of the stars from the outer part of the disc,
where the intrinsic velocity dispersion is much smaller.

4.2.2 Galaxies at intermediate inclinations

Bosma et al. (1992) found that the signature of dust absorption
on the rotation curve depends strongly on the inclination angle.
For inclinations which deviate as few as 5◦ from purely edge-on,
they found that the effects of dust on the rotation curve is already
severely reduced, even for optical depths up to τV ∼ 10. This result
remains the same if scattering is also taken into account, because
the absorption effects of dust strongly dominate in highly inclined
galaxies. Table 1 quantitatively demonstrates these results. For the
projected velocity dispersion, a similar effect is valid, at least for
the major axis dispersion profile. When the entire projected velocity
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Figure 5. The observed kinematics of our galaxy disc models along the major and minor axes. The panels on the two rows represent the mean projected
velocity profiles and projected velocity dispersion profiles along the major axis, and the bottom panel show the minor axis projected velocity dispersion profiles.
The different columns correspond to different inclination angles, ranging from face-on (left) to edge-on (right). Notice that the projected velocity profiles are
the observed profiles, and are not corrected for inclination. The different curves in each panel correspond to different values of the optical depth: τV = 0 (black),
τV = 0.5 (green), τV = 1 (magenta), τV = 2 (cyan), τV = 5 (blue) and τV = 10 (red).

dispersion field (or just the minor axis dispersion profile) is taken
into account, the asymmetrical signature of the dust can still be
recognized for inclinations down to 80◦.

Moving to intermediate inclinations, the effects of dust attenua-
tion on the observed kinematics quickly become very limited. For
example, there is hardly any effect noticeable for an inclination of
60◦, which can easily be seen by comparing the corresponding pan-
els in Figs 3 and 4.

4.2.3 Face-on galaxies

In the light of the previous results, we would expect that the effects of
dust attenuation on the observed kinematics of face-on galaxies are
completely neglegible. And indeed, on the mean projected velocity
there is no effect at all: the projected mean velocity is zero for face-
on galaxies, regardless of whether dust is present or not. However,
we do see a conspicuous effect of dust attenuation on the projected
velocity dispersion: it increases with increasing optical depth. This
cannot be an absorption effect, because all stars along a given line of
sight in our face-on galaxy discs have the same velocity dispersion
σ z in the direction of the observer. The effect arises as a result of

photons emitted in the central regions in a direction parallel to the
plane of the galaxy. When these photons are scattered into a vertical
direction, they have a large probability to leave the galaxy. They
will then contribute the high-velocity information of the stars in the
central regions to the LOSVDs, causing high-velocity wings and
hence an increased velocity dispersion.

The effect is similar to what we found for the projected velocity
dispersion profile of elliptical galaxies containing a diffuse dust
component (Baes & Dejonghe 2002a). Compared to these models,
where the signature of the dust is very significant, it is fairly modest
for the face-on discs. The reason for this weaker impact is the fact
that the velocity dispersion profile in our disc galaxy models have
a fairly shallow slope, compared to the elliptical galaxy models
of Baes & Dejonghe (2002a). In disc galaxies, the Doppler shifts
contributed by the scattered photons will in the mean differ less from
the Doppler shifts contributed by the direct photons as in elliptical
galaxies.

We could ask ourselves the question whether this conclusion is
biased by the chosen star-dust geometry of our disc galaxy mod-
els. Indeed, Baes & Dejonghe (2002a) found their results depended
strongly on the relative star-dust geometry: the scattering effect was
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Figure 6. The major and minor axes observed kinematics of our disc galaxy models, calculated without taking the dust velocities into account. The layout is
similar to Fig. 5.

strong only for models in which the dust was more extended than
the stars. In our disc galaxy models, the dust distribution has the
same scalelength as the stars, whereas the scaleheight is smaller,
such that the dust is always sandwiched between the stars. Recently
however, evidence has been found for extended distributions of cold
dust in spiral galaxies, both from the radiative transfer modelling of
the dust lanes in edge-on galaxies (Xilouris et al. 1997, 1998, 1999)
and from ISO and SCUBA dust emission (Alton et al. 1999; Davies
et al. 1999). In order to investigate whether this would bias our
results, we considered a new set of models with an extended dust
distribution. They were constructed by increasing the dust scale-
length or the dust scaleheight by factors up to three, while keeping
the face-on optical depth fixed. Running new face-on simulations
for these models, we found that the strength of the scattering effect
on the projected velocity dispersion increases only minimally, with
deviations of the order of a few per cent. The modest effects found
in Fig. 5 are hence representative for disc galaxies.

5 D I S C U S S I O N

5.1 Stellar kinematics in disc galaxies

One of the most useful and promising applications of stellar kine-
matics in disc galaxies is their contribution to mass modelling. In
its simplest form, this mass modelling consists of decomposing the

observed rotation curve into contributions by the disc and the dark
halo (assuming the contributions of a bulge and molecular/atomic
gas are negligible). Even in this most simple scenario, there is still
a virtually complete degeneracy: the mass-to-light ratio of the disc.
Authors have often adopted a solution in which the contribution
of the disc is maximized, leading to the so-called maximum disc
hypothesis (van Albada & Sancisi 1986). There are however, no
convincing arguments to favour a particular value for the stellar
mass-to-light ratio, and often scenarios in which the dark matter
halo dominates the disc are equally possible (e.g. Lake & Feinswog
1989). Stellar kinematics can, in principle, provide the necessary
additional constraint to break this degeneracy. Indeed, for a self-
gravitating disc, the vertical velocity dispersion scales linearly with
the square root of the surface density of the disc, and can therefore
be used to constrain the mass-to-light ratio of the disc.

The most obvious candidates for such an analysis would be face-
on galaxies, because their projected velocity dispersion directly re-
flects the vertical velocity dispersion in the disc. We found that for
a dusty disc galaxy, the observed velocity dispersion is affected by
scattering. The effects are modest, however, even for models with
an extended dust distribution. Alas, face-on galaxies do have strong
observational disadvantages. Foremost, their low surface brightness
make it very hard to obtain the stellar kinematics out to sufficiently
large distances to isolate the disc component. Moreover, the shape
and amplitude of the rotation curve cannot be measured directly. The
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amplitude can be estimated fairly accurate using the Tully–Fisher
relation, whereas the shape could be approximated through the (con-
troversial) universal rotation curve formalism (Persic, Salucci & Stel
1996). This is unsatisfactory, however, because there is a large spread
in universal rotation curves, and the details of mass modelling usu-
ally depend crucially on small scale features of the rotation curve
which statistical methods cannot incorporate.

Edge-on galaxies do not suffer from these observational prob-
lems: their surface brightness is much higher, and their apparent
rotation curve can be determined directly. However, the interpreta-
tion of the kinematical data is non-trivial. First, the vertical veloc-
ity dispersion must be linked to the observed dispersion, which is
a mixture of contributions from the radial and tangential velocity
components. Based on the observed axis ratio of velocity ellipsoid
in the solar neighborhood, Bottema (1993) estimated the vertical
velocity dispersion in edge-on galaxies by means of the radial ve-
locity dispersion evaluated at one scalelength. It has been shown,
however, that the velocity ellipsoid axis ratios in disc galaxies can
vary substantially (Gerssen et al. 2000). Secondly, our modelling
indicates that both the projected mean velocity and the projected
velocity dispersion field in edge-on galaxies are strongly affected
by interstellar dust.

Galaxies of an intermediate inclination (i < 80◦), however, are
most suitable for such an analysis. Gerssen et al. (1997) have shown
that for galaxies with an intermediate inclination, the three compo-
nents of the velocity ellipsoid can, in principle, be determined by
studying the kinematics along major and minor axes. Also, because
the rotation curve of inclined galaxies can directly be determined
and their surface brightnesses are high enough to allow the measure-
ments of their kinematics in a reasonable time, they form ideal tar-
gets for such a study. Moreover, determining the three components
of the velocity ellipsoid is very useful to constrain the dynamical
history of disc galaxies, because the various proposed mechanisms
leave a different imprint on the velocity ellipsoid. Our modelling
demonstrates that the observed kinematics of inclined disc galaxies
can be directly interpreted and are not biased by dust attenuation.
We argue that studying the observed kinematics of a substantial set
of optically smooth inclined galaxies could thus greatly contribute
to understanding the mass structure and dynamical history of spiral
galaxies.

5.2 Optical rotation curves in disc galaxies

The results of our modelling are important concerning the derivation
of the rotation curve of spiral galaxies. Whereas the outer parts of
the rotation curves of spirals were the preferred field of interest
for nearly three decades, it is the inner slope of the rotation curve
which nowadays stands in the spotlight. To measure the slope in this
inner region accurately, a high spatial resolution is required, which
makes the usual 21-cm measurements less suitable, except for the
most nearby galaxies. A useful alternative are CO rotation curves,
which can achieve a high resolution in both the spatial and velocity
directions, but these observations are quite costly in observing time.
The main alternative remains optical Hα observations, either long-
slit or Fabry–Perot.

Using Hα rotation curves, several authors (Blais-Ouellette, Am-
ram & Carignan 2001; Borriello & Salucci 2001; de Blok, McGaugh
& Rubin 2001; de Blok & Bosma 2002) have recently found shallow
slopes for the inner rotation curve of a significant number of (mainly
LSB and dwarf) galaxies. Such slopes are not in agreement with the
results of high-resolution cosmological N-body simulations, where
it is found that dark matter haloes have a strong cusp, and hence

that rotation curves of dark matter dominated galaxies should be
steeply rising (Navarro, Frenk & White 1997; Moore et al. 1997). A
number of ‘solutions’ have been proposed to explain this discrep-
ancy, amongst them the suggestion that the internal extinction in the
centre of galaxies could be a major source of uncertainty. Our mod-
els show that, indeed, an edge-on galaxy with an observed slowly
rising rotation curve could in principle be a dusty galaxy with an
intrinsically steep rotation curve. We found, however, that this ef-
fect cannot be obtained with realistic amounts of dust if the galaxies
deviate more than a few degrees from exactly edge-on, confirming
the results of Bosma et al. (1992) and Matthews & Wood (2001).
In addition, because LSB galaxies are assumed to be dust poor
(McGaugh 1994; Tully et al. 1998; Matthews, Gallagher & van
Driel 1999), we have demonstrated that dust effects cannot explain
the observed discrepancies.

We do however demonstrate that dust effects are important for
galaxies within a few degrees from edge-on, and that dust attenuation
must be seriously taken into account in such cases.

5.3 The importance of the dust grain velocities

The calculation of the final Doppler shift of a photon in the SKIRT

code takes into account the velocity information of the star and the
individual velocity vectors of each individual scattering dust grain.
This means that for every scattering event, we need to sample a
velocity from the dust velocity field, and this is a costly operation.
It would be very convenient from a computational point of view
if we could neglect the dust grain velocities. We have done this in
our previous Monte Carlo simulations (Baes & Dejonghe 2001b,
2002a), where we studied the observed stellar kinematics of ellipti-
cal galaxies. In these models, both stars and dust grains are supported
by random motions, and because the dust is colder than the stars,
the extra Doppler shifts due to scattering are generally smaller than
the stellar Doppler shift. In a spiral galaxy, however, this argument
does not hold anymore, because the velocities of both stars and dust
grains are dominated by the rotation and are therefore of the same
magnitude.

In order to investigate the importance of including the individual
dust grain velocities into the code, we ran the same models again but
without taking the dust velocities into account. In Fig. 6 we plot the
major and minor axes mean projected velocity and projected veloc-
ity dispersion profiles of our models calculated this way. Comparing
this figure with the corresponding Fig. 5, we find that the effects of
dust on the mean projected velocity profiles are significantly over-
estimated when the dust grain velocities are not taken into account,
in particular for inclined galaxies. The differences between the pro-
jected velocity dispersion curves in both figures are even worse:
when the dust grain velocities are neglected, the apparent effect of
dust attenuation is to increase the dispersion at nearly all radii and
all inclinations, by factors of up to 200 per cent or more for realistic
optical depths.

To understand this behaviour, consider a photon emitted by a
star with velocity v∗ in the direction k0, and assume this photon
is scattered by a dust grain with velocity vd into the direction k1,
whereafter it manages to escape the galaxy. When we do not take
the dust grain velocity into account, the observed Doppler shift of
the photon will simply be u0 = v∗ · k0. On the contrary, the correct
observed Doppler shift of the photon reads

u1 = v∗ · k0 + vd · (k1 − k0) (31)

= (v∗ − vd) · k0 + vd · k1. (32)
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In a disc galaxy, the motion of both stars and dust grains is dominated
by the same rotation. If the pathlength of the photon between its
emission and scattering is short, the velocity vectors of the star and
dust grain will therefore be very similar, v∗ ≈ vd, such that u1 ≈
v∗ · k1. The new correct Doppler shift is hence a typical line-of-sight
velocity of a star in the new propagation direction k1 of the photon.
Therefore, taking the dust motion into account more or less forces
the dust grain to adopt a Doppler shift that is ‘appropriate’ for the
new propagation direction. Along a given line of sight, the velocity
information carried by scattered photons will, in the mean, only
modestly deviate from the velocity information carried by photons
directly emitted in same direction. If we do not take the dust grain
velocities into account, the photon can contribute, to the observed
kinematics in a given direction, a line-of-sight velocity typical for a
completely different direction.

In the elliptical galaxy models from Baes & Dejonghe (2002a)
this does not make much difference, because the velocities of the
stars have similar magnitudes in the different directions. In a rotating
disc galaxy, however, this makes a huge difference because the stars
have hugely different velocities in different directions: the vertical
and radial motions are determined by the dispersion and are of the
order of a few tens of km s−1, whereas the azimuthal motion is
dominated by the rotation and is of the order of 200 km s−1. If the
dust grain velocities are not correctly taken into account, scattered
photons can thus cause erroneous extremely-high-velocity wings in
the LOSVDs. These give rise to modest but significant errors in
the mean projected velocity, and very large errors in the projected
velocity dispersion.

As a remark, we want to point out that Matthews & Wood (2001)
found that ‘also including the Doppler shifts arising from the rel-
ative bulk motion of the scattering dust particles had a negligible
effect on the final rotation curves’. Whereas this statement is indeed
true for the mean projected velocity of highly inclined galaxies, we
nevertheless judge that this could easily be misinterpreted as a jus-
tification to neglect dust velocities altogether. It must be realized
that for the calculation of the entire LOSVDs, and for the projected
velocity dispersion in particular, the dust velocities do play a crucial
role, and must be taken into account.

6 C O N C L U S I O N S

In this paper we have presented a novel Monte Carlo code that can
take velocity information into account, and can hence be used for
kinematical modelling of dusty objects. We applied this code to
calculate the observed kinematics of dusty disc galaxies. The main
results of this paper can be summarized as follows.

(i) A correct inclusion of kinematical information into radiative
transfer problems requires the inclusion of the velocities of both the
emitting stars and the scattering dust grains. We see no other way
of tackling this problem except with Monte Carlo techniques.

(ii) A new approach is presented to optimize the integration
through the dust in a Monte Carlo code, using a trilinear interpo-
lation instead of a constant opacity within each cell. We compared
both kinds of grids, and find that, to obtain a similar accuracy, the
new approach is more efficient in terms of computation time and
memory.

(iii) The effects of dust attenuation on the kinematics of edge-on
disc galaxies are severe. Both the mean projected velocity and the
projected velocity dispersion are severely affected, even for modest
optical depths. Therefore we strongly advise to always interprete the

stellar kinematics and optical rotation curves of edge-on galaxies
very cautiously.

(iv) For galaxies which are more than a few degrees from strictly
edge-on, the effects of interstellar dust on the observed kinematics
are much weaker. Therefore, we argue that dust attenuation cannot
be invoked as a possible mechanism to reconcile the observed slope
of LSB galaxies with the predicted CDM cosmological models.

(v) Dust attenuation does not affect the kinematics of intermedi-
ately inclined galaxies. Such galaxies hence form the ideal targets
for stellar kinematical studies, in particular to constrain the mass
structure and to study the kinematical history of disc galaxies.

(vi) The projected velocity dispersion of face-on galaxies in-
creases slightly owing to scattering of dust grains into the line of
sight. The effects are relatively small, however, even for extended
dust distributions.

(vii) Neglecting the extra Doppler effect caused by the scattering
medium results in incorrect projected kinematics, in particular if the
velocity components of the stars (and dust grains) in the galaxy dif-
fer considerably, such as in a rotating disc. If the dust grain velocities
are neglected, the mean projected velocity is significantly underes-
timated, and the projected velocity dispersion field is completely
overestimated.
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A P P E N D I X A : G E N E R AT I N G P O S I T I O N S
F RO M A N E X P O N E N T I A L D I S C G A L A X Y

In this Appendix, we show how the SKIRT code generates a random
position from the exponential disc model, i.e. how a random position

is drawn from the three-dimensional probability density

p(r ) dr ∝ exp

(
− R

h∗

)
exp

(
−|z|

z∗

)
dr . (A1)

As this probability density is a separable function of R, ϕ and z, we
can generate a random position by independently generating each
of these three coordinates, whereby the generation of an azimuth is
trivial. To generate a random radius and height, we use the transfor-
mation technique, which says that a random variable x can be drawn
from a probability density p(x) dx by generating a uniform deviate
X and solving the equation

X =
∫ x

−∞
p(x ′) dx ′

/∫ ∞

−∞
p(x ′) dx ′ (A2)

for x. The calculation of a random z is easy using this principle and
results in

z = z∗sgn(1 + 2X ) ln(1 − |1 − 2X |). (A3)

This procedure works equally well when we introduce a cut-off, or
when a sech or isothermal profile is used instead of the exponential
profile to describe the vertical distribution of the stars (e.g. Bianchi
et al. 1996).

Applying the same technique to generate a random R, we can find
R by solving the equation

X = 1 −
(

1 + R

h∗

)
exp

(
− R

h∗

)
. (A4)

Bianchi et al. (1996) invert this transcendental equation numerically
to find R. However, this equation can be solved exactly by means of
the Lambert function, yielding

R = h∗

[
−1 − W−1

(
X − 1

e

)]
. (A5)

The Lambert function, also known as the product log function,
is generally defined as the inverse of the function w → f (w) =
w ew , and W −1(z) represents the only real branch of this complex
function besides the principle branch. The Lambert function can be
computed in a very efficient way by means of Halley iteration; for
more information on this function see Corless et al. (1996).
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