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A B S T R A C T

Observations have demonstrated the presence of substantial amounts of interstellar dust in

elliptical galaxies, most of which is believed to be distributed diffusely over the galaxy.

Absorption by dust grains has a major impact on the transfer of stellar radiation, and affects

the projection of each physical (and kinematic) quantity. In a previous paper, we have

investigated the effects of a diffusely distributed dust component on the observed kinematics

of spherical galaxies. In this paper we investigate the effect of not taking dust into account in

dynamical modelling procedures. We use a set of semi-analytical dusty galaxy models to

create synthetic line-of-sight velocity distribution (LOSVD) data sets, which we then model

as if no dust were present.

We find some considerable differences between the best-fitting models and the input

models, and we find that these differences are dependent on the orbital structure of the input

galaxy. For radial and isotropic models on the one hand, we find that the dynamical mass of

the models decreases nearly linearly with optical depth, with an amount of 5 per cent per

optical depth unit, whereas their orbital structure is hardly affected. For tangential models on

the other hand, the dynamical mass decrease is smaller, but their orbital structure is affected:

their distribution functions appear less tangentially anisotropic. For all models the mass-to-

light ratio will be underestimated, by a factor of around 20 per cent per optical depth unit.

We discuss these results in the light of the limited effects of dust extinction on the

LOSVDs, as obtained in Paper I, and conclude that the determination of the dynamical mass

and the kinematic structure of galaxies is not only determined by the observed kinematic

quantities, but is also critically dependent on the potential and hence the observed light

profile. We argue that dust, even in rather modest amounts, should therefore be taken into

account in kinematic modelling procedures.

Key words: dust, extinction ± galaxies: elliptical and lenticular, cD ± galaxies: ISM ±

galaxies: kinematics and dynamics.

1 I N T R O D U C T I O N

It has become well established that early-type galaxies contain a

considerable amount of interstellar dust. In the optical, dust is

detected in ellipticals by its obscuration effects on the light

distribution, when it is present in the form of dust lanes and

patches (e.g. Ebneter & Balick 1985; VeÂron-Cetty & VeÂron 1988;

van Dokkum & Franx 1995). In emission, dust is detected by the

IRAS satellite in the 60 and 100mm wavebands (Knapp et al.

1989; Roberts et al. 1991). In a comparative analysis Goudfrooij

& de Jong (1995, hereafter GdJ95) show that the dust masses

derived from far-infrared (FIR) data are about a factor of 10 higher

than those calculated from optical data. Using a more detailed dust

mass estimator, which includes a temperature distribution for the

dust grains (Kwan & Xie 1992), Merluzzi (1998) shows that

GdJ95 still underestimated the FIR dust masses by a factor of up

to 6. Also submillimetre observations (Fich & Hodge 1991, 1993;

Wiklind & Henkel 1995) and Infrared Space Observatory (ISO)

data beyond 100mm (Haas 1998), which may be able to detect the

very cold dust for which IRAS is insensitive �T , 25 K�; suggest

that the dust masses could be up to an order of magnitude higher

than observed from FIR observations alone.

This difference between the absorption and emission dust

masses in elliptical galaxies is called the dust mass discrepancy. It

cannot be solved by a more critical reconsideration of the IRAS

data (Bregman et al. 1992), by corrections for the optical

absorption in the dust lanes (Merluzzi 1998) or by taking the

dust recently ejected from evolved stars into account (Tsai &
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Mathews 1996). The interstellar dust medium in ellipticals hence

has to be composed of (at least) two components: a less massive

one which is optically visible in the form of dust lanes and

patches, and a more massive one which is distributed over the

galaxy and is hard to detect optically. The spatial distribution of

this component is still unclear. GdJ95 suggest that it is distributed

over the inner parts of the galaxy, which supports the evaporation

flow scenario. In this picture, most of the gas and dust has an

external origin: clouds of interstellar matter have been accreted

during interactions/merging with a gas-rich galaxy, and they

gradually evaporate in the hot X-ray emitting gas (Sparks,

Macchetto & Golombek 1989; de Jong et al. 1990; Forbes

1991; GdJ95). Tsai & Mathews (1996) and Wise & Silva (1997),

on the other hand, suggest that dust is not confined to the inner

few kpc only, but also extends to larger radii. Such a dust

distribution supports a scenario where gas and dust have an

internal origin: it can be associated with red giant winds or formed

in connection with star formation in cooling flows (Fabian, Nulsen

& Canizares 1991; Knapp, Gunn & Wynn-Williams 1992;

Hansen, Jùrgensen & Nùrgaard-Nielsen 1995). However, none

of these mechanisms seems to be able to explain the FIR

observations satisfactorily, and a combination of both mechanisms

may be at work (Merluzzi 1998). As in the first paper of this series

(Baes & Dejonghe 2000, hereafter Paper I), we will assume that

dust is distributed smoothly over the entire galaxy.

Absorption by dust grains has a major impact on the transfer of

stellar radiation through the interstellar medium. It therefore affects

the projection, i.e. the integration along the line of sight (hereafter

LOS) of the intrinsic three-dimensional light distribution. A number

of studies have investigated the effects of a diffuse dust distribution

upon the photometry of ellipticals (Witt, Thronson & Capuano

1992; GdJ95; Silva & Wise 1996; Wise & Silva 1996, hereafter

WS96). However, dust does not only affect the projection of the

light distribution, it affects the projected kinematics too. This is of

particular importance in stellar dynamics, where the ultimate

purpose is the determination of the phase space distribution function

F(r, v), hereafter DF, describing the entire dynamical structure. This

DF is usually constructed by fits to the line-of-sight velocity

distributions (LOSVDs) or their moments, and hence it is obviously

important to examine to what extent these are affected by dust

obscuration.

In Paper I, we constructed a set of semi-analytical models in

order to investigate the effects of dust absorption on the light

profile, the projected velocity dispersion profile and the LOSVDs.

With regard to the photometry, we find that diffuse dust has a

strong impact: a global attenuation, strong extinction in the central

regions, the formation of radial colour gradients, and an increasing

apparent core radius. In spite of the simplified character of our

analysis (we do not include scattering effects in our models), these

results are in qualitative correspondence with the conclusions of

the more detailed photometric studies mentioned before. The

effect of dust on the projected dispersion profile or the LOSVDs is

of a totally different nature. The effects are a redistribution along

the LOS: dust makes the contribution of the nearer parts more

important, relative to the more distant parts. Therefore it is no big

surprise that, in a spherically symmetric galaxy, the LOSVDs are

quite insensitive to modest amounts of dust. For example, for a

modest optical depth �t � 2� the effect on the projected velocity

dispersion is around 2 percent in the central regions. However, for

higher optical depths, these effects do become considerable, which

can be important on a local scale: e.g. asymmetries in the

projected kinematics may be the result of a large extinction in a

compact region, such as in the dust lane elliptical NGC 5266

(MoÈllenhof & Marenbach 1986). More details can be found in

Paper I.

The fact that both the photometry and the observed kinematics

are affected by dust obscuration will have consequences on the

dynamical modelling of galaxies. Now that we understand the way

dust absorption affects the projected kinematics, it is obvious that

dust needs to be accounted for in deprojection procedures, or more

generally, in kinematic modelling procedures. It is the aim of this

paper to determine the effects of neglecting dust in the modelling

of kinematic data. In other words, if one tries to model dust-

affected kinematic profiles without taking dust into account, as is

usually done, to what extent are erroneous conclusions drawn

about the kinematic structure of the galaxy ? In order to answer

this question we will create synthetic dust-affected data sets, and

model them as if no dust were present.

In Sections 2 and 3 we describe the construction of the data sets

and the modelling procedure. The results of the modelling are

presented in Section 4, and in Section 5 we investigate whether

these depend critically on the choice of the dust geometry. A

discussion of the results is given in Section 6.

2 T H E DATA S E T S

2.1 The model

To create our data sets, we construct a set of two-component

galaxy models, consisting of a stellar and a dust component. Both

components are spherically symmetric.

For the stellar component, we use a Plummer model (Dejonghe

1987), which is described by the potential±density pair

c�r� � GM0

c
1� r2

c2

� �21=2

�1a�

r�r� � 3

4p

M0

c3
1� r2

c2

� �25=2

; �1b�

with c � 5 kpc the so-called core radius and M0 � 5 � 1010 M(

the total mass. Furthermore we assume a constant mass-to-light

ratio Y�r� � 4Y(; such that the three-dimensional light distribu-

tion is given by `�r� � �1=4Y(�r�r�:
With the technique described by Dejonghe (1986) one finds a

family of two-integral DFs Fq(E, L) that self-consistently generate

the Plummer potential±density pair, equations (1a) and (1b). This

family has two interesting properties, which justify its choice as a

generic model for the class of elliptical galaxies (although its

projected density profile does not fit real elliptical galaxies). First,

the models are completely analytical, i.e. the DF and all the

(projected) moments can be calculated analytically. And second,

the family depends on one single parameter q, which can be varied

continuously in order to obtain tangential �q , 0�; isotropic �q � 0�
or radial �0 , q , 2� models. We consider a set of different

orbital structures, characterized by the parameters q � 26; 22, 0

and 1. In the sequel to this paper we will refer to them as very

tangential, tangential, isotropic and radial models, respectively.

As in Paper I, we only incorporate the effects of dust absorption

and neglect scattering effects. Then, the dust component is

completely determined by the opacity function k(r), for which we

use a modified Hubble profile

k�r� � t

2c
1� r2

c2

� �23=2

: �2�
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The normalization is such that t equals the total optical depth,

defined as the projection of the opacity along the entire central

LOS1

t �
�

central LOS

k�r� ds � 2

��1

0

k�r� dr: �3�

As in WS96 and Paper I, we take the same core radius for the dust

and the stars; the choice of the opacity function is critically

investigated in Section 5. We only consider optical depths ranging

from t � 0 to t � 3 in our calculations, as high values for the

optical depth associated with a diffuse dust component seem not to

be in accordance with photometric studies (GdJ95, WS96).

2.2 The projections

For each model we create a set of so-called dusty projected

kinematic data. A dusty projected quantity mp(x, v) differs from a

normal projected quantity as it is a weighted integral along the

LOS x of a three-dimensional spherically symmetrical quantity

m(r, v). We assume that the galaxy is located at a distance that is

significantly larger than its size. Then the errors made by

assuming parallel projection, which are of the order (c/D)2 with

D the distance to the galaxy, are negligible (see Paper I, Section 2).

For a dusty galaxy with opacity function k(r) the appropriate

formula reads

mp�x;v� � 2

��1

x

K �x; r� m�r;v�r dr���������������
r2 2 x2
p ; �4a�

where K(x,r) is a weight function defined as

K �x; r� � exp 2

��1

x

k�r� r dr���������������
r2 2 x2
p

� �
cosh

�r

x

k�r 0� r 0 dr 0����������������
r 02 2 x2
p

� �
: �4b�

Details can be found in Section 2 of paper I. We substituted the

analytical expressions for the moments of the DF, together with

the opacity function, equation (2), in equation (4a) to obtain dusty

projected profiles, such as the projected light density `p(x) and

the projected velocity dispersion sp(x). Since in particular the

projected light density will depend on the optical depth, we will

have to be careful in our terminology when calculating quantities

such as the luminosity and the core radius. We need to

discriminate between true and observed quantities, which are

derived from the spatial and the projected distribution, respec-

tively. For example, the true luminosity of the galaxy is calculated

by integrating the light density over space

L � 4p

��1

0

`�r� r2 dr; �5�

which is, of course, independent of the optical depth and equals

M0=Y � 1:25 � 1010 L(: The observed luminosity Lobs is calcu-

lated by integrating the projected light density over the plane of

the sky,

Lobs � 2p

��1

0

`p�x� x dx; �6�

and is a function of t . Analogously, all our Plummer models have

a (true) core radius c � 5 kpc; whereas their observed core radius

cobs will depend on the optical depth (see Section 3.1). In Table 1

we tabulate some of the parameters of our dusty Plummer models.

2.3 The data sets

Each data set consists of the projected light density data `p(x) and

projected dispersion data sp(x), which are taken at x � 0;
0.5,¼,10 kpc. However, since dispersion profiles depend on

both the orbital structure and the mass distribution, they do not

sufficiently constrain the dynamical structure of the galaxy. This

mass-anisotropy degeneracy can be broken by including the

higher-order Gauss±Hermite moments in the fitting routine (van

der Marel & Franx 1993; Gerhard 1993). Since we work with

simulated data, we are able to include LOSVD data points directly

in the modelling procedure. We assume that these data are

noiseless, such that our data set is perfect, i.e. it contains all the

kinematic information that could be available from perfect

observations. Altogether each data set consists of 252 data points.

3 T H E M O D E L L I N G P R O C E D U R E

3.1 Determination of the potential

The first step in the modelling of kinematic data is the

determination of the potential. Although we have a perfect data

set at our disposal, we are not able to constrain the potential

completely without any assumptions, not even in the case of

spherical symmetry (Dejonghe & Merritt 1992). In this first

approach, we assume that it makes sense to consider a constant

mass-to-light ratio, such that the spatial dependence of the

potential can be derived from the projected light density `p(x). It

can be calculated numerically for our set of models, but we prefer

to work with a potential whose functional form is explicitly

known. We find that, for the modest optical depths we are

considering, the dust-affected light profiles of our models can still

be satisfactorily described by Plummer light profiles

`Pl
p �x� � `p;0 1� x2

c2
obs

� �22

; �7�

with cobs dependent on the optical depth. In Fig. 1 we plot the

difference

Dm�x� � 22:5 log�`p�x�=`Pl
p �x��: �8�

Table 1. Some parameters of the dusty Plummer models as a
function of the optical depth t . The second column gives the
observed core radius, the third and the fourth column give
the observed luminosity and the total extinction, and column
six and seven list the projected light density and projected
dispersion for the central LOS. This dispersion is tabulated
for the isotropic model, one finds the central dispersion of
the very tangential, tangential and radial models by multi-
plying this with the factors

���
2
p
=2;

���
3
p
=2 and

��������
6=5

p
;

respectively.

t cobs Lobs A `p,0 sp,0

(kpc) (109 L() (mag) (L( pc22) (km s21)

0.0 5.00 12.50 0.00 159.2 178.0
0.5 5.33 11.08 0.13 124.7 177.8
1.0 5.65 9.91 0.25 99.0 177.6
1.5 6.02 8.93 0.37 79.5 177.1
2.0 6.35 8.11 0.47 64.6 176.5
2.5 6.74 7.41 0.57 53.1 175.7
3.0 7.15 6.81 0.66 44.2 174.9

1 Throughout Paper I and this paper, we use this definition of t , whereas

e.g. WS96 defined t as the integral of the opacity from the centre of the

galaxy to the edge, half our value.
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in surface brightness between the dusty projected light density

profiles `p(x) and the best-fitting Plummer light profiles `Pl
p �x�:

Even at very large projected radii we find that Dm never becomes

larger than 0.05 for t � 2; such that we can say that the Plummer

character of the galaxy is preserved for modest values of t . We

will therefore assume a Plummer potential

c�r� � GM

cobs

1� r2

c2
obs

� �21=2

�9�

for our models, with cobs determined from the best fit to the `p(x)

data, and the mass M still featuring as a free parameter. The values

for cobs are tabulated in the second column of Table 1.

3.2 Determination of the DF

With a fixed potential there exists one and only one two-integral

DF F(E, L2) that fits the kinematic data (Dejonghe & Merritt

1992). It is always possible to write this DF as a infinite sum of

components

F�E; L2� �
X1
i�1

ciF
i�E; L2� �10�

where ci are the coefficients and the components F i�E; L2� form a

complete set of simple dynamical models. For any observed

kinematic data point mn(x, v) the same expansion is valid,

mn �
X1
i�1

cim
i
n; �11�

since these moments depend linearly on the DF. Practically, one

can only consider a finite number N of components,

F�E; L2� <
XN

i�1

ciF
i�E; L2�: �12�

The best-fitting coefficients can then be found by minimizing a

x2-like variable

x2 �
X

n

wn 1 2

PN
i�1

cim
i
n

mn

0BB@
1CCA

2664
3775

2

�13�

where the sum contains all data points, and wn is the weight

accorded to the nth data point. Since we assume the obtainment of

perfect, noiseless synthetic data, we can use these weights to

(arbitrarily) set the relative importance of each data point in the

global x2. For the projected density points we take wn � 1; for the

projected dispersion wn � 1=3 and for the LOSVD data the weight

varies from wn � 1=3 at the centre to wn � 1=10 in the outer

parts. This x2 is quadratic in the coefficients and has to be mini-

mized under the linear constraint that the DF has to be positive

over a grid �Ej; L
2
k� in phase space,

XN

i�1

ciF
i�Ej; L

2
k� $ 0 for all j and k; �14�

which amounts to a typical quadratic programming problem. For

details we refer to Dejonghe (1989).

We choose our components from a library of Fricke models.

These are simple dynamical models that are defined by the

augmented density,2

r�r;c� � ca r

sp

� �2b

: �15�

where sp is a scale factor and a and b are real numbers that satisfy

the condition a 2 2b . 3 to keep the total mass finite. The

anisotropy b (r), generally defined as

b�r� � 1 2
s2
w

s2
r

; �16�

will be constant for these models, since the r-dependence is a

power law (Dejonghe 1986, Section 1.5.1). We find immediately

that b�r� � 2b; hence the condition b . 21 is required. The two-

integral DF corresponding to equation (15) is a simple power law

of E and L2

F�E; L2� / Ea2b23=2L2b: �17�
For tangentially anisotropic components, the central density

vanishes; for isotropic ones it is finite and non-zero and radially

anisotropic components have a central density cusp. The advan-

tage of this family lies in the fact that most of the kinematics can

be calculated analytically for positive, integer values of b (De

Rijcke & Dejonghe 1998).

3.3 Determination of the dynamical mass

The only unknown in our model now is the mass M, which still

acts as a free parameter. For its determination we run our models

for a number of possible values, and determine the best fitting DF

and the corresponding x2 parameter for each value. The best-

fitting mass of the model is then determined as the minimum in

x2(M).

Figure 1. The difference Dm(x) in surface brightness between our dusty

projected density profiles and the best-fitting Plummer light profiles, for

the modest optical depths t � 1 and t � 2; and also for the higher values

t � 5 and t � 10: It is clear that for modest optical depths, a Plummer

profile provides a satisfying fit to the dust-affected profiles, such that we

can safely assume a Plummer potential in our modelling procedure. The

dots in the figure indicate the observed core radii cobs of the Plummer light

profiles, where by construction `p�cobs� � `Pl
p �cobs�:

2 The augmented density is the density written as a function of the radius r

and the potential c . It is a fundamental quantity in a technique to construct

two-integral distribution functions (Dejonghe 1986).
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3.4 Practical application

Practically, we construct models for a sufficiently large set of

masses, with a step DM � 5 � 108 M(; 1 per cent of the input

mass. For each mass we construct a DF using a library of 30

isotropic and tangential Fricke components. For computational

reasons we do not include any radial components; radial models

can be constructed by linear combinations of isotropic and

tangential components, in which the latter have a negative weight

(allowed as long as the DF remains positive over phase space). We

typically used 20 components: adding more components does not

significantly affect the results (neither the DF nor the mass)

further. This is illustrated in Fig. 2, where we plot the x2 values of

the various fits as a function of the number of components and the

value of the total mass.

A check on the fitting procedure is done by using t � 0 data,

i.e. data from non-dusty Plummer models. In order to make the

test robust, we use the same strategy as De Rijcke & Dejonghe

(1998): for the Plummer models that can be fit exactly in terms of

Fricke components �q � 26; 22 and 0), we remove these

components from the library. Still, both the DF and the mass of

the input models can be successfully reproduced.

In Fig. 3 we plot some results of the fitting procedure for the

four t � 2 models. Shown are the projected light density `p(x),

the projected dispersion sp(x) and the LOSVDs at x � 0 and

x � 10 kpc; the innermost and outermost LOSVD in our dataset.

The quality of the fit cannot be deduced from the x2 values, since

these have no statistical meaning. In the bottom row of Fig. 3, we

show the projected fourth moment jp(x) of the DF, which is not

included in the modelling procedure. It can be used to check the

quality of the fit, which is very satisfactory in all cases.

4 R E S U LT S

In this section we describe the results of our fitting procedure and

the kinematic properties of the models. For the sake of clarity we

first explicitly define some terms.

The input models are the models that are described in Section

2.1, i.e. Plummer galaxy models containing a dust component,

whereas the fitted models are the models that come out of the

modelling procedure, and which, by construction, contain no dust.

Since each couple of parameters (q,t) corresponds to one input

model, and hence one data set and one fitted model, we will call

the combination of input and fitted models corresponding to a

given couple of parameters simply a model.

As the fitted models are constructed such that their projected

kinematics match those of the input models, we can talk about the

projected kinematics of a model. The same applies to the light

profile or quantities derived from it, such as the observed

luminosity Lobs (see Section 2.2). On the contrary, when we

describe spatial kinematic quantities [such as the anisotropy b (r)]

or integrals thereof (such as the mass-to-light ratio Y), we need to

distinguish between the ones corresponding to the input and fitted

models, which a priori have no reason to be equal. By an apparent

quantity we mean a quantity that corresponds to the fitted model,

e.g. the quantity that results from the modelling procedure. By an

intrinsic quantity we mean the quantity that corresponds to the

input model, and hence is always independent of the optical depth.

For example, all the models have the same intrinsic mass M0,

whereas the apparent mass of the models is determined as outlined

in Section 3.3, and will be different for each model. Obviously, for

optical depth t � 0; the apparent and intrinsic values are equal.

In this section, we will compare the apparent and the intrinsic

kinematic quantities of our models, as a function of the parameters

t and q.

4.1 The mass and the mass-to-light ratio

In Fig. 4a, we show the apparent dynamical mass of the models as

a function of the optical depth. The global effect of the dust is

clear : the mass decreases nearly linearly with the optical depth.

The slope of this correlation, however, is strongly dependent on

the orbital structure. For the very tangential model the apparent

mass is quite insensitive to the presence of dust, and the impact of

the dust extinction becomes gradually stronger as we move to the

tangential, the isotropic and the radial model. We fitted straight

lines DM � aMt through the data to obtain characteristic values

for the mass decrease in function of the optical depth. These

values are given in the second column of Table 2.

The apparent luminosity of our models is calculated by

integrating the apparent light density `(r) over space, or ± since

the fitted models contain no dust ± by integrating `p(x) over the

plane of the sky. It thus equals the observed luminosity of the

dusty Plummer models, which are tabulated in the third column of

Table 1.

Combining these with the apparent masses, we can calculate the

apparent mass-to-light ratio Y of our models. The apparent

luminosity decreases stronger than the apparent mass with

increasing optical depth, such that Y is an increasing function of

t . The dependence of Y on the orbital structure is only determined

by the apparent mass, as the apparent luminosities are independent

of the orbital mode. As a consequence, the dependence on q is

now reversed: the mass-to-light ratio is most dramatically affected

for tangential models, and the effects are smaller for radial and

isotropic ones. The results are shown in Fig. 4b. Again, the

dependence on the optical depth is nearly linear and straight lines

DY � aY t are fitted through the data points to obtain character-

istic values. These are tabulated in the third column of Table 2.

Figure 2. Plot showing x2 as a function of the mass M, for a tangential

input model with t � 1: The x2 values have no absolute meaning. The

dynamical mass is determined at the minimum of the plot, being 4:85 �
1010 M(: The plot is shown for models containing 10, 15, 20 and 25

components. Clearly, 20 components are sufficient to determine the

dynamical mass accurately.
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Figure 3. Results of the fitting procedure for the very tangential (left), tangential (middle left), isotropic (middle right) and radial (right) models, with optical

depth t � 2: Shown are the projected light density profile `p(x) (in arbitrary units), the projected dispersion profile sp(x) and the LOSVDs for x � 0 and

x � 10 kpc: The dots are the data points, the solid lines represent the fit. The bottom row shows the projected fourth moment jp(x) of the LOSVDs, which is

not included in the fit and can be used as a check on the results.
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4.2 The distribution function

The eight panels in Fig. 5 represent the isoprobability contours of

eight DFs, corresponding to the four t � 2 models. In the upper

row we plot the intrinsic DFs, whereas the lower panels represent

the apparent DFs. From left to right we have, as in the previous

plots, the very tangential, tangential, isotropic and radial models.

The contour plots are shown in turning point space, such that

the DFs can be interpreted easily in terms of orbits. Let us first

concentrate on the four upper panels. In the innermost regions of

the galaxies, the shape of the DF is comparable ± indeed all

Plummer models are fairly isotropic in their centres. From a few

kpc on, however, we can clearly see how the isoprobability

contours reflect the orbital structure of the model they represent.

Tangential models prefer nearly circular orbits, with a small

difference between apocentre and pericentre, and their contours

will tend to lie alongside the diagonal axis. On the other hand,

radial models prefer elongated orbits, with a large difference

between apocentre and pericentre, such that their contours will

tend to be more vertical. The slope of the isoprobability contours

is thus indicative for the orbital structure of the model.

Let us now compare the intrinsic and apparent DFs. With regard

to the central regions we see that the same structure is preserved

for all orbital modes. Outside this region, however, there are

differences, most clearly visible for the very tangential and

tangential models: the contours are lying somewhat more hori-

zontally, indicating that elongated orbits are relatively more

favored. Dust obscuration thus seems to make these galaxies

appear less tangential outside the innermost regions. Whether a

similar trend accounts for the isotropic and radial models, too, is

less obvious from the DF contour plots. Therefore, we will study

the anisotropy of our models in detail.

4.3 The anisotropy

The intrinsic anisotropies of our models, as defined by equation

(16), can be written as

b�r� � q

2

r2

r2 � c2
; �18�

where c represents the (true) core radius. All models are hence

intrinsically isotropic in the central regions, at least if isotropy is

defined only from the second-order moments, and show their true

orbital behaviour at larger radii.

The dependence of the apparent anisotropy on the optical depth

is shown, for the different orbital modes, in Fig. 6 Shown are the

apparent (solid lines) and the intrinsic (dotted lines) anisotropies

of the t � 1 and t � 3 models as a function of the spatial radius.

For the very tangential and tangential models, we see that the

effect, as determined from the DF plots, is confirmed: as for the

intrinsic orbital structure, all models are isotropic in their inner

regions, and they are less tangential at larger radii. Rather logically,

this effect increases with increasing optical depth. Looking at the

third and fourth panel, we see also that the apparent anisotropy of the

isotropic and radial models increases outside a few kpc. All models

thus seem to be subject to a `radialization', i.e. dust obscuration

tends to make galaxies appear more radially anisotropic outside the

central few kpc, even if they are already intrinsically radial.

In order to quantify the strength of the radialization as a

function of the input parameters q and t , it is useful to consider

only one anisotropy parameter. We define a mean anisotropy B as

B �
�
b�r�r�r�r2 dr�
r�r�r2 dr

�19�

with the integral covering the region of our fits (between 0 and

Figure 4. Three plots, showing the apparent mass M, the apparent mass-to-light ratio Y and the apparent mean anisotropy B of our models, as a function of

the optical depth t . They are shown for different orbital structures, ranging from very tangential (black) to radial (light grey). The dots represent the results of

our fits, the solid lines are least-square fits to these points, either linear (for the mass and the mass-to-light ratio) or quadratic (for the mean anisotropy). The

corresponding coefficients are tabulated in Table 2.

Table 2. . The parameters aM, aY , aB and bB from the least-
squares fits to DM, DY and DB (see text). For aM and aY we give
both the absolute and relative values.

q aM aY aB bB
(109 M() (Y()

26 0.57 (1.1 per cent) 1.02 (25 per cent) 0.65 20.09
22 1.46 (3.0 per cent) 0.90 (23 per cent) 0.24 20.03
0 2.68 (5.4 per cent) 0.74 (19 per cent) 0.12 20.02
1 2.78 (5.6 per cent) 0.72 (18 per cent) 0.02 20.00
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10 kpc). The intrinsic mean anisotropy for our models is, of

course, proportional to the parameter q; substituting equations (18)

and (1b) in equation (19), we find B � 6=25 q:
In Fig. 4c we plot the apparent mean anisotropy B for our

models as a function of the optical depth. One can clearly see that

B increases for increasing optical depth, and that the radialization

is more dramatic the more tangential the input model. The curves

in the figure are quadratic fits DB � aB t� bB t2 to the data

points, and the coefficients are tabulated in the last two columns of

Table 2.

5 D E P E N D E N C E O N T H E D U S T M O D E L

The calculations in the previous chapters are based on a dust

model whose spatial dependence is given by equation (2). How-

ever, as discussed in the introduction, very little is known about

the spatial distribution of the dust in elliptical galaxies. In this

Section we will investigate whether the results so far obtained

change dramatically if the relative distribution of dust and stars

varies. Therefore we consider, as in Paper I, a more general

opacity function,

k�r� � 1����
p
p t

G�a=2�
G��a 2 1)=2�

1

c
1� r2

c2

� �2a=2

�20�

which also satisfies the normalization condition of equation (3),

and which reduces to equation (2) if a � 3: The extra parameter in

this family of opacity functions, the dust exponent a , sets the

Figure 5. Isoprobability contour plots in turning point space for the t � 2 models. The upper and lower panels represent the intrinsic and the apparent DFs,

respectively. From left to right we have the very tangential, tangential, isotropic and radial models, as in Fig. 3.

Figure 6. The orbital structure of input and output models, as characterized by the anisotropy b(r). From left to right we have a panel with the very tangential,

tangential, isotropic and radial models, as in Fig. 3. The dotted lines show the intrinsic orbital structure of the input galaxies, the solid lines show the orbital

structure of the t � 1 and t � 3 models.
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spatial distribution of the dust. In Fig. 7, we plot the opacity

function for different values of a .

Small values of a correspond to spatially extended dust

distributions. The range of a is restricted to a . 1: When a
approaches this value, the dust is more or less equally distributed

along LOS, and as c ! D; relatively very little dust resides in the

central regions of the galaxy. In the limit a! 1 the opacity

function is such that the dust effectively forms an obscuring

medium between the galaxy and the observer (see Paper I),

analogous to the extinction of starlight due to interstellar dust in

the Galaxy. This geometry is generally known as the overlying

screen approximation, and it is the geometry which has, for a fixed

optical depth, the largest impact on the projection of starlight. For

many years, the extinction in spiral galaxies was described using

the cosecans law (Holmberg 1975), which implicitly assumes this

geometrical distribution of stars and dust. Nowadays, however, the

extinction in these systems has been described using more detailed

dust-star geometries, and the overlying screen model is generally

considered to be unsatisfactory (Bruzual, Magris & Calvet 1988;

Disney, Davies & Phillips 1989; Witt et al. 1992).

On the other hand, larger values of a correspond to centrally

concentrated dust. For a � 5; dust and stars have the same

geometry, and if a becomes very large the extinction is confined

to the central regions of the galaxy only. Silva & Wise (1996)

investigated the effects of centrally concentrated dust distributions

on the photometry of elliptical galaxies. They found that, for

models where the stars and dust have the same spatial distribution

or where the dust is more concentrated than the stars, steep colour

gradients would be implied in the core, even for small optical

depths. However, Crane et al. (1993) and Carollo et al. (1997)

imaged the cores of a set of nearby elliptical galaxies using the

Hubble Space Tellscope (HST), and both of them found relatively

small colour gradients, and hence no direct sign for the presence

of centrally concentrated diffuse dust distributions.

We consider a � 1:5; a � 2 and a � 5 (besides a � 3� and

create new dusty Plummer models for each of these exponents and

for the four orbital modes, where we fix the optical depth at the

median value t � 2: Data sets are created and these are modelled

exactly as before. In particular, the observed light profile can still

be approximated satisfactorily by a Plummer potential given in

equation (9), for all values of a under consideration. The observed

core radii cobs, as well as some other parameters of the input

models, are listed in Table 3 as a function of the dust exponent. In

Fig. 8 we plot the results of our modelling: the three plots show

the apparent dynamical mass M, the apparent mass-to-light ratio

Y and the apparent mean anisotropy B as a function of the dust

exponent a , for the four different values of q. The intrinsic values

of these quantities are indicated by asterisks, in contrast with

Fig. 4, where these correspond to the t � 0 case.

Qualitatively, the effects are the same, independent of the value

of the dust exponent: the apparent dynamical mass decreases, the

orbital structure seems more radial and the apparent mass-to-light

ratio increases. Moreover, the dependence on the orbital structure

of these effects is independent of the dust exponent a : the radial

and isotropic models tend to lose more mass and keep their orbital

structure, whereas for the tangential and very tangential models it

is vice versa.

Quantitatively, there is a dependence on the dust geometry. The

apparent dynamical mass and the apparent orbital structure are

unaffected for both very large or very small values of a . The

effects appear to be strongest for a around 3. The mass-to-light

ratio, however, has totally different dependence on a , it is strongly

affected (a factor of 2 to 3) for extended dust distributions, and the

effects decrease gradually when the dust becomes centrally

concentrated. In fact, Y is largely determined by the apparent

luminosity, which is a strong function of the dust geometry: the

extinction is far more effective for extended than for condensed

distributions (Paper I, WS96).

This behaviour can be illustrated when we consider the limits of

very low and very high dust exponents. For an extremely extended

dust distribution �a! 1� on the one hand, the dust effectively

forms an absorbing screen with optical depth t=2 between the

galaxy and the observer. Relative to the dust-free case, the light

profile then decreases with a factor exp�t=2�; independent of the

LOS, whereas the morphology of `p(x) and the shape of the

LOSVDs are not affected (Paper I). Hence, a model with exactly

the same potential, dynamical mass and orbital structure, but with

a mass-to-light ratio which is a factor exp�t=2�; higher, will fit

these data exactly. For an extremely centrally concentrated dust

distribution �a @ 5�; on the other hand, the dust effects will be

visible only in the very innermost regions. As a result, neither the

projected light density, nor the LOSVDs will be severely affected,

and hence the data will be nearly the same as in the dust-free

model. Hence, all intrinsic quantities are recovered.

The question we want to answer in this Section is whether the

results we obtained using the a � 3 model change dramatically as

a function of the dust geometry. As we argued, neither centrally

concentrated nor very extended dust distributions seem very

Figure 7. The opacity function k(r), corresponding to equation (20) for

different dust exponents a . It is shown for t � 1; for other values of t it

scales linearly. For large values of a , the dust is concentrated in the central

regions, for large values the distribution is extended.

Table 3. Same as Table 1, but now for a fixed optical depth
t � 2 and as a function of the dust exponent a . The last row,
which is labeled ND, shows the same quantities for the dust-
free Plummer models.

a cobs Lobs A `p,0 sp,0

(kpc) (109 L() (mag) (L( pc22) (km s21)

1.0 5.00 4.60 1.09 58.6 178.0
1.5 5.58 5.77 0.84 59.7 177.6
2.0 5.91 6.75 0.67 61.5 177.1
3.0 6.35 8.11 0.47 64.6 176.5
5.0 6.69 9.55 0.29 68.8 176.1
ND 5.00 12.50 0.00 159.2 178.0
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probable. Therefore, we consider the range 2 & a & 5; where the

stars are somewhat more concentrated than the dust, as

representative for realistic geometries. Although M, B and Y do

vary with a within this range, the effects have qualitatively the

same behaviour (decreasing apparent dynamical mass, increasing

apparent mean anisotropy), and quantitatively the same order

of magnitude. Hence, we can conclude that our results in the

a � 3 case, as summarized in Table 2, can be considered as

representative.

6 D I S C U S S I O N

In this paper, we investigated which errors can be made by not

taking dust into account in dynamical modelling procedures.

Therefore, we created a set of galaxy models consisting of a dust

and a stellar component. We calculated the projected kinematics,

taking dust into account, using the method outlined in Paper I.

These data sets are then modelled as if no dust were present, and

the apparent dynamical properties of these models are calculated

and compared to the intrinsic ones, as a function of the orbital

structure of the input model, the optical depth of the dust and the

dust geometry.

We find that: (1) the dynamical mass of the galaxy tends to

become smaller, and (2) the orbital structure seems to be

radialized. For a fixed optical depth and dust geometry, the

relative strength of these effects depends on the orbital structure of

the input model. For radial and isotropic models the apparent mass

decreases significantly, with a typical amount of 5 per cent per

optical depth unit, whereas their orbital structure is hardly

affected. For tangential models, on the other hand, the dynamical

mass is less sensitive to the presence of dust (about 3 per cent per

optical depth unit for the tangential model and less for the very

tangential model), whereas now the radialization is considerably

stronger. Both effects are apparently coupled, in a way reminiscent

of the mass-anisotropy degeneration in spherical systems.

The effects are dependent on the shape of the dust distribution,

but not very critically: for the dust exponents within the range

2 & a & 5;the effects are very comparable. On the one hand this

is fortunate, since it means that our calculations are more or less

model-independent, and can be applied for a wide range of dust

geometries. On the other hand, however, this means that

dynamical analyses will not be able to discriminate convincingly

between different values for the dust exponent. Analyses such as

ours can thus hardly be used to constrain the distribution (and the

origin) of the smooth dust component in ellipticals. Further

infrared and submillimetre observations, in particular ISO data,

are necessary to solve this problem. Preliminary results include

the detection of an extended, very cold dust component in the

dwarf elliptical NGC 205 (Haas 1998), and of warm dust in the

central regions of the Seyfert I S0 galaxy NGC 3998 (Knapp et al.

1996). A larger database of ISO imaging of early-type galaxies at

both mid-infrared and FIR wavelengths would improve our

knowledge significantly.

The combined results of Paper I and this paper may, at first

glance, seem quite contradictory. In Paper I we found that the

observed kinematics of elliptical galaxies are not severely affected

by dust obscuration, whence it seemed obvious that modest

amounts of dust do not imply large uncertainties on dynamical

mass determinations or estimates of the anisotropy of these

systems. In this detailed study, however, we find that dust does

have an important effect on the determination of the dynamical

structure, in particular the dynamical mass and the anisotropy. The

answer to this apparent discrepancy lies in the fact that the poten-

tial plays an important role in the determination of the internal

structure of galaxies. Dejonghe & Merritt (1992) show that, in

the case of a spherical two-integral system, the knowledge of the

potential and the entire set of LOSVDs suffices to determine the

DF uniquely. The potential itself can be considerably constrained

by the LOSVDs, but is not uniquely determined, such that a set of

potentials will usually yield acceptable models for a data set.

Often, one chooses that potential that is derived from the observed

light profile, if this is one of the possible choices (e.g. if dark

matter is not assumed to play a major role). However, if dust is

present, the light profile will be severely affected, even by small

amounts of dust, such that the matching potential will not be the

correct one. A diffuse dust is assumed to be present in a major

fraction of the early-type galaxies, we argue that it is important at

least to be aware of its effects, which may not be as trivial as one

Figure 8. The apparent mass M, the apparent mass-to-light ratio Y and the apparent mean anisotropy B, as a function of the dust exponent a , with t � 2

fixed. They are shown for the different orbital structures, ranging from very tangential (black) to radial (light grey). The dots represent the calculated values,

the solid lines are just lines to guide the eye, in contrary with Fig. 4. The asterisks represent the intrinsic values of the represented quantities.
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might imagine. As WS96 stressed, all broadband observations of

elliptical galaxies may be affected by dust, and hence dust should

be seriously taken into account in their interpretation. We can now

add that dust does also play a role in dynamical analyses, and

hence that it should also be taken into account here, in a non-

trivial way.

We close by giving a simple example to illustrate this point. A

simple way to estimate the mass of a gravitating system is its virial

mass. For example, Tonry & Davis (1981) estimate the masses for

a set of 373 elliptical galaxies using a relation where mass is

proportional to the effective radius and the square of the central

dispersion. Although it is nowadays possible to obtain much better

mass estimates for nearby galaxies, the virial mass estimate is still

one of the only tools to constrain the mass of galaxies and clusters

at intermediate or high redshifts (Carlberg et al. 1996; Carlberg,

Yee & Ellingson 1997; Tran et al. 1999). The question is now how

to correct these mass estimates for the presence of dust.3 A

straightforward way is to estimate the amount of dust using IRAS

or ISO data, and calculate the effects on dispersion and scale-

length. Dispersions are only slightly affected by dust absorption

(Paper I), whereas scalelengths as the effective radius or the core

radius can increase substantially, as dust primarily removes light

from the centre of the system. Hence, we find that the apparent

mass of the galaxy would increase as a function of t , while we

find, using detailed kinematic modelling, that the apparent mass

decreases with increasing optical depth. Moreover, this correction

will be independent of the orbital structure of the model. This

again illustrates the fact that dust effects are non-trivial and should

be fully taken into account.
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3 There is still no clarity about the amount and the sources of dust grains in

the intergalactic medium of galaxy clusters. Studies investigating the

extinction effects of background galaxies and quasars yield controversial

results (Ferguson 1993; Maoz 1995). Also, the FIR emission is still

inconclusive: recently, extended ISO emission has been interpreted as

evidence for the presence of intracluster dust in the Coma cluster (Stickel

et al. 1998) and Abell 2670 (Hansen et al. 1999), but this evidence is still

controversial (Quillen et al. 1999). The presence of intergalactic dust still

is not firmly established, and, as Popescu et al. (2000) suggest, the new

generation of submillimetre interferometers might contribute significantly

to solve this problem.
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