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ABSTRACT

The Nuker profile, characterised by an inner and outer power-law profile smoothly merged around a break radius, is a very popular
model to describe the surface brightness profile of galactic nuclei. A disadvantage of this model for dynamical studies is that the
spatial density distribution that corresponds to this surface brightness profile cannot be written in terms of elementary or regular
special functions. We derive a compact and elegant analytical expression for the density of the Nuker model, based the Mellin integral
transform method. We use this expression to discuss the general behaviour and asymptotic expansion of the density. We also discuss
the special subclass of Nuker models with an infinitely sharp break and demonstrate that these models are always characterised by
non-monotonous and hence unphysical density profile. We extend our study to the dynamical structure of spherical isotropic galactic
nuclei with a Nuker surface brightness profile. Based on this analysis, we extend and refine the classification of spherical isotropic
galactic nuclei introduced by Tremaine et al. (1994, AJ, 107, 634). We demonstrate that both the inner density slope and the sharpness
of the break between the inner and outer profiles critically determine the consistency and stability of the Nuker models.
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1. Introduction

The first high-resolution observations of galactic nuclei with
the Hubble Space Telescope showed that their surface bright-
ness profiles are generally characterised by power-law behaviour
at small radii (Lauer et al. 1991, 1992; Crane et al. 1993;
Ferrarese et al. 1994). Lauer et al. (1995) proposed a relatively
simple model for the surface brightness profile of galactic nuclei,

I(R) = 2
β−γ
α Ib

(
R
Rb

)−γ [
1 +

(
R
Rb

)α] γ−β
α

. (1)

In this formula, R is the circular radius on the plane of the sky,
Rb is the break radius that indicates the transition between the
inner and the outer profile, Ib = I(Rb) is the surface brightness at
the break radius, β and γ correspond to the negative logarithmic
surface brightness slopes at large and small radii respectively,
and α is a parameter that sets the width of the transition between
the inner and outer profiles. This model has become generally
known in the extragalactic community as the Nuker model.

The availability of a simple model that accurately describes
the surface brightness profile of galactic nuclei is important for
many reasons. Numerous studies have used this model to param-
eterise the surface brightness profiles of the central regions of
galaxies (e.g. Byun et al. 1996; Quillen et al. 2000; Rest et al.
2001; Laine et al. 2003; de Ruiter et al. 2005; Lauer et al. 2005,
2007; Durret et al. 2019). Based on this model, a bimodal distri-
bution in the central structure of luminous elliptical galaxies has
been discovered, with most galaxies either power-law systems
with steep cusps, or core systems with shallow cusps interior
to a steeper envelope brightness distribution (Lauer et al. 1995,
2007; Faber et al. 1997).

One disadvantage of the Nuker model, particularly for theo-
retical studies of the structure and dynamics of galactic nuclei,
is that the spatial density distribution that corresponds to the sur-
face brightness profile (1) is not easy to obtain, even in the sim-
plifying assumption of spherical symmetry. Indeed, inserting the

surface brightness profile into the standard de-projection formula
yields an integral that cannot be evaluated in terms in elementary
functions. This is unfortunate, as the spatial density is probably
the most fundamental property for dynamical studies (Dejonghe
1986). Most popular families of dynamical models have a sim-
ple analytical expression for the spatial mass density as a start-
ing point (e.g. Dehnen 1993; Tremaine et al. 1994; Zhao 1996;
Evans & An 2005).

One way to deal with this problem is to use a model that
approximates the Nuker model, but in which the density has a
simple analytical expression. In particular, Zhao (1996) explored
a family of models in which the spatial density profile, rather
than the surface brightness profile, is characterised by a dou-
ble power-law model, which is very similar to what is pre-
sented in Eq. (1). This general family of models, also called the
generalised Navarro-Frenk-White (NFW) models, is sufficiently
simple that the potential and many other interesting dynamical
properties can be expressed in terms of elementary or standard
special functions. In a follow-up paper, Zhao (1997) provided a
recipe to approach the Nuker model with one of the generalised
NFW models by matching the surface brightness profiles in a
least-squares sense.

Rindler-Daller et al. (2005) took this approach one step fur-
ther, using a linear combination of simple models to approach
the Nuker model. More specifically, they used a quadratic pro-
gramming technique (Dejonghe 1989) to minimise the difference
of the Nuker surface brightness profile and the one correspond-
ing to a linear combination of generalised NFW models. They
showed that only a few components are necessary to obtain a
good fit. Still, this approach is not guaranteed to have the correct
behaviour at all radii, in particular around the transition region
between the inner and outer profile.

In this paper, we use a different and direct approach to study
the structure and dynamics of the spherical systems charac-
terised by the Nuker surface brightness profile. We make use of
an advanced analytical technique based on the Mellin transform
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method (Marichev 1983; Fikioris 2007). This approach has the
advantage that it yields exact analytical expressions for the spa-
tial density and related properties, which allows for a detailed
study of the properties and asymptotic behaviour of the model.
A similar approach has been adopted to explore the structure
and dynamical properties of spherical models with a Sérsic sur-
face brightness profile (Baes & Gentile 2011; Baes & Van Hese
2011; Baes & Ciotti 2019a,b).

This paper is organised as follows. In Sect. 2, we derive an
analytical expression for the spatial density profile of the Nuker
model using the Mellin integral transform method, we discuss
the general behaviour and asymptotic expansion, and we look in
detail at the special subclass of models with an infinitely sharp
break. In Sect. 3, we discuss some important dynamical proper-
ties of the Nuker model, including the potential, velocity dis-
persion, and phase-space distribution function. In Sect. 4, we
discuss a special subset of Nuker models, namely the family of
Sérsic models. In Sect. 5, we discuss and summarise our results,
where we mainly use the family of Nuker models to refine
the classification of galactic nuclei proposed by Tremaine et al.
(1994).

2. Spatial density of the Nuker model

2.1. Setting the scene

The Nuker model is characterised by the surface brightness pro-
file (1). As the break radius and the surface brightness at that
radius are just scaling parameters, we can consider this family
of models a three-parameter family, characterised by the triplet
(α, β, γ). In fact, in the remainder of this paper, in order to sim-
plify the expressions, we use normalised units, with G = M =
L = Rb = 1, where G is the gravitational constant, M the total
mass, and L the total luminosity. The total luminosity of the
Nuker model is found by integrating the surface brightness pro-
file over the plane of the sky,

L = 2π
∫ ∞

0
I(R) R dR. (2)

If α > 0, β > 2 and γ < 2, we find a finite luminosity

L =
2

β−γ
α +1 π

α

Γ
(
β−2
α

)
Γ
(

2−γ
α

)
Γ
(
β−γ
α

) Ib R2
b. (3)

Using this expression and the convention of normalised units,
we can rewrite the surface brightness profile of the Nuker
model as

I(R) =
α

2π

Γ
(
β−γ
α

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

) R−γ (1 + Rα)
γ−β
α . (4)

We limit the parameters to the ranges indicated above, with the
exception that we only consider positive values of γ to avoid
unrealistically increasing surface density profiles at small radii.
Hence, in the remainder of this paper, we assume α > 0, β > 2
and 0 ≤ γ < 2.

2.2. Analytical expression for the density

Assuming a constant mass-to-light-ratio, the density profile ρ(r)
can be found from the surface brightness profile I(R) through the
standard deprojection formula (e.g. Binney & Tremaine 2008),

ρ(r) = −
1
π

∫ ∞

r

dI(R)
dR

dR
√

R2 − r2
· (5)

This gives

ρ(r) =
α

2π2

Γ
(
β−γ

α

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

) ∫ ∞

r

R−1−γ (1 + Rα)
γ−β
α −1 (βRα + γ) dR

√
R2 − r2

· (6)

The integral in this expression can not be readily evaluated using
standard methods. To find an analytical expression, we follow a
method known as the Mellin transform method (Marichev 1983;
Fikioris 2007). While the Mellin transform is a well-known inte-
gral transform used in a variety of fields as statistics (Epstein
1948; Fox 1957), analytic number theory (Coffey & Lettington
2015), signal and image analysis (Casasent & Psaltis 1976;
Wu et al. 2003), or stellar dynamics (Dejonghe 1986), its appli-
cation to analytically evaluate integrals is less well-known.
The method is surprisingly flexible and powerful, however, and
it often yields closed-form expressions that are very difficult
to come up with using other methods. We start by rewriting
expression (6) in the form

ρ(r) =

∫ ∞

0
f1(R) f2

(
1
R

)
dR
R
, (7)

with

f1(R) =
α

2π2

Γ
(
β−γ
α

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

) R−γ (1 + Rα)
γ−β
α −1 (βRα + γ), (8)

and

f2(R) =


R

√
1 − r2R2

if 0 ≤ R <
1
r
,

0 else.
(9)

Expression (7) is a Mellin convolution of the two functions
f1 and f2. Similarly to the well-known Fourier convolution theo-
rem, the Mellin transform of a Mellin convolution is equal to the
product of the Mellin transforms of the two original functions.
Specifically, it implies that we can evaluate the expression (7) as
the inverse Mellin transform of the product of the Mellin trans-
forms of f1 and f2. Explicitly, we find

ρ(r) =
1

2πi

∫
L

M f1 (u)M f2 (u) du, (10)

where M f (u) denotes the Mellin transform of a function f and
the contour integration is along a vertical path L in the complex
plane (for more details on Mellin transforms and their inverse,
see Fikioris 2007). The Mellin transforms of the functions
f1 and f2 can be calculated exactly,

M f1 (u) =
1

2π2

Γ
(
β−u
α

)
Γ
(

u−γ
α

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

) u, (11)

M f2 (u) =

√
πΓ

(
1+u

2

)
Γ
(

u
2

) 1
u r1+u · (12)

This yields the following expression,

ρ(r) =
1
π3/2

1

Γ
(
β−2
α

)
Γ
(

2−γ
α

) r−1 1
2πi

∫
L

Γ
(
β−2x
α

)
Γ
(

2x−γ
α

)
Γ
(

1
2 + x

)
Γ (x)

r−2x dx.

(13)

This integral in this expression is a contour integral involving a
product of a power function and a number of gamma functions,
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and such integrals are known as Mellin-Barnes integrals (Barnes
1910; Slater 1966). This particular Mellin-Barnes integral can be
written in a compact and elegant form as

ρ(r) =
1
π3/2

1

Γ
(
β−2
α

)
Γ
(

2−γ
α

) r−1H2,1
2,2


(
1 − β

α
, 2
α

)
, (0, 1)(

−
γ
α
, 2
α

)
,
(

1
2 , 1

) ∣∣∣∣∣∣∣ r2

 , (14)

with Hm,n
p,q the Fox H function, generally defined as

Hm,n
p,q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bp)

∣∣∣∣∣ z]
=

1
2πi

∫
L

∏m
j=1 Γ(b j + B j s)

∏n
j=1 Γ(1 − a j − A j s)∏q

j=m+1 Γ(1 − b j − B j s)
∏p

j=n+1 Γ(a j + A j s)
z−s ds.

(15)

The contour L in this contour integral is chosen such that it
separates the poles of the two factors in the numerator. This
function was introduced by Fox (1961) as a generalisation of
the Meijer G function (Meijer 1946) and shares many of its
properties. It is a universal, analytical function that contains
many special functions, including generalised Bessel functions,
elliptic integrals, generalised hypergeometric functions and the
Mittag-Leffler function, as special cases. Different monographs
are dedicated to the identities, asymptotic properties, expansion
formulae, and integral transforms of the Fox H function (e.g.
Mathai et al. 2009).

The numerical evaluation of the Fox H function is challeng-
ing and general implementations of the Fox H function are not
(yet) available in popular numerical packages as NAG (Phillips
1986), GSL (Galassi et al. 2001), BOOST (Schäling 2014), or
SciPy (Oliphant 2007). The Fox H function is a generalisation of
the Meijer G function, itself a generalisation of the hypergeomet-
ric function. A large variety of techniques exist for the evaluation
of hypergeometric functions, including Taylor series expansions,
continued fractions, quadrature methods, and more. It turns out,
however, that different methods are required for different param-
eter and argument regimes (for a review, see Pearson et al. 2017).
It is, therefore, not surprising that a single implementation for the
evaluation of the Fox H function for all values of the parameters
and argument is not readily available.

The most direct approach to evaluating the Fox H function
is to truncate the general series expansion after a number of
terms, based on some stopping criterion. This approach is gen-
erally fast, but has the drawback that the exact series expansion
depends on the multiplicity of the poles of the integrand in the
definition (15) of the Fox H function. If all poles of the defining
function are single poles, the Fox H function can be expressed
as a power series, whereas it becomes a logarithmic-power
series if there are multiple poles (Mathai et al. 2009). Explicit
power and power-logarithmic series expansions are given by
Kilbas & Saigo (1999) and summarised by Baes & Van Hese
(2011). An additional drawback of this approach is that even the
simple task of summing different terms in the series expansion
can be accomplished in different ways and this can have a sig-
nificant impact on stability and efficiency.

An alternative method to numerically evaluating the Fox
H function is based on a direct numerical integration of the
contour integral in Eq. (15). This has been proven to be an
interesting approach for the evaluation of general hypergeomet-
ric functions (e.g., Press et al. 2002, Sect. 5.14). While it is
generally less efficient than more standard approaches as trun-
cated series evaluation, it has the advantage that it often is
applicable to a large suite of input parameters and arguments.

When adaptive Gaussian or doubly-exponential quadrature for-
mulae are applied to the different segments of this contour,
most Fox H functions can be evaluated to relatively high pre-
cision. Several experimental numerical implementations for the
Fox H function based on this approach are available for var-
ious programming languages. Among these are the relatively
simple and straightforward implementations in Mathematica and
Python by Shafique Ansari et al. (2014) and Alhennawi et al.
(2016), respectively, and a GPU-enabled Matlab implementation
by Chergui et al. (2019).

The real strength of the Fox H function is its use for ana-
lytical studies, however, and as such it is gradually becoming
more adopted in applied sciences, including astrophysics (e.g.
Saxena et al. 2006; Haubold et al. 2007; Van Hese et al. 2009;
Baes & Van Hese 2011; Retana-Montenegro et al. 2012a,b;
Zaninetti 2012; Baes & Ciotti 2019a,b.

A direct check on expression (14) can be derived by calculat-
ing the total mass (or luminosity). Integrating the density profile
over the entire 3D space, we obtain

M =
2
√
π

1

Γ
(
β−2
α

)
Γ
(

2−γ
α

) ∫ ∞

0
H2,1

2,2


(
1 − β

α
, 2
α

)
, (0, 1)(

−
γ
α
, 2
α

)
,
(

1
2 , 1

) ∣∣∣∣∣∣∣ z

 dz.

(16)

Setting s = a = 1 in Eq. (2.8) of Mathai et al. (2009) we can
immediately evaluate this integral to recover just M = 1, as
required.

2.3. General behaviour and asymptotic expansion

For all values of the parameters in the ranges we consider (α > 0,
β > 2 and 0 ≤ γ < 2), the Nuker model has a non-negative
density. The top and middle rows of Fig. 1 show the surface
brightness profile and the density profile corresponding to Nuker
models with different values of α and γ, and with a fixed value
β = 4. A full illustration of the Nuker model profiles for all pos-
sible values of the three parameters would be too much infor-
mation and we have chosen to fix β because its value affects the
shape of the surface brightness and density profiles the least. The
particular value β = 4 is chosen as this is the value correspond-
ing to the Plummer (1911) model, which is the Nuker model
corresponding to (α, β, γ) = (2, 4, 0). For the Plummer model,
all of the properties discussed in this paper can be calculated
using elementary functions (Dejonghe 1987), which gives us an
interesting comparison test.

Comparing the corresponding panels on the first and second
rows of Fig. 1, it appears that, to first order, the density pro-
files are similar to the surface brightness profiles, with a power-
law-like behaviour at both small and large radii. We can use the
explicit expression for ρ(r) to investigate this in detail. Indeed,
under certain conditions, always satisfied for the Fox H func-
tions considered in this paper, the asymptotic expansion of the
Fox H function can be calculated using the residue theorem.

For the expansion at large radii, the dominant term is char-
acterised by a single pole for all values of the parameters α, β
and γ. Following the recipes outlined in Kilbas & Saigo (1999),
we find

ρ(r) ∼
α

2π3/2

Γ
(
β−γ
α

)
Γ
(
β+1

2

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

)
Γ
(
β
2

) r−β−1. (17)

This r−β−1 power-law behaviour is expected, given the R−β
power-law behaviour for the surface brightness at large projected
radii.
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For the behaviour at small radii, we can also directly apply
the recipes from Kilbas & Saigo (1999). It takes some book-
keeping to determine the order and the multiplicity of the poles,
which turn out to depend on the values of both γ and α. Ulti-
mately we find after an extensive calculation

ρ(r) ∼



ρ0 +
α

4π2

Γ
(
β+3
α

)
Γ
(
α−3
α

)
Γ
(
β−2
α

)
Γ
(

2
α

) r2

if γ = 0 andα > 3,

ρ0 +
9

4π2

Γ
(
β+3

3

)
Γ
(
β−2

3

)
Γ
(

2
3

) ln (
2
r

)
−

1
2
−

E + ψ
(
β+3

3

)
3

 r2

if γ = 0 andα = 3,

ρ0 +
(α − 1) (α − 2) β

4απ3/2

Γ
(
β
2

)
Γ
(

3−α
2

)
Γ
(
β−2
α

)
Γ
(

2
α

)
Γ
(

4−α
2

) rα−1

if γ = 0 and 2 < α < 3,

ρ0 −
1
π3/2

Γ
(
β+1

2

)
Γ
(
β−2

2

) r2

if γ = 0 andα = 2,

ρ0 −
(α − 1) β
2απ3/2

Γ
(
β
2

)
Γ
(

3−α
2

)
Γ
(
β−2
α

)
Γ
(

2
α

)
Γ
(

2−α
2

) rα−1

if γ = 0 and 1 < α < 2,

1
4π2

Γ(β + 1)
Γ(β − 2)

[
ln

(
2
r

)
− E − ψ(β + 1)

]
if γ = 0 andα = 1,

αβ

4π3/2

Γ
(
β
α

)
Γ
(

1−α
2

)
Γ
(
β−2
α

)
Γ
(

2
α

)
Γ
(

2−α
2

) r−1+α

if γ = 0 andα < 1,

α

2π3/2

Γ
(
β−γ
α

)
Γ
(
γ+1

2

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

)
Γ
(
γ
2

) r−γ−1

if γ > 0,

(18)
where E ≈ 0.57721566 is Euler’s constant1, ψ(x) is the digamma
function and

ρ0 =
1
π2

Γ
(
β+1
α

)
Γ
(
α−1
α

)
Γ
(
β−2
α

)
Γ
(
α+2
α

) · (19)

There are several interesting aspects to this asymptotic expan-
sion. A first observation is that all Nuker models with a cuspy
surface brightness profile (γ > 0) also have a cusp in their den-
sity profile. The opposite is not necessarily true, however: mod-
els with γ = 0 and α < 1 do have a weak density cusp with
ρ ∝ r−1+α, but a finite central surface brightness. Nuker models
with γ = 0 and α = 1 have a logarithmical density cusp and a
finite central surface brightness.

Secondly, the asymptotic behaviour of the density for the
subset of Nuker models with a density core, that is, with γ = 0
and α > 1, is still very diverse. It is particularly remarkable to
look at the second term in the asymptotic expansion for these
models. This term is negative for 1 < α ≤ 2, indicating that the
density decreases as a function of radius. For the models with

1 Euler’s constant is usually denoted by the symbol γ, but for obvious
reasons we prefer to use a different symbol.

α > 2, however, this second term has a positive sign, implying
that the density increases with increasing radius in the central
regions. The higher the value of α, or equivalently, the sharper
the transition between the flat inner part of the surface brightness
profile and the power-law fall-off beyond the break radius, the
stronger this increase: it increases from slightly stronger than
linear for α & 2 to quadratic for α > 3. This curious behaviour
can easily be spotted in the left panel on the middle row of Fig. 1
and even better in the bottom-left panel, where we zoom in on
the region around the break radius r = 1.

2.4. Models with an infinitely sharp break
In the previous subsection, we show that Nuker models with γ =
0 and α > 2 are characterised by a density profile that is not
monotonically decreasing as a function of radius. In fact, it turns
out that this is not only the case for Nuker models with γ =
0. On the contrary, it is a general feature for all Nuker models,
irrespective of the value of β and γ, as long as the value of α is
large enough.

The optimal way to illustrate this special feature is to look at
the limiting subclass of Nuker models characterised by α → ∞.
As indicated in the Introduction section, the parameter α charac-
terises the sharpness of the transition between the inner and outer
parts of the surface brightness profile. For small values of α, this
transition is smooth and extended, whereas the sharpness of the
transition increases with increasing α (see top row of Fig. 1). In
the limit α→ ∞, the transition is infinitely sharp and the surface
brightness profile reduces to a simple broken power-law profile,

I(R) =
(β − 2) (2 − γ)

2π (β − γ)
×

{
R−γ if R ≤ 1,
R−β if R ≥ 1.

(20)

Apart from the “regular” Nuker models, the top panels of Fig. 1
also show the surface brightness profile corresponding to this
broken power-law model.

The density profile corresponding to the Nuker models with
an infinitely sharp break can in principle be determined by tak-
ing the limit α → ∞ in expression (14). It is easier, however,
to determine this limit for the explicit Mellin-Barnes expres-
sion (13). After some calculation, the resulting expression is a
simpler Mellin-Barnes integral that can be written as a Meijer G
function,

ρ(r) =
(β − 2) (2 − γ)

4π3/2 r−1 G2,1
3,3

(
1 − β

2 , 0, 0
−
γ
2 ,

1
2 ,−

β
2

∣∣∣∣∣∣ r2
)
. (21)

Alternatively, we can also substitute expression (20) directly in
the deprojection formula (5). After some algebra, we find

ρ(r) =
(β − 2) (2 − γ)

2π2 (β − γ)
×



√π Γ
(
γ+1

2

)
Γ
(
γ

2

) − γSγ(r)

 r−γ−1 + βSβ(r) r−β−1

if r ≤ 1,

√
π

Γ
(
β+1

2

)
Γ
(
β

2

) r−β−1

if r ≥ 1,

(22)

with the function Sλ defined as (see Appendix A)

Sλ(x) =

∫ arcsin x

0
sinλ θ dθ. (23)

The asymptotic expansion at both small and large radii is readily
obtained from the asymptotic expansion of the Meijer G function
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Fig. 1. Surface brightness profile (top row) and density profile (second row) for the family of Nuker models. The three columns correspond to
different values of γ and different lines within each panel correspond to different values of α. Panels on the bottom row: zoom in on the density
profile around the break radius r = 1 and contain additional Nuker models with larger values of α.

in Eq. (21), or using the expression (22) and the expansion (A.6)
of the Sλ function. At large radii, we find a pure power-law pro-
file, as indicated in Eq. (22). At small radii,

ρ(r) ∼


β − 2
π2

[
1

β + 1
+

1
2(β + 3)

r2
]

if γ = 0,

(β − 2) (2 − γ)
2π3/2(β − γ)

Γ
(
γ+1

2

)
Γ
(
γ
2

) r−γ−1 if γ > 0.
(24)

This last expression can also be obtained by directly taking the
limit α→ ∞ in the expressions (18) and (19).

The advantage of expression (22) is that it is easy to investi-
gate the behaviour of the density profile around the break radius
r = 1. For r & 1 we obviously have the pure r−β−1 power-law

fall-off that characterises the entire density profile for these mod-
els. For r . 1, however, we obtain, thanks to Eq. (A.7),

ρ(r) ∼ ρ(1) −
(β − 2) (2 − γ)
√

2 π2
(1 − r)1/2 . (25)

The coefficient of the second term in this expansion is always
negative, indicating that, for r . 1, the density profile of all
Nuker models with an infinitely sharp break increases with
increasing radius.

A consequence of this behaviour is that, for all values of β
and γ, there is a maximum value of α such that the density profile
of Nuker models with α smaller than this value are monoton-
ically decreasing functions of r, whereas models with a larger
value of α have a non-monotonic density profile. This is clearly
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Fig. 2. Gravitational potential for the family of Nuker models. The selection of models and the meaning of the different lines are as in Fig. 1.

illustrated in the bottom row of Fig. 1, where we show the den-
sity for an extended set of Nuker models that also includes mod-
els with high values of α. For models with a surface brightness
core (γ = 0), we already demonstrated that all models with
α > 2 have an increasing density profile at small radii. The mid-
dle and right panels clearly show that also for γ > 0, there is an
upturn of the density profile close to the break radius if α suffi-
ciently high. For (β, γ) = (4, 0.6) this happens for α > 13.9, for
(β, γ) = (4, 1.2) the critical value is 31.4. The stronger the cen-
tral cusp of a Nuker model, the sharper the break in the surface
brightness profile needs to be to generate an upturn in the density
profile.

3. Dynamical properties of the Nuker model

3.1. Gravitational potential

Starting from the density profile (14), we can calculate the cor-
responding gravitational potential using the formula

Ψ(r) =
M(r)

r
+ 4π

∫ ∞

r
ρ(s) s ds, (26)

where M(r) is the cumulative mass distribution

M(r) = 4π
∫ r

0
ρ(s) s2 ds. (27)

Starting from the Mellin-Barnes form (13) for the density, we
find after some algebraic calculation that both the cumulative
mass profile and the gravitational potential can also be written in
terms of the Fox H function,

M(r) =
2
√
π

1

Γ
(
β−2
α

)
Γ
(

2−γ
α

) r2 H2,2
3,3


(
1 − β

α
, 2
α

)
, (0, 1), (0, 1)(

−
γ

α
, 2
α

)
,
(

1
2 , 1

)
, (−1, 1)

∣∣∣∣∣∣∣ r2

 , (28)

and

Ψ(r) =
1
√
π

1

Γ
(
β−2
α

)
Γ
(

2−γ
α

) r H2,2
3,3


(
1 − β

α
, 2
α

)
, (0, 1), (0, 1)(

−
γ

α
, 2
α

)
,
(
− 1

2 , 1
)
, (−1, 1)

∣∣∣∣∣∣∣ r2

 . (29)

Analysing the latter expression, it is easy to demonstrate that the
Nuker models are characterised by a finite potential well if γ < 1,

Ψ0 =
2
π

Γ
(
β−1
α

)
Γ
(

1−γ
α

)
Γ
(
β−2
α

)
Γ
(

2−γ
α

) · (30)

This result can also be obtained by plugging Eq. (4) into

Ψ0 = −4
∫ ∞

0

dI
dR

(R) R dR, (31)

as indicated by Ciotti (1991). Models with γ ≥ 1 have a den-
sity cusp stronger than r−2, as can be seen from Eq. (18), and
generate an infinitely deep potential well.

Using the formulae for the asymptotic expansion of the Fox
H function from Kilbas & Saigo (1999), we can retrieve the
explicit behaviour of Ψ(r) at small and large radii. After some
calculation, we find at small radii

Ψ(r) ∼



Ψ0 −
α

3π

Γ
(
α−1
α

)
Γ
(
β+1
α

)
Γ
(

2
α

)
Γ
(
β−2
α

) r2

if γ = 0 andα > 1,

Ψ0 −
β (β − 1) (β − 2)

3π

[
ln

(
2
r

)
+

5
6
− E − ψ(β + 1)

]
r2

if γ = 0 andα = 1,

Ψ0 −
α2

√
π (α + 1) (α + 2)

Γ
(

1−α
2

)
Γ
(
α+β
α

)
Γ
(

2
α

)
Γ
(
β−2
α

)
Γ
(

2−α
2

) r1+α

if γ = 0 andα < 1,

Ψ0 −
2

√
π (1 − γ)

Γ
(
β−γ
α

)
Γ
(
γ+1

2

)
Γ
(
γ
2

)
Γ
(
β−2
α

)
Γ
(

2+α−γ
α

) r1−γ

if 0 < γ < 1,

2
π

Γ
(
β−1
α

)
Γ
(
α+1
α

)
Γ
(
β−2
α

) ln (
2
r

)
+ 1 −

E + ψ
(
β−1
α

)
α


if γ = 1,

1
√
π

Γ
(
β−γ
α

)
Γ
(
γ−1

2

)
Γ
(
γ
2

)
Γ
(
β−2
α

)
Γ
(

2+α−γ
α

) r−γ+1

if γ > 1.
(32)

At large radii, we find a Keplerian decline, Ψ(r) ∼ 1/r, as
expected for a finite mass system.

Figure 2 shows the potential for Nuker models with β = 4
and with different values of α and γ. In all cases, the potential is
a smoothly declining function of r. Even the models with a very
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sharp transition between inner and outer surface brightness pro-
files, which are characterised by non-monotonic density profile,
have a smooth potential.

3.2. Isotropic dynamical models

For each spherical potential-density pair, we can construct
a unique isotropic dynamical model that generates this den-
sity profile using standard equations of galaxy dynamics (e.g.
Binney & Tremaine 2008). The velocity dispersion profile σ(r)
of the isotropic dynamical model corresponding to a den-
sity profile ρ(r) can be found using the solution of the Jeans
equation,

σ2(r) =
1
ρ(r)

∫ ∞

r

ρ(s) M(s) ds
s2 · (33)

For the general family of Nuker models, this integral cannot be
evaluated analytically. We can, however, predict how the veloc-
ity dispersion profiles will behave, based on the analysis in
Appendix C of Bertin et al. (2002). Nuker models with γ > 1,
characterised by a r−(γ+1) density cusp and an infinitely deep
potential well, have a velocity dispersion profile diverging as
r−(γ−1)/2. On the other hand, Nuker models with a weak density
cusp, that is, with 0 < γ < 1 or γ = 0 and α ≤ 1, have a cen-
tral hole in their velocity dispersion profile. Finally, the models
with a finite central density, that is, with γ = 0 and α > 1 have
a finite central velocity dispersion. For these models, the central
dispersion σ0 can be calculated exactly. After some calculation
and Fox H-function manipulation, we find

σ2
0 =

4
α

1

Γ
(

2
α

)
Γ
(
α−1
α

)
Γ
(
β+1
α

)
Γ
(
β−2
α

)
× H3,4

5,5


(
1, 2

α

)
,
(
1 − β

α
, 2
α

)
,
(

1
2 , 1

)
, (0, 1), (0, 1)(

0, 2
α

)
,
(
β
α
, 2
α

)
,
(

1
2 , 1

)
, (−1, 1), (1, 1)

∣∣∣∣∣∣∣ 1

 . (34)

On the top row of Fig. 3 we show the velocity dispersion pro-
files of different Nuker models. The behaviour at small radii is
indeed as indicated above: the left panel (γ = 0) shows both dis-
persion profiles converging to a finite value (α > 1) and profiles
with a central hole (α ≤ 1), whereas the models in the central
panel have velocity dispersion profiles with a central hole, and
the right panels contains models with diverging dispersion pro-
files. Interesting is also the way the dispersion profiles change as
the break become gradually sharper, for fixed values of β and γ.
For models with a smooth transition, the dispersion profiles are
correspondingly smooth and featureless. When the break gets
sharper, the dispersion profile shows a distinctive dive just before
the break radius, which corresponds to the increase in the den-
sity. The Nuker models with an infinitely sharp break even have
a sharp downward peak at r = 1 in their dispersion profile.

Apart from the intrinsic velocity dispersion, we can also
investigate the line-of-sight velocity dispersion σp(R), which is
the quantity that is observed in actual galaxies. It can be obtained
by projecting the velocity dispersion along the line of sight,

σ2
p(R) =

2
I(R)

∫ ∞

R

ρ(r)σ2(r) dr
√

r2 − R2
· (35)

On the bottom row of Fig. 3 we show the line-of-sight velocity
dispersion profiles for the Nuker models. These profiles are sim-
ilar to the intrinsic dispersion profiles, but there are some sub-
tle differences. The main difference is the asymptotic behaviour
of the velocity dispersion profile for subfamily of Nuker models

with γ = 0. As argued above, the behaviour of the intrinsic veloc-
ity dispersion profile of these models depends on the steepness
of the break: models with α > 1 have a dispersion profile that
converges to a finite value, whereas models with smaller values
of α have a central hole in their intrinsic dispersion profile. On
the contrary, the line-of-sight velocity dispersion profiles of all
Nuker models with γ = 0 converge to a finite value, even those
models with a weak density cusp. This value can be calculated
exactly and turns out to be

σ2
p,0 =

8
πα2

1

Γ
(

2
α

)
Γ
(
β−2
α

)
Γ
(
β
α

)
× H3,4

5,5


(
α−1
α
, 2
α

)
,
(
1 − β

α
, 2
α

)
, (0, 1), (0, 1), (0, 1)(

0, 2
α

)
,
(
β−1
α
, 2
α

)
,
(

1
2 , 1

)
, (−1, 1),

(
1
2 , 1

) ∣∣∣∣∣∣∣ 1

 .
(36)

A similar difference between intrinsic and line-of-sight velocity
dispersion has been noted for other families of models with weak
density cusps (Dehnen 1993; Tremaine et al. 1994; Zhao 1996).

Apart from this subtle difference, the behaviour of the intrin-
sic and line-of-sight velocity dispersion profiles is qualitatively
similar. In particular, the change in the shape of the profile for
progressively sharper breaks is comparable. For models with a
sharp break, the distinctive dip that is clearly visible in the intrin-
sic dispersion profiles is still present, but it is slightly smoothed
out by the line-of-sight integration.

An important caveat on the discussion of the velocity dis-
persion profiles above is that they are formally derived from the
solution of the Jeans equation, but it is not guaranteed a priori
that they correspond to physically viable dynamical models. For
a dynamical model to be physical or consistent, the distribution
function f (r, u) must be positive over the entire phase space. It is
well known that, for spherical every potential–density pair, the
unique isotropic distribution function is a function of binding
energy E only and that it can be calculated using Eddington’s
formula (Binney & Tremaine 2008). We have numerically cal-
culated the isotropic distribution function f (E) for all the Nuker
models considered before and show the results on the top row of
Fig. 4. The corresponding differential energy distributionsN(E),
which describe the distribution of orbits with a given binding
energy, are plotted on the bottom row.

We have already shown that, for any values for inner and
outer slopes of the surface brightness profile, there is a maxi-
mum value of α that guarantees that the density is a monotoni-
cally decreasing function of radius. Any models with a sharper
break have an upturn in their density profile at radii r . 1 and this
weird feature translates to a downward peak or a wiggle at sim-
ilar radii in the dispersion profiles. It is not surprising that these
Nuker potential-density pairs do not generate physically viable
isotropic dynamical models: a radially decreasing density profile
is a necessary condition for the positivity of the distribution func-
tion for spherical isotropic models (Ciotti & Pellegrini 1992). In
particular, the Nuker models with an infinitely sharp break can-
not be generated self-consistently by a physical isotropic distri-
bution function. However, a monotonically decreasing density
profile is not a sufficient condition for a positive distribution
function and our family of Nuker models shows that explicitly.
An example of this is the (α, β, γ) = (8, 4, 0.6) model, charac-
terised by the yellow line in the central columns of Figs. 1–2
show that this particular model has a smoothly declining sur-
face brightness profile, density profile and gravitational poten-
tial, without obvious signatures that would suggest a strange
nature. The velocity dispersion profile of this model (top row
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Fig. 3. Intrinsic velocity dispersion profiles (top) and line-of-sight velocity dispersion profiles (bottom) for the family of isotropic Nuker models.
The selection of models and the meaning of the different lines are as in Fig. 1.

of Fig. 3) does show a cumbersome curvature around the break
radius. Figure 4 shows that the distribution function and differ-
ential energy distribution of this model are negative for binding
energies between E ∼ 0.81 and E ∼ 0.88 and hence that this
model is not a physically viable isotropic model.

In general, it turns out that for every β and γ, the energy
structure of the isotropic models varies systematically as α
increases. All models with a soft break have positive and mono-
tonically increasing f (E), which implies that the corresponding
isotropic dynamical models are not only physical, but also sta-
ble to both radial and non-radial perturbations (Antonov 1962;
Doremus et al. 1971; Binney & Tremaine 2008). The differen-
tial energy distributions of these Nuker models show a broad
distribution of orbits over the different binding energies.

As α increases, the distribution N(E) becomes more peaked
and the peak gradually shifts to higher binding energies. When
α increases even more, the distribution function starts to show a
particular dip at binding energies slightly beyond the peak value.
Examples of such models are the (α, β, γ) = (4, 4, 0.6) model,
corresponding to the orange line in the central panels of Fig. 4,
and the (α, β, γ) = (8, 4, 1.2) model, represented by the yellow
line in the right panels. With a distribution function that is no
longer a monotonically increasing function of binding energy,
these models are not guaranteed to be stable against radial and
non-radial perturbations anymore. For γ = 0.6, the critical value
of α that separates models with monotonic and non-monotonic
distribution functions is 3.8. For γ = 1.2 this value is 4.8.

Increasing α further strengthens the “dip” in the distribution
function, until the point where it becomes negative. For γ = 0.6,
this point is reached for α = 6.8, for γ = 1.2 at α = 11.4. All

models with sharper break in their surface brightness distribution
cannot support an isotropic distribution function. These models
are indicated as dotted lines in Fig. 4.

4. The Sérsic model as a special case of the Nuker
model

The Nuker model is a very flexible model that can fit a wide
range of surface brightness profiles. A special subset of Nuker
models is obtained using the following four-steps recipe. Firstly,
we re-introduce the scaling parameters Rb and L. Secondly, we
set (α, β, γ) = ( 1

m ,
1
εm , 0), with m and ε positive numbers that

satisfy εm < 1
2 . Thirdly, we introduce a new length scale Re =

(εb)mRb, with b a dimensionless number. Finally, we take the
limit ε → 0 in the resulting expressions.

Applying this recipe to the Nuker surface brightness profile
(4) gives

I(R) =
b2m

2πm Γ(2m)
L
R2

e
lim
ε→0

ε2m Γ
(

1
ε

)
Γ
(

1
ε
− 2m

) 1 + εb
(

R
Re

)1/m−1/ε

. (37)

To evaluate this expression, we use Wendel’s asymptotic relation
(Wendel 1948; Qi & Luo 2012),

lim
x→∞

xb−a Γ(x + a)
Γ(x + b)

= 1. (38)

This results in

I(R) =
b2m

2πm Γ(2m)
L
R2

e
exp

−b
(

R
Re

)1/m . (39)
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Fig. 4. Distribution function (top) and differential energy distribution (bottom) for the family of isotropic Nuker models. The selection of models
and the meaning of the different lines are as in Fig. 1. Dotted lines correspond to unphysical models, that is, models that have a negative distribution
function in some region of phase space.

This is the surface brightness profile of the Sérsic model (Sérsic
1968), probably the most the popular model to describe the sur-
face brightness distribution of early-type galaxies and bulges of
spiral galaxies. As a result of its popularity, the properties of
Sérsic model have been examined in great detail (e.g. Ciotti
1991; Ciotti & Lanzoni 1997; Graham & Driver 2005. In par-
ticular, we have used similar analytical methods as used in
this paper to study the density and other intrinsic properties of
the Sérsic model in a series of papers (Baes & Gentile 2011;
Baes & Van Hese 2011; Baes & Ciotti 2019a,b).

The analysis above shows that the Sérsic models form a special
subfamily of the general Nuker family. We can, therefore, study
the properties of the Sérsic model using the general expressions
derived in the two previous chapters. In principle we only need to
follow the four-steps recipe outlined above. If we apply this recipe
to expression (14) for the density, we find after some manipulation
and application of Wendel’s asymptotic relation (38),

ρ(r) =
b3m

π3/2 Γ(2m)
L
R3

e

(
bmr
Re

)−1

× lim
ε→0

1

Γ
(

1
ε

) H2,1
2,2

 (1 − 1
ε
, 2m), (0, 1)

(0, 2m), ( 1
2 , 1)

∣∣∣∣∣∣ ε2m
(

bmr
Re

)2 · (40)

Using the explicit Mellin-Barnes form (15) of the Fox H func-
tion, this limit can be evaluated as

ρ(r) =
b3m

π3/2 Γ(2m)
L
R3

e

(
bmr
Re

)−1

H2,0
1,2

 (0, 1)
(0, 2m), ( 1

2 , 1)

∣∣∣∣∣ (bmr
Re

)2
(41)

in agreement with expression (17) from Baes & Ciotti (2019a).
Other expressions can be derived in a similar way and it usu-
ally involves an application of Wendel’s asymptotic relation. For
example, from Eqs. (18) and (19) we can derive that the Sérsic
model has a finite density,

ρ0 =
b3m Γ(1 − m)
π2 Γ(1 + 2m)

L
R3

e
(42)

for m < 1 and a power-law density cusp,

ρ(r) ∼
b3m Γ

(
m−1
2m

)
4π3/2 m2 Γ(2m) Γ

(
2m−1

2m

) L
R3

e

(
bmr
Re

) 1
m−1

, (43)

for m > 1, in agreement with Eqs. (19) and (20) from
Baes & Ciotti (2019a). In a similar way, we can derive expres-
sions for the potential of the Sérsic model by applying the four-
steps recipe to Eqs. (29)–(32).

5. Discussion and summary
In this paper we construct a three-parameter family of spherical
models characterised by a simple surface brightness profile and
we discuss the corresponding potential-density pair and the con-
sistency and stability of the corresponding isotropic dynamical
models.

We are well aware of the obvious limitations to this set of
models. One obvious limitation is that the models are spherically
symmetric and hence do not offer the rich orbital structure that
more realistic triaxial models possess (e.g. de Zeeuw & Franx
1991; Binney & Tremaine 2008). There are, however, several
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ways to turn spherically symmetric models into flattened or tri-
axial models (Schwarzschild 1979, 1993; Hernquist & Quinn
1989; de Zeeuw & Carollo 1996; Baes 2009). A second lim-
itation is that the Nuker models only provide an accurate
model for the central regions of galaxies and not for entire
galaxies. Other models, such as the core-Sérsic model pro-
posed by Graham et al. (2003) have a broad applicability to
model the entire surface brightness profile of early-type galaxies
(e.g. Trujillo et al. 2004; Ferrarese et al. 2006; Dullo & Graham
2014). The Nuker model, however, remains an attractive model
by virtue of its simple and still flexible form. Finally, even
though the expressions (14) and (29) for density and potential are
formally written as closed analytical formulae, they still involve
a rather obscure special function for which a general numeri-
cal implementation is not readily available in the most popu-
lar numerical libraries. This makes a practical application of the
Nuker models in direct modelling efforts less obvious. The ana-
lytical expressions do, however, allow for a detailed analytical
investigation of the properties of the Nuker models and we there-
fore believe that these models can be very useful for theoretical
studies concerning galaxies and galactic nuclei.

In particular, they can be used to extend and refine the clas-
sification of galactic nuclei proposed by Tremaine et al. (1994).
Based on the set of η-models they presented, the authors con-
clude that three types of central structure are possible. The three
types of central structures are denoted as flat core structure
(Type I), weak cusp structure (Type II), and strong cusp struc-
ture (Type III), respectively. Type I structures, characterised by
γ = 0, have a finite central surface brightness, a density cusp as
steep at r−1, a finite depth of the central potential well, and an
asymptotically constant line-of-sight dispersion. Type II struc-
tures, corresponding to 0 < γ < 1, have a density cusp ranging
from r−1 to r−2, a finite potential well, and a central line-of-sight
velocity that approaches zero near the centre. Finally, type III
structures with 1 < γ < 2 have a density cusp stronger than
r−2, an infinitely deep potential well, and a line-of-sight velocity
dispersion profile that diverges near the centre. Tremaine et al.
(1994) conclude that this classification does not only apply to
their family of η-models, but for any spherical galaxy with an
isotropic distribution function and a surface brightness profile
that follows a R−γ power-law behaviour at small radii.

One limitation of the study of Tremaine et al. (1994) is that
the one-parameter family of models they considered is not fully
representative for all central structures, even under the assump-
tion of spherical symmetry and an isotropic dynamical structure.
Our three-parameter set of models is more complete and contains
a larger variance and we believe that our models fully cover the
parameter space of spherical models with an isotropic distribu-
tion function and a surface brightness profile that follows a R−γ
power-law behaviour at small radii. The analysis in this paper
shows that γ is the prime parameter that governs the behaviour
of the Nuker models, which supports the classification of central
structure based on γ by Tremaine et al. (1994). However, we also
demonstrate that γ alone is not sufficient to fully describe the
structure of the Nuker models and that α as a secondary param-
eter has an important role. This is particularly so for the special
case of models with a flat core (γ = 0), but also more generally,
α turns out to be an important parameter for the consistency and
stability of the isotropic dynamical models.

Based on the analysis presented in this paper, we propose
to extend the classification of the central structure of spherical
models as pictured in Fig. 5. The three main classes introduced
by Tremaine et al. (1994), based on the value of γ, still remain.
Based on the value of α we add some subdivision.

For the flat core structures, we subdivide the range of mod-
els in three subclasses. Type Ia structures correspond to γ = 0
and 0 < α < 1. They have a cored surface brightness profile,
but a weak r−1+α cusp in their density profile. Their isotropic
velocity dispersion profiles tend to zero at small radii, but their
line-of-sight dispersion profile converge to a finite value. The
distribution function of the isotropic dynamical models is pos-
itive and monotonic, indicating a stable isotropic dynamical
structure. Type Ib structures correspond to γ = 0 and 1 < α ≤ 2.
These systems are characterised by a core in both the surface
brightness profile and the density. They have a finite potential
density well and a non-zero central intrinsic and line-of-sight
velocity dispersion. The isotropic dynamical models are consis-
tent and stable. Finally, all models with γ = 0 and α > 2 unphysi-
cal: their surface brightness distribution decreases so slowly that
it can only be generated by a density profile that increases as
a function of radius. This leads to negative isotropic distribu-
tion functions. The border case is formed by the one-parameter
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family of (α, β, γ) = (2, β, 0) models, which we call the
Plummer-like models. The potential-density pair of this sub-
family of Nuker models simplifies substantially (Appendix B).

For the Type II and Type III galaxies, a further subdivision
can be made based on the monotonicity of the density profile and
the consistency and stability of the isotropic distribution func-
tion. As discussed in Sect. 2.4, there is, for every couple (β, γ),
a limiting value of α above which the density profile shows an
increase just short of the break radius. In other words, there is
a limit to the sharpness of the break in the surface brightness
profile if we want a physical, that is, monotonically decreasing
density profile. Furthermore, the in Sect. 3.2 we showed that,
for every β and γ, the energy structure of the isotropic models
varies systematically as α increases. Going from small to large
values of α, we first pass a region of well-behaved models that
are consistent and stable. Subsequently we encounter models in
which the distribution function f (E) is still positive but no longer
monotonically increasing, which turns them possible unstable
for radial and non-radial perturbations. Increasing α even more
we enter into a regime where the isotropic distribution function
becomes negative in some part of phase space, which implies
that the isotropic models are unphysical (but anisotropic mod-
els might still exist with this density profile). Finally, we enter
the previously mentioned region where the density is no longer
monotonically decreasing.
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Appendix A: The function Sλ
We define the function Sλ(x), with λ ≥ 0 and 0 ≤ x ≤ 1 as

Sλ(x) =

∫ arcsin x

0
sinλ θ dθ. (A.1)

For integer values of λ, this integral is readily evaluated in terms
of elementary functions, for example

S0(x) = arcsin x, (A.2)

S1(x) = 1 −
√

1 − x2, (A.3)

S2(x) =
1
2

(
arcsin x − x

√
1 − x2

)
. (A.4)

For non-integer values of λ this integration is more cumbersome.
A general expression can be given in terms of the hypergeomet-
ric function,

Sλ(x) =

√
π

2

Γ
(
λ+1

2

)
Γ
(
λ+2

2

)−√1 − x2
2F1

(
1
2
,

1 − λ
2

;
3
2

; 1 − x2
)
· (A.5)

The asymptotic expansion for x→ 0 is

Sλ(x) ∼
xλ+1

λ + 1
+

xλ+3

2 (λ + 3)
, (A.6)

whereas for x→ 1 we find

Sλ(x) ∼
√
π

2

Γ
(
λ+1

2

)
Γ
(
λ+2

2

) − √2 (1 − x)1/2. (A.7)

Appendix B: Nuker models with α = 2

For general values of the parameters α, β and γ, the density and
potential of the Nuker models can be written in terms of the Fox
H function. For the subset of models characterised by α = 2,
these formulae are reduced in complexity. Indeed, when α = 2,
all components of the vectors A and B are equal to one and the
Fox H functions reduce to Meijer G functions. Instead of the
formulae (14) and (29), we immediately obtain

ρ(r) =
1
π3/2

1

Γ
(
β−2

2

)
Γ
(

2−γ
2

) r−1 G2,1
2,2

[
1 − β

2 , 0
−
γ
2 ,

1
2

∣∣∣∣∣∣ r2
]
, (B.1)

Ψ(r) =
1
√
π

1

Γ
(
β−2

2

)
Γ
(

2−γ
2

) r G2,2
3,3

[
1 − β

2 , 0, 0
−
γ
2 ,−

1
2 ,−1

∣∣∣∣∣∣ r2
]
. (B.2)

The density can also be written in terms of the hypergeometric
function,

ρ(r) =
1
π3/2

Γ
(
β+1

2

)
Γ
(
β−γ

2

)
Γ
(
β
2

)
Γ
(
β−2

2

)
Γ
(

2−γ
2

) (
1 + r2

)− β+1
2

2F1

(
β + 1

2
,
γ

2
;
β

2
;

1
1 + r2

)
(B.3)

when γ = 1, this expression for the density can be further
reduced in case β is also an integer number. For odd values of
β, the density can be written purely in terms of elementary func-
tions, for even values of β it involves complete elliptic integrals.

Particularly simple cases are those models with α = 2 and
γ = 0, a one-parameter family of Plummer-like models. In this
case, we find a simple connection between the surface brightness
profile and the density profile,

I(R) =
1
π

Γ
(
β
2

)
Γ
(
β−2

2

) (
1 + R2

)− β
2 , (B.4)

ρ(r) =
1
π3/2

Γ
(
β+1

2

)
Γ
(
β−2

2

) (
1 + r2

)− β+1
2 , (B.5)

and the gravitational potential is

Ψ(r) =
2
√
π

Γ
(
β−1

2

)
Γ
(
β−2

2

) (
1 + r2

)− β−1
2

2F1

(
β − 1

2
, 1;

3
2

;
r2

1 + r2

)
·

(B.6)

This one-parameter family of models is not only a sub-family
of the general Nuker family, but also of the class of Zhao or
generalised NFW models. These models are characterised by a
double power-law density profile similar to the Nuker profile, but
for the spatial density rather than for the surface brightness on
the plane of the sky (Zhao 1996). This one-parameter family of
models contains a number of well-known simple models. Setting
β = 4, one can recognise the Plummer model (Plummer 1911;
Dejonghe 1987),

I(R) =
1
π

(
1 + R2

)−2
, (B.7)

ρ(r) =
3

4π

(
1 + r2

)− 5
2 , (B.8)

Ψ(r) =
1

√
1 + r2

· (B.9)

For β = 3 we recover the perfect sphere (de Zeeuw 1985),

I(R) =
1

2π

(
1 + R2

)− 3
2 , (B.10)

ρ(r) =
1
π2

(
1 + r2

)−2
, (B.11)

Ψ(r) =
2
π

arctan r
r
· (B.12)
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