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Smart detectors for Monte Carlo radiative transfer
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ABSTRACT

Many optimization techniques have been invented to reduce the noise that is inherent in Monte
Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations
do not take into account all the information contained in the impacting photon packages,
there is still room to optimize this detection process and the corresponding estimate of the
surface brightness distributions. We want to investigate how all the information contained in
the distribution of impacting photon packages can be optimally used to decrease the noise
in the surface brightness distributions and hence to increase the efficiency of Monte Carlo
radiative transfer simulations.

We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo
radiative transfer simulation is similar to the estimate of the density distribution in a smoothed
particle hydrodynamics simulation. Based on this similarity, a recipe is constructed for smart
detectors that take full advantage of the exact location of the impact of the photon packages.
Several types of smart detectors, each corresponding to a different smoothing kernel, are
presented. We show that smart detectors, while preserving the same effective resolution,
reduce the noise in the surface brightness distributions compared to the classical detectors.
The most efficient smart detector realizes a noise reduction of about 10 per cent, which
corresponds to a reduction of the required number of photon packages (i.e. a reduction of the
simulation run time) of 20 per cent. As the practical implementation of the smart detectors is
straightforward and the additional computational cost is completely negligible, we recommend
the use of smart detectors in Monte Carlo radiative transfer simulations.
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1 IN T RO D U C T I O N

The Monte Carlo method (e.g. Cashwell & Everett 1959; Bianchi,
Ferrara & Giovanardi 1996; Gordon et al. 2001; Baes et al. 2003;
Niccolini, Woitke & Lopez 2003) has become one of the most pop-
ular methods to perform radiative transfer simulations. One of the
greatest advantages of the Monte Carlo method is its conceptual
simplicity. Instead of solving the radiative transfer equations that
describe the radiation field, Monte Carlo simulations actually fol-
low the photon packages that make up the radiation field in a very
natural way. This ensures that, compared to other approaches to
multidimensional radiative transfer problems, the practical imple-
mentation of Monte Carlo radiative transfer is surprisingly straight-
forward. This simple, straightforward approach also enables the
inclusion of additional ingredients, such as the polarization of scat-
tered light (Code & Whitney 1995; Bianchi et al. 1996), the kine-
matics of the sinks and sources (Matthews & Wood 2001; Baes &
Dejonghe 2002) and gas ionization and recombination processes

�E-mail: maarten.baes@ugent.be

(Ercolano et al. 2003; Ercolano, Barlow & Storey 2005). On the
other hand, probably the most important disadvantage of the Monte
Carlo method is the appearance of Poisson noise, which is inher-
ently tied to the probabilistic nature of the method. In pure Monte
Carlo radiative transfer simulations, the noise in any observed prop-
erty goes as 1/

√
N with N the number of photon packages, which

means that one needs to quadruple the number of photon packages
to halve the errors. Due to this slow convergence, radiative trans-
fer simulations based on the most simple application of the Monte
Carlo method are very inefficient and have difficulties to compete
with other methods.

Fortunately, in the many years since the first applications of the
Monte Carlo method to radiative transfer simulations, several intel-
ligent optimization techniques have been invented to increase the
efficiency of the Monte Carlo techniques. These techniques, equiv-
alent to so-called variance-reduction techniques in Monte Carlo
integration, aim at reducing the noise by including deterministic
elements into the probabilistic simulation. One of the first exam-
ples of such techniques is the well-known forced first scattering
technique, already included in the first implementations of Monte
Carlo radiative transfer (Cashwell & Everett 1959; Mattila 1970).
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Other noise-reduction techniques that have strongly increased the
efficiency of the Monte Carlo method include the use of weighted
photon packages (Witt 1977), the peel-off technique (Yusef-Zadeh,
Morris & White 1984), the treatment of absorption as a contin-
uous rather than a discrete process (Lucy 1999), the frequency
distribution adjustment technique (Bjorkman & Wood 2001; Baes
et al. 2005) and the use of polychromatic photon packages (Baes,
Dejonghe & Davies 2005; Jonsson 2006).

One aspect of Monte Carlo radiative transfer where no signif-
icant noise-reduction techniques have been presented is the last
step in the life cycle of the photon packages, namely their detec-
tion. The goal of most Monte Carlo radiative transfer simulations
is to determine the observed surface brightness distribution at some
observer’s position. To construct the observed surface brightness
distribution, some kind of detector must be simulated, on which
the photon packages that leave the system are recorded. In the spirit
that Monte Carlo radiative transfer simulations mimic the real phys-
ical processes as naturally as possible, the simulated detectors are
usually natural (idealized) representations of actual CCD detectors.
They basically consist of a two-dimensional array of pixels, which
act as a reservoir for the incoming photon packages. When a photon
package leaves the system and arrives at the location of the observer,
the correct bin is determined and the luminosity recorded in the bin
is increased with the luminosity of the photon package. At the end
of the simulation, the detector is read out like a CCD detector and
the surface brightness distribution is constructed.

While this approach seems the most natural way to simulate
the detection of photon packages in a Monte Carlo simulation, it
might not be the most efficient. We must be aware that, although
we are simulating a real detection as closely as possible, we have
more information at our disposal than real observers. The maximum
information that a real observer can obtain (in the academic limit
of perfect noise-free observations and instruments) when imaging
with a CCD detector is the number of photon packages that arrive in
each of his pixels. As numerical simulators, we have at our disposal
the full information on the precise location of the impact of each
photon package on the detector. It would be a pity to throw away this
useful additional information just in order to mimic the behaviour
of a real CCD detector.

The goal of this paper is to investigate how this additional in-
formation can be used to decrease the noise in the estimated sur-
face brightness distributions and hence to increase the efficiency
of Monte Carlo radiative transfer simulations. In Section 2, we de-
scribe the classical way of detecting photon packages as a smooth-
ing process, similar to the averaging processes encountered in the
smoothed particle hydrodynamics framework for hydrodynamical
simulations. We use this similarity between both processes to con-
struct a new set of smart detectors, which aim at curing two draw-
backs of the classical detectors. In Section 3, we test the accuracy
and performance of these smart detectors and compare them with
the classical detector. The results are summarized and discussed in
Section 4.

2 SM A RT D E T E C TO R S

2.1 The classical detector

A typical detector in Monte Carlo simulations is based on a realistic
CCD detector. It consists of a rectangular two-dimensional array of
bins of dimension � placed on the plane of the sky. We denote the

centre positions of these bins as x̄ij = (x̄i , ȳj ),

x̄i = x̄min + i�, (1)

ȳj = ȳmin + j�. (2)

When the kth photon package hits the detector at a certain position
xk = (xk , yk), we find out in which bin it will end, and we add the
luminosity Lk carried by photon package to the number of previ-
ously detected photon packages in this particular bin. At the end
of the simulation, we determine our estimate Is(x̄ij ) for the surface
brightness at the position x̄ij by summing the contribution of all
photon packages that have been recorded in that bin and correcting
for the surface of the bin,

Is(x̄ij ) = 1

�2

N∑
k=1

Lk Nij (xk), (3)

where

Nij (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x̄i − 1
2 � ≤ x ≤ x̄i + 1

2 �

and ȳj − 1
2 � ≤ y ≤ ȳj + 1

2 �,

0 else.

(4)

2.2 The link to SPH

For an interesting point of view on simulating the detection of
photon packages and the calculation of the surface brightness dis-
tribution, we now shift to another important technique in compu-
tational astrophysics, namely smoothed particle hydrodynamics or
SPH (Gingold & Monaghan 1977; Lucy 1977). SPH is a compu-
tational technique for hydrodynamical simulations in which a fluid
is represented as a finite collection of fluid elements. To estimate
the value of a physical field f (r) at an arbitrary position r, we must
perform local averages over volumes of non-zero extent (i.e. over
a finite number of fluid particles). The mean or smoothed value of
f (r) denoted as f s(r) can be determined through kernel estimation:

fs(r) =
�

W (r − r ′) f (r ′) dr ′, (5)

where W(r) is the so-called smoothing kernel, which should be
normalized according to�

W (r) dr = 1, (6)

and which typically is strongly peaked about r = 0. In particular,
if the fluid mass distribution ρ(r) is represented by a flow of N
particles with mass mk , we have

ρ(r) =
N∑

k=1

mk δ(r − rk), (7)

and the estimate ρs(r) for the mass distribution is given by

ρs(r) =
N∑

k=1

mk W (r − rk). (8)

The standard interpretation of this formula is to see the fluid ele-
ments that make up the representation of the fluid not as point-like
particles, but as particles with a smoothed smeared out mass distri-
bution ρk(r) = mkW(r − rk). The total density at any position r is
then the sum of the contribution of the N particles in the fluid.

Returning back to our simulated CCD detector, we note that we
can write expression (3) as

Is(x̄ij ) =
N∑

k=1

Lk W (x̄ij − xk), (9)
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with W(x) a function defined as

W (x) =
[

H
(
x + 1

2 �
) − H

(
x − 1

2 �
)

�

]

×
[

H
(
y + 1

2 �
) − H

(
y − 1

2 �
)

�

]
(10)

with H the Heaviside step function. Comparing equations (9) and
(8), we immediately see a connection between the computation of
the (three-dimensional) mass density in fluids in the SPH formalism
and the computation of the (two-dimensional) surface brightness
in a Monte Carlo radiative transfer simulation. We can make this
connection clearer by rewriting equation (9) as

Is(x̄ij ) =
�

W (x̄ij − x ′) I (x ′) dx ′, (11)

with

I (x) =
N∑

k=1

Lk δ(x − xk). (12)

Since this latter expression is nothing but the ‘true’ surface bright-
ness distribution corresponding to N photon packages hitting the de-
tector plane (each photon package results in a Dirac delta function),
equation (11) is the direct analogue of the SPH basic equation (5).
The bottom line is that we can interpret the radiation field at the
plane of the sky as a fluid, which is represented by a finite num-
ber of smoothed photon packages. Each smoothed photon pack-
age corresponds to a smeared out surface brightness distribution
Ik(x) = LkW(x − xk). Formula (9) shows that the total observed
surface brightness distribution at the positions xij is the sum of the
contributions of each of these photon packages.

2.3 Smart detectors

We have seen that we can interpret the determination of the surface
brightness distribution in a Monte Carlo radiative transfer simu-
lation as a smoothing operation similar to the averaging in SPH
hydrodynamical simulations. As in SPH simulations, we can con-
sider using a different kernel – in the present case, this corresponds
to a different kind of detector. In principle, there is no restriction
on the shape of the function W(x) apart from the normalization
condition�

W (x) dx = 1, (13)

and the requirement that W(x) is a centrally peaked function. This
freedom allows us to construct smart detectors which improve upon
a number of potential disadvantages of the traditional detector.

A first drawback of the smoothing kernel (equation 10) is that it
is not isotropic, meaning that it has a preferential direction. Not all
photon packages hitting the detector at the same given distance from
a grid point x̄ij have the same impact on the surface brightness. For
example, a photon package hitting the detector at

xk =
(

x̄i + 2

3
�, ȳj

)
(14)

will not contribute at all to the surface brightness Is(xij ), whereas a
photon package hitting the detector at

xk =
(

x̄i +
√

2

3
�, ȳj +

√
2

3
�

)
, (15)

at the same distance, will fully contribute to the estimate of the
surface brightness at this grid point. It is obvious that this problem

is solved when we consider circularly symmetric smoothing kernels
W(x) ≡ W(R).

A second drawback of the classical detector is that it does not
take into account all the information that is contained in the im-
pacting photon package. For every photon package that falls on to
our detector, we know the exact location of the impact. The only
information that a classical simulated detector uses is the bin in
which this location falls, without any discrimination of the exact
location within this bin. As argued in the introduction, it would be
a pity to not use this information just for the sake of simulating a
real CCD detector. To solve the second problem, we need to look
for kernels that give more weight to impacts very close to the grid
points than to impacts at larger distance, which means that we need
a kernel W(R) that is a monotonically decreasing function of R.

These are just minor limitations and still leave a lot of room for
different smart detectors. We can inspire ourselves on the smoothing
kernels that are often used in SPH simulations. The prototypical-
normalized kernel is a Gaussian, in two dimensions,

W (R) = 1

πh2
exp

(
−R2

h2

)
. (16)

The parameter h in this expression, and in all other kernels we will
discuss, is called the smoothing length. It gives the width of the area
over which the smoothing is effective (we will later determine the
optimal value for this parameter). An important drawback of the
Gaussian kernel is its infinite support, meaning that every photon
package impacting on the detector has a finite contribution to the
surface brightness at all grid points. Every photon package hence,
in principle, requires a summation over all grid points, at most of
which it contributes an absolutely negligible contribution.

These efficiency problems are resolved by introducing smoothing
kernels with a compact support. Several compact support kernels
have been used in the SPH literature, the most popular of them
being kernels based on B-splines. The M3 spline kernel (Hockney &
Eastwood 1981) in two dimensions takes the form

W (R) = 16

13πh2
×

⎧⎪⎪⎨
⎪⎪⎩

3
2 − 2 u2 if 0 ≤ u ≤ 1

2 ,(
3
2 − u

)2
if 1

2 ≤ u ≤ 3
2 ,

0 else,

(17)

with u = R/h. It has a continuous first derivative. A similar spline
kernel but with a continuous second derivative is the M4 spline
smoothing kernel, introduced by Monaghan & Lattanzio (1985). Its
two-dimensional form is

W (R) = 10

7πh2
×

⎧⎪⎨
⎪⎩

1 − 3
2 u2 + 3

4 u3 if 0 ≤ u ≤ 1,

1
4 (2 − u)3 if 1 ≤ u ≤ 2,

0 else.

(18)

In principle, we have not requested that the kernel is everywhere
non-negative. Some SPH simulations have adopted so-called su-
perkernels, which are accurate to third or fourth order, but which
necessarily become negative in some part of the domain. The
most famous example of such kernels is the supergaussian kernel
(Gingold & Monaghan 1982) but examples with finite support have
also been considered (Monaghan 1985, 1992; Capuzzo-Dolcetta &
Di Lisio 2000). Using such superkernels could potentially increase
the accuracy of the smoothing process, but it can have serious con-
sequences when there is a sharp change in the surface brightness:
an undershoot occurs and the recorded surface brightness may be-
come negative. In order to avoid such situations, we stick to positive
kernels.
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2.4 Determination of the smoothing length

Based on the three smoothing kernels (16), (17) and (18), we can
construct three different kinds of smart detectors. Remains to de-
termine which value to take for the smoothing length h for each of
these smart detectors. Obviously, h should be large enough to make
the smoothing operation meaningful, whereas too large values of h
will tend to oversmooth and wash away the details of the surface
brightness distribution. We want the smoothing lengths comparable
with the pixel scale, such that the noise in the images remains un-
correlated on a pixel-by-pixel scale (as for a classical detector). Our
determination of the optimal smoothing length is derived from the
requirement that the effective area or ‘resolution’ of the smoothing
kernel should be identical to the resolution of the classical detector.

There are various possibilities to identify the effective area of
a two-dimensional centrally peaked function. Probably, the most
general one is the total dispersion σ , defined through

σ 2 =
�

W (x) |x|2 dx. (19)

One can readily verify that the classical detector kernel (10) has a
dispersion σ = �/

√
6. Requiring that the resolution of the other

smoothing kernels is equal to this value we find as reference smooth-
ing lengths:

href = 1√
6

� ≈ 0.408 � (Gaussian), (20)

href =
√

390

33
� ≈ 0.598 � (M3 spline), (21)

href = 7√
186

� ≈ 0.513 � (M4 spline). (22)

Fig. 1 shows a comparison of the three different smoothing kernels
with their optimal smoothing lengths.

3 TESTS

3.1 Comparison of classical and smart detectors

We tested the accuracy and the performance of our smart detectors
using two toy analytical surface brightness distributions on the plane
of the sky. The first is a simple Plummer model, characterized by

Figure 1. The three smoothing kernels used for the construction of the
smart detectors. The normalization and the width are the same for all three
kernels.

the circularly symmetric surface brightness distribution:

I (x) = L

πb2

(
b2

b2 + R2

)2

, (23)

with L the total luminosity and b a scale parameter. We took the
value b = 10� implying that the core of the model is well resolved
by the detector grid. The second model is an exponential disc model,
rotated over an angle of 20◦,

I (x) = L

4πhxhy

exp

(
−|x|

hx

− |y|
hy

)
, (24)

with hx and hy the scalelength and scaleheight, respectively. Choos-
ing the disc parameters as hx = 25� and hy = 5�, we create a
model with a relatively sharp edge and a strong gradient in the
surface brightness distribution.

We have used a classical detector and three smart detectors based
on the smoothing kernels (16), (17) and (18), each of them with
a total of 101 × 101 grid points. For each model, we ran a set
of Monte Carlo simulations with the number of photon packages
varying between N = 104 and 108, taking into account that each
detector measures the same set of photon packages (i.e. we use
the same Monte Carlo realization for simulations with different
detectors).

The different panels of Fig. 2 show the resulting measured surface
brightness distribution Is(x) for the various detectors for the simula-
tions with N = 106. Looking at this set of images, it is immediately
clear that the smart detectors manage to qualitatively reproduce
the surface brightness distribution accurately. For a measure of the
accuracy of the different detectors, we consider the noise as the dif-
ference between the measured surface brightness and the theoretical
surface brightness in each pixel, weighted by the expected Poisson
noise σ (xij ) in each pixel,

�I (xij ) = Is(xij ) − I (xij )

σ (xij )
. (25)

Fig. 3 shows the noise images corresponding to the Plummer model
images from Fig. 2. It is clear that these images are qualitatively very
similar; thanks to the appropriate choice of the smoothing lengths
for the different kernels, there is no correlation in the noise on a
pixel-by-pixel scale. A quantitative analysis of these noise images,
however, shows that the level of the noise in the smart detectors is
suppressed. This is most easily demonstrated using the total noise
level, which we define as

R =
√

N

Npix

∑ [
Is(xij ) − I (xij )

σ (xij )

]2

, (26)

where the sum runs over all pixels. A factor of
√

N is included in this
formula to guarantee that the noise is asymptotically independent
of the total number N of photon packages used in the simulation.
Fig. 4 shows the value of R for the different detectors as a function
of the total number of photon packages in the simulation. This figure
demonstrates that all smart detectors reduce the noise compared to
the classical detector. The most efficient detector is the one based
on the M3 spline kernel; for this detector, the noise is reduced by
about 10 per cent. For the M4 spline kernel, the most popular finite
support kernel in SPH simulations, the noise reduction is slightly
less efficient (about 8 per cent), whereas for the Gaussian kernel the
noise reduction is about 5 per cent.

3.2 Origin of the noise reduction

We have constructed our smart detectors based on two fundamental
changes applied to the classical detector smoothing kernel (10),
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Figure 2. The Plummer (top panel) and exponential disc (bottom panel) model surface brightness distribution I(xij ) and the observed surface brightness
distributions Is(xij ) for the classical and the smart detectors. The images have 101 × 101 pixels each and are based on the simulation with N = 106 photon
packages.

Figure 3. The noise distributions �I(xij ) corresponding to the observed Plummer surface brightness distributions displayed in Fig. 2.

Figure 4. The total noise parameter R, defined in equation (26), of the
Plummer model for different detectors as a function of the total number of
photon packages in the simulation.

namely making it circularly symmetric and choosing a smoothly
decreasing function of radius. We can investigate which of these
two changes have the most important impact on the noise reduction
by constructing two new smoothing kernels in which only one of
these two changes is taken into account.

On the one hand, the circularly symmetric analogue of the clas-
sical detector kernel (10) is readily found

W (R) = 4

πh2

[
H

(
R + 1

2
h

)
− H

(
R − 1

2
h

)]
. (27)

We find in the usual way href = 2�/
√

3 as reference smoothing
length. On the other hand, the rectangular version of the M3 spline
kernel (17) is

W (x) = 1

h2
M3

( |x|
h

)
M3

( |y|
h

)
, (28)

with

M3(u) =

⎧⎪⎪⎨
⎪⎪⎩

3
4 − u2 if 0 ≤ u ≤ 1

2 ,

1
2

(
3
2 − u

)2
if 1

2 ≤ u ≤ 3
2 ,

0 else.

(29)

For this kernel, we obtain href = �/
√

3.
In Fig. 5, we plot the total noise parameter R of these two new

smart detectors in comparison with the classical detector and the
circularly symmetric M3 spline detector. Not surprisingly, we find
that also these two new detectors suppress the noise compared
to the classical detector, but not as efficiently as the M3 spline
detector. The noise reduction in a detector based on the rectangular
M3 spline kernel (28) is more effective than the noise reduction in the
circular analogue (kernel 27) of the classical detector. This means
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Figure 5. The total noise parameter R of the Plummer model for the rect-
angular and circular equivalents of the classical detector and the smart M3

spline detector.

that applying a proper weight to the photon packages according to
their distance from the grid points is the most important change if
we want efficient noise reduction.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have focused on an ill-studied area of Monte Carlo radiative
transfer simulations where a significant noise reduction can be
achieved, namely the detection of photon packages and the cor-
responding construction of the observed surface brightness distri-
bution. The motivation of this work was the fact that the classical
detectors used in Monte Carlo simulations, while closely mimick-
ing a real CCD detector, do not use the full amount of information
that is available.

Based on the similarities between the construction of the sur-
face brightness distribution on a detector in Monte Carlo radiative
transfer simulations and the calculation of the density in SPH hydro-
dynamical simulations, we have constructed a set of smart detectors.
These smart detectors improve on two aspects of the classical de-
tector: they assign the same weight to all photon packages hitting
the detector at the same distance from a grid point and they give
more weight to impacts close to a grid point than to impacts at
larger distances. We have tested different kinds of smart detectors,
based on different smoothing kernels frequently encountered in SPH
simulations, namely a Gaussian kernel and two spline-based ker-
nels with finite support (Hockney & Eastwood 1981; Monaghan &
Lattanzio 1985). We have shown that these new detectors, while
preserving the same effective resolution, reduce the noise in the
surface brightness distributions compared to the classical detectors.
It is demonstrated that the lion’s share of this noise reduction is
due to a proper weighing of the photon packages with the distance
between the impact location and the grid point.

The most efficient smart detector is found to be a detector based
on the M3 spline kernel, for which the noise reduction amounts to
some 10 per cent. While this might seem a modest improvement,
one should take into account that the noise reduction in Monte Carlo
simulation goes as 1/

√
N . A reduction of the noise with 10 per cent

is hence equivalent to a reduction of the number of photon packages
with 20 per cent, which is a significant improvement. Moreover, it
should be stressed that this noise reduction basically comes for
free, since the practical implementation of the smart detectors is

straightforward and the additional computational cost is completely
negligible. We hence strongly recommend the use of smart detectors
in Monte Carlo radiative transfer simulations.

The link with SPH simulations might stimulate to look for further
ways to optimize the estimates of the surface brightness distribu-
tion. One major difference between our current problem and the
interpolation in SPH simulations is that we use a fixed smooth-
ing length, whereas SPH simulations typically use a spatially (and
temporally) varying smoothing length. This way it is possible to
take full advantage of the particle distribution to resolve local den-
sity structures. Each particle in an SPH simulation typically has an
individual smoothing length which is fine-tuned such that each par-
ticle interacts with a similar number of neighbours. Unfortunately,
it seems hard to introduce variable smoothing lengths here in our
current Monte Carlo radiative transfer case. The main difference is
that the smoothing procedure in SPH is executed when all parti-
cle positions are known, whereas in Monte Carlo radiative transfer
the photon packages gradually hit the detector and they must be
smoothed out on to the detector before it is known where the other
photon packages will arrive. It is impossible to know a priori how
many neighbours a photon package will ultimately have and hence
to adapt the smoothing length on an individual basis. One could
potentially do a test run with a limited number of photon packages
to obtain a first crude estimate of the expected surface brightness
distribution and adapt the smoothing lengths accordingly. However,
a more elegant option seems to apply an adaptive filtering to the sim-
ulated images after the simulation. Several approaches have been
developed for this goal such as wavelet-based algorithms (Starck &
Pierre 1998), adaptive binning techniques (Starck & Pierre 1998;
Cappellari & Copin 2003) or adaptive kernel smoothing techniques
(Richter et al. 1991; Huang & Sarazin 1996; Ebeling, White &
Rangarajan 2006).
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