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Abstract. Simple analytical models, such as the Hernquist model, are very useful tools to investigate the dynamical structure
of galaxies. Unfortunately, most of the analytical distribution functions are either isotropic or of the Osipkov-Merritt type, and
hence basically one-dimensional. We present three different families of anisotropic distribution functions that self-consistently
generate the Hernquist potential-density pair. These families have constant, increasing and decreasing anisotropy profiles re-
spectively, and can hence represent a wide variety of orbital structures. For all of the models presented, the distribution function
and the velocity dispersions can be written in terms of elementary functions. These models are ideal tools for a wide range of
applications, in particular to generate the initial conditions for N-body or Monte Carlo simulations.
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1. Introduction

From a stellar dynamical point of view, the most complete de-
scription of a stellar system is the distribution function F(r, u),
which gives the probability density for the stars in phase
space. In this paper, we will concentrate on the problem of
constructing anisotropic equilibrium distribution functions that
self-consistently generate a given spherical mass density pro-
file ρ(r). In the assumption of spherical symmetry, the mass
density of a stellar system can easily be derived from the ob-
served surface brightness profile, at least if we assume that the
mass-to-light ratio is constant and that dust attenuation is neg-
ligible. And as the surface brightness of a galaxy (or bulge or
cluster) is fairly cheap and straightforward to observe, com-
pared to other dynamical observables which require expensive
spectroscopy, the problem we will deal with is relevant and im-
portant.

The first step in the construction of self-consistent models
is the calculation of the gravitational potential ψ(r), which can
immediately be determined through Poisson’s equation. The
second step, the actual construction of the distribution function,
is less straightforward. Basic stellar dynamics theory (see e.g.
Binney & Tremaine 1987) learns that steady-state distribution
functions for spherical systems can generally be written as a
function of binding energy and angular momentum. We hence
have to determine a distribution function F(E, L), such that the
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zeroth order moment of this distribution function equals the
density, i.e. we have to solve the integral equation

ρ(r) =
$

F(E, L) du (1)

for F(E, L). Hereby we have to take into account that not every
function F(E, L) that satisfies this equation is a physically ac-
ceptable solution: an acceptable solution has to be non-negative
over the entire phase space. In general, the problem of solv-
ing the integral Eq. (1) is a degenerate problem, because there
are infinitely many distribution functions possible for a given
potential-density pair.

Particularly interesting are models for which the distribu-
tion function and its moments can be computed analytically.
Such models have many useful applications, which can roughly
be divided into two classes. On the one hand, they can improve
our general understanding of physical processes in galaxies in
an elegant way. For example, they can serve as simple galaxy
models, in which it is easy to generate the starting conditions
for N-body or Monte Carlo simulations, or to test new data re-
duction or dynamical modelling techniques. A quick look at
the overwhelming success of simple analytical models, such
as the Plummer sphere (Plummer 1911; Dejonghe 1987), the
isochrone sphere (Hénon 1959, 1960), the Jaffe model (Jaffe
1983) and the Hernquist model (Hernquist 1990), provides
enough evidence. On the other hand, analytical models are also
useful for the detailed dynamical modelling of galaxies. For
example, in modelling techniques such as the QP technique
(Dejonghe 1989), a dynamical model for an observed galaxy
is built up as a linear combination of components, for each of
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which the distribution function and its moments are known ana-
lytically. As a result, the distribution function and the moments
of the final model are also analytical, which obviously has a
number of advantages.

Unfortunately, the number of dynamical models for which
the distribution function is known analytically is rather mod-
est. Moreover, most of them consist of distribution functions
that are isotropic or of the Osipkov-Merritt type, and therefore
basically one-dimensional. An exception is the completely an-
alytical family of anisotropic models described by Dejonghe
(1987). These models self-consistently generate the Plummer
potential-density pair, a simple yet useful model for systems
with a constant density core.

During the last decade, however, it has become clear that,
at small radii, elliptical galaxies usually have central density
profiles that behave as r−γ with 0 6 γ 6 2.5 (Lauer et al.
1995; Gebhardt et al. 1996). Such galaxies can obviously not
be adequately modelled with a constant density core. This has
stimulated the quest for simple potential-density pairs, and cor-
responding distribution functions, with a central density cusp.
The first effort to construct such models was undertaken by
Ciotti (1991) and Ciotti & Lanzoni (1997), who discussed the
the dynamical structure of stellar systems following the R1/m

law (Sérsic 1968), a natural generalization of the empirical R1/4

law of de Vaucouleurs (1948). A major drawback of this family,
however, is that the spatial density and the distribution func-
tion can not be written in terms of elementary functions (see
Mazure & Capelato 2002). A more useful family is formed by
the so-called γ-models (Dehnen 1993; Tremaine et al. 1994),
characterized by a density proportional to r−4 at large radii and
a divergence in the center as r−γ with 0 6 γ 6 3. The dynami-
cal structure of models with this potential-density pair has been
extensively investigated (e.g. Carollo et al. 1995; Ciotti 1996;
Meza & Zamorano 1997), but only for isotropic or Osipkov-
Merritt type distribution functions. Simple analytical models
with a more general anisotropy structure are still lacking.

In this paper we construct a number of families of com-
pletely analytical anisotropic dynamical models that self-
consistently generate the Hernquist (1990) potential-density
pair. It is a special case of the family of γ-models, correspond-
ing to γ = 1. In dimensionless units, the Hernquist potential-
density pair is given by

ψ(r) =
1

1 + r
(2a)

ρ(r) =
1

2π
1

r(1 + r)3
· (2b)

As the density diverges as 1/r for r → 0, the surface brightness
I(R) will diverge logarithmically for R → 0. More precisely,
the surface brightness profile has the form

I(R) =
1

2π
(2 + R2) X(R) − 3

(1 − R2)2
, (3)

with X(R) a continuous function defined as

X(R) =
{

(1 − R2)−1/2 arcsech R for 0 6 R 6 1,
(R2 − 1)−1/2 arcsecans R for 1 6 R 6 ∞. (4)

The paper is organized as follows. The general theory on the
inversion of the fundamental integral Eq. (1) is resumed in
Sect. 2. Each of the subsequent sections is devoted to special
cases of this inversion technique and the corresponding fam-
ily of Hernquist models. Isotropic models are the most sim-
ple ones; Hernquist (1990) showed that, in the special case of
isotropy, the distribution function and its moments can be cal-
culated analytically. We repeat the most important character-
istics of the isotropic Hernquist model in Sect. 3. In Sect. 4
we construct a one-parameter family of models with a constant
anisotropy. In Sect. 5, a two-parameter family of Hernquist
models is constructed by means of the Cuddeford (1991) in-
version technique. These models have an arbitrary anisotropy
in the center and are radially anisotropic at large radii. On the
contrary, in Sect. 6, a two-parameter family is constructed that
has a decreasing anisotropy profile, with arbitrary values for
the anisotropy in the center and the outer halo. Finally, Sect. 7
sums up.

2. The construction of anisotropic models

A general discussion on the inversion of the fundamental
Eq. (1), and hence on the construction anisotropic distribution
functions for a given spherical potential-density pair, is pre-
sented by Dejonghe (1986). The key ingredient of the inver-
sion procedure is the concept of the augmented mass density
ρ̃(ψ, r), which is a function of potential and radius, such that
the condition

ρ̃(ψ(r), r) ≡ ρ(r) (5)

is satisfied. The augmented mass density is in fact equivalent to
the distribution function F(E, L): with every augmented density
ρ̃(ψ, r) we can associate a distribution function F(E, L) and vice
versa. There exist various transition formulae between these
two equivalent forms of a dynamical model, amongst others a
formalism that uses combined Laplace-Mellin transforms.

Besides providing a nice way to generate a distribution
function for a given potential-density pair, the augmented den-
sity is also very useful to calculate the moments of the distri-
bution function. The anisotropic moments are defined as

µ2n,2m(r) = 2π
"

F(E, L) v2n
r v2m+1

t dvr dvt, (6)

where vt ≡
√
v2
θ + v

2
φ is the transverse velocity. One can derive

a relation that links the higher-order moments to the augmented
mass density ρ̃, when written explicitly as a function of ψ and r,

µ̃2n,2m(ψ, r) =
2m+n

√
π

Γ
(
n + 1

2

)
Γ(m + n)

×
∫ ψ

0
(ψ − ψ′)m+n−1 dm

(dr2)m

[
r2m ρ̃(ψ′, r)

]
dψ′. (7)

In particular, the radial and transverse velocity dispersions can
be found from the density through the relations,

σ2
r (r) =

1
ρ(r)

∫ ψ(r)

0
ρ̃(ψ′, r) dψ′, (8a)

σ2
t (r) =

2
ρ(r)

∫ ψ(r)

0

d
dr2

[
r2 ρ̃(ψ′, r)

]
dψ′. (8b)
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By means of these functions, we can define the anisotropy
β(r) as

β(r) = 1 − σ2
t (r)

2σ2
r (r)
· (9)

We will in this paper consider augmented densities which are
separable functions of ψ and r, and we introduce the notation

ρ̃(ψ, r) = f (ψ) g(r). (10)

For such models, the anisotropy can be directly calculated from
the augmented density as

β(r) = 1 − 1
g(r)

d
dr2

[
r2 g(r)

]
, (11)

as a result of the formulae (8ab), (9) and (10).

3. Isotropic models

3.1. Background

The simplest dynamical models are those where the augmented
density is a function of the potential only, ρ̃ = ρ̃(ψ). For such
models, the distribution function is only a function of the bind-
ing energy, i.e. the distribution function is isotropic. In this
case, the integral Eq. (1) can be inverted to find the well-known
Eddington relation

F(E) =
1

2
√

2π2

d
dE

∫ E

0

dρ̃
dψ

dψ√E − ψ · (12)

For such isotropic models, we do not use the general
anisotropic moments (6), but define the isotropic moments as

µ2n(r) = 4π
∫

F(E) v2n+2 dv. (13)

Similarly as for the anisotropic moments, we can derive a rela-
tion that allows to calculate the augmented isotropic moments
from the augmented density ρ̃(ψ). Indeed, they satisfy the rela-
tion (Dejonghe 1986)

µ̃2n(ψ) =
(2n + 1)!!
(n − 1)!!

∫ ψ

0
(ψ − ψ′)n−1 ρ̃(ψ′) dψ′. (14)

In particular, we obtain an expression for the velocity disper-
sion profile by setting n = 1,

σ2(r) =
1
ρ(r)

∫ ψ(r)

0
ρ̃(ψ′) dψ′. (15)

3.2. The isotropic Hernquist model

The isotropic model that corresponds to the potential-density
pair (2ab) is described in full detail by Hernquist (1990). We
restrict ourselves by resuming the most important results, for a
comparison with the anisotropic models discussed later in this
paper. The augmented density reads

ρ̃(ψ) =
1

2π
ψ4

1 − ψ · (16)

Substituting this density into Eddington’s formula (12) yields
the distribution function

F(E) =
1

8
√

2π3

×

√E (1 − 2E) (8E2 − 8E − 3)

(1 − E)2
+

3 arcsin
√E

(1 − E)5/2

 · (17)

Combining the density (16) with the general formula (14) gives
us the moments of the distribution function,

µ̃2n(ψ) =
3 · 2n+9/2

(2π)3/2

Γ
(
n + 1

2

)
Γ(n + 5)

ψn+4
2F1 (5, 1; n + 5;ψ) . (18)

For all n > 0, this expression can be written in terms of ra-
tional functions and logarithms. For example, for the velocity
dispersions, we obtain after substitution of the Hernquist po-
tential (2a),

σ2(r) = r (1 + r)3 ln
(
1 + r

r

)
− r (25 + 52r + 42r2 + 12r3)

12(1 + r)
,(19)

in agreement with Eq. (10) of Hernquist (1990). From an obser-
vational point of view, it is very useful to obtain an explicit ex-
pression for the line-of-sight velocity dispersion. For isotropic
models, the line-of-sight dispersion is easily found by project-
ing the second-order moment on the plane of the sky, i.e.

σ2
p(R) =

2
I(R)

∫ ∞

R

ρ(r)σ2(r) r dr√
r2 − R2

· (20)

For the Hernquist model this yields after some algebra

I(R)σ2
p(R) =

1
24π (1 − R2)3

×
[
3R2

(
20 − 35R2 + 28R4 − 8R6

)
X(R)

+(6 − 65R2 + 68R4 − 24R6)
]
− R

2
· (21)

4. Models with a constant anisotropy

4.1. Background

A special family of distribution functions that can easily be
generated using the technique outlined in Sect. 2 corresponds
to models with a density that depends on r only through a factor
r−2β, i.e.

ρ̃(ψ, r) = f (ψ) r−2β. (22)

It is well known that such densities correspond to models with
a constant anisotropy (i.e. Binney & Tremaine 1987), which
can easily be checked by introducingg(r) = r−2β in the formula
(11). For a given potential-density pair, a family of models with
constant anisotropy can hence be constructed by inverting the
potential as r(ψ), and defining

f (ψ) = ρ̃(ψ)
(
r(ψ)

)2β
. (23)

Notice that such models are not the only constant anisotropy
models corresponding to a given potential-density pair, as ar-
gued in Sect. 1.5 of Dejonghe (1986). This family, however,
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is very attractive due to its relative simpleness. In particular,
the corresponding distribution function is a power law in L,
and can be found through an Eddington-like formula,

F(E, L) =
2β

(2π)3/2

L−2β

Γ(1 − β) Γ
(

1
2 + β

)

× d
dE

∫ E

0

d f
dψ

dψ
(E − ψ)1/2−β · (24)

For the moments of the distribution function, the relation (7)
can be simplified to

µ̃2n,2m(ψ, r) =
2m+n

√
π

Γ
(
n + 1

2

)
Γ(m + 1 − β)

Γ(m + n) Γ(1 − β)
r−2β

×
∫ ψ

0
(ψ − ψ′)m+n−1 f (ψ′) dψ′. (25)

In particular, the radial velocity dispersions reads

σ2
r (r) =

1
f (ψ(r))

∫ ψ(r)

0
f (ψ′) dψ′. (26)

4.2. Hernquist models with a constant anisotropy

4.2.1. The distribution function

Applying the formula (23) to the Hernquist potential-density
pair (2ab) yields

f (ψ) =
1

2π
ψ4−2β (1 − ψ)2β−1. (27)

Substituting this expression into the general formula (24) gives
us the corresponding distribution function

F(E, L) =
2β

(2π)5/2

Γ(5 − 2β)

Γ(1 − β) Γ
(

7
2 − β

)

×L−2β E 5
2−β 2F1

(
5 − 2β, 1 − 2β;

7
2
− β;E

)
. (28)

This expression reduces to the isotropic distribution func-
tion (17) for β = 0, as required. Whether the expression (28)
corresponds to a physically acceptable distribution function for
a given value of β depends on the condition that the distribution
function has to be positive over the entire phase space.

It is no surprise that the distribution function is not posi-
tive for the largest possible values of β, because models where
only the radial orbits are populated can only be supported by
a density profile that diverges as r−2 or steeper in the center
(Richstone & Tremaine 1984). It turns out that the distribution
function (28) is everywhere non-negative for β 6 1

2 .
For all integer and half-integer values of β, the hypergeo-

metric series in (28) can be expressed in terms of elementary
functions. Very useful are half-integer values of β, because the
energy-dependent part of the distribution function can then be
written as a rational function of E. For integer values of β, the
hypergeometric series can be written as a function containing
integer and half-integer powers of E and 1 − E and a factor
arcsin

√E, similar to the isotropic distribution function (17).

The limiting model β = 1
2 is particularly simple. It has an

augmented density that is a power law of potential and radius,

ρ̃(ψ, r) =
1

2π
ψ3

r
, (29)

and the corresponding distribution function simply reads

F(E, L) =
3

4π3

E2

L
· (30)

This model is a special case of the generalized polytropes dis-
cussed by Fricke (1951) and Hénon (1973).

In Fig. 1 we compare the distribution functions of the radial
model with β = 1

2 and the tangential model with β = −2 with
the distribution function of the isotropic Hernquist model. The
distribution functions are shown by means of their isoprobabil-
ity contours in turning point space, which can easily be inter-
preted in terms of orbits. Compared to the isotropic model, the
radial model prefers orbits on the upper left side of the diagram,
with an apocenter much larger than the pericenter, i.e. elon-
gated orbits. The isoprobability contours of tangential models
on the other hand lean towards the diagonal axes where peri-
center and apocenter are equal, i.e. nearly-circular orbits are
preferred.

4.2.2. The velocity dispersions

By means of substituting the expression (27) into the general
formula (7), we can derive an analytical expression for all mo-
ments of the distribution function,

µ̃2n,2m(ψ, r) =
2n+m−1

π3/2

Γ(5 − 2β) Γ
(
n + 1

2

)
Γ(m + 1 − β)

Γ(m + n + 5 − 2β) Γ(1 − β)

×r−2β ψm+n+4−β

×2F1 (5 − 2β, 1 − 2β; m + n + 5 − 2β;ψ) . (31)

We are mainly interested in the velocity dispersions, which can
be conveniently written by means of the incomplete Beta func-
tion (Abramowitz & Stegun 1972),

σ2
r (r) = r1−2β (1 + r)3 B 1

1+r

(
5 − 2β, 2β

)
. (32)

For all anisotropies β < 1
2 , the radial dispersion equals zero in

the center of the galaxy, rises until a maximum and then de-
creases again towards zero for r → ∞. The asymptotic behav-
ior for r � 1 is

σ2
r (r) ≈ 1

5 − 2β
1
r
+ · · · (33)

The expression (32) can be written in terms of elementary func-
tions for all βwith 4β an integer. For the integer and half-integer
values of β, the expression involves polynomials in r and a fac-
tor ln(1 + 1/r), very analogous to the expression (19) of the
isotropic Hernquist model. For the quarter-integer values of
β, it contains polynomials and square roots in r and a factor
arccotg

√
r.
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Fig. 1. The distribution function of the Hernquist models with a constant anisotropy, represented as isoprobability contours in turning point
space. The distribution functions in solid lines represent a radial model with β = 1

2 (left panel) and a tangential model with β = −2 (right panel).
The dotted contour lines in both panels correspond to the isotropic Hernquist model.

Fig. 2. The velocity dispersion of the Hernquist models with a con-
stant anisotropy. The upper and lower panels show the radial velocity
dispersions σr(r) and the line-of-sight velocity dispersion σp(R). The
profiles are shown for different values of the anisotropy parameter β:
plotted are β = 1

2 , 1
4 , 0, − 1

2 , −2, −5 and the limit case β→ −∞.

Particular cases are the models that correspond to the most
radial and tangential distribution functions. On the one hand,
the limit case β = 1

2 has the simple velocity dispersion profiles

σ2
r (r) = σ2

t (r) =
1
4

1
1 + r

· (34)

Particular about this dispersion profile is that it assumes a finite
value in the center. On the other side of the range for possi-
ble anisotropies, we can consider the limit β → −∞, which
corresponds to a model with purely circular orbits. For such
a model, the radial dispersion is of course identically zero,

whereas the transverse velocity dispersion is the circular ve-
locity corresponding to the Hernquist potential,

σ2
t (r) = v2

c(r) =
1
2

r
(1 + r)2

· (35)

In the top panel of Fig. 2 we plot the radial velocity dispersion
profile for various models with a different anisotropy β. Both
at small and large radii, the radial dispersion is a decreasing
function of β, as expected.

The line-of-sight velocity dispersion for anisotropic models
is found through the formula

σ2
p(R) =

2
I(R)

∫ ∞

R

ρ(r)σ2
los(r,R) r dr√
r2 − R2

, (36)

where σlos(r,R) is the velocity dispersion at the position r on
the line of sight R in the direction of observer. It is a linear
combination of the radial and transverse velocity dispersions
in this point,

σ2
los(r,R) =

(
1 − R2

r2

)
σ2

r (r) +
R2

2r2
σ2

t (r). (37)

We can equivalently write

σ2
p(R) =

2
I(R)

∫ ∞

R

[
1 − β(r)

R2

r2

]
ρ(r)σ2

r (r) r dr√
r2 − R2

· (38)

For the general Hernquist models with a constant anisotropy,
the integration (38) cannot be performed analytically. But for
all integer and half-integer β’s, σ2

p(R) can be expressed in terms
of polynomials and the function X, defined in Eq. (4). For ex-
ample, for the limit model β = 1

2 we obtain after some algebra

I(R)σ2
p(R) =

1
48π (1 − R2)3

×
[
3(4 − 14R2 + 35R4 − 28R6 + 8R8) X(R)

−(28 − 57R2 + 68R4 − 24R6)
]
+

R
4
· (39)
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For the other limit model, the one with only circular orbits, we
find

I(R)σ2
p(R) =

R2

48π (1 − R2)4

×
[
−(120 − 120R2 + 189R4 − 108R6 + 24R8) X(R)

+(154 − 117R2 + 92R4 − 24R6)
]
+

R
4
, (40)

in agreement with Hernquist (1990).
In the bottom panel of Fig. 2 we plot the line-of-sight dis-

persion profiles for a number of different values of β. The be-
havior of the individual profiles is analogous to the spatial dis-
persion profiles: except for the β = 1

2 model, which has a finite
central dispersion, the σp profiles start at zero in the center, rise
strongly until a certain maximum and then decrease smoothly
towards zero at large projected radii. The behavior for R � 1
can be quantified if we introduce the asymptotic expansion (33)
into the formula (38),

σ2
p(R) ≈ 8

15π

(
5 − 4β
5 − 2β

)
1
R
+ · · · (41)

The dependence of the line-of-sight dispersion as a function of
the anisotropy is depends strongly on the projected radius: at
small projected radii, σp decreases with increasing β, whereas
for large radii, σp increases with increasing β. In other words,
radial models have a larger central and a smaller outer line-
of-sight dispersion than their tangential counterparts. This is
a direct consequence of the weight of the radial and transver-
sal velocity dispersions in the linear combination (37): at small
projected radii, the radial dispersion contributes the dominant
term, whereas for the outer lines of sight, the transversal dis-
persion term dominates.

5. Models with increasing anisotropy

5.1. Background

Osipkov (1979) and Merritt (1985) developed an inversion
technique for a special class of distribution functions that only
depend on energy and angular momentum through the combi-
nation

Q ≡ E − L2

2r2
a
, (42)

with ra the so-called anisotropy radius, with the additional con-
dition that

F(E, L) = 0 for Q < 0. (43)

Such models correspond to an augmented density of the form

ρ̃(ψ, r) =

(
1 +

r2

r2
a

)−1

f (ψ). (44)

In this case, the fundamental integral Eq. (1) can be inverted in
a similar way as the Eddington relation,

F(E, L) =
1

2
√

2 π2

d
dQ

∫ Q

0

d f
dψ

dψ√
Q − ψ · (45)

The anisotropy β(r) for the Osipkov-Merritt models can be
found by means of formula (11),

β(r) =
r2

r2 + r2
a
· (46)

These models are hence isotropic in the center and completely
radially anisotropic in the outer regions. The parameter ra de-
termines how soon the anisotropy turns from isotropic to radial.
In particular, for ra → ∞, Q is nothing else than the binding
energy, and the Osipkov-Merritt models reduce to the isotropic
models.

The Osipkov-Merritt models were generalized by
Cuddeford (1991), who considered models which corre-
spond to an augmented density of the form

ρ̃(ψ, r) = r−2β0

(
1 +

r2

r2
a

)−1+β0

f (ψ). (47)

These models reduce to the Osipkov-Merritt models if we set
β0 = 0. Within this formalism, the distribution function can be
calculated in a similar way as for the Osipkov-Merritt models.
The distribution functions have the general form

F(E, L) = F0(Q) L−2β0 , (48)

with the additional condition (43). The solution of the integral
Eq. (1), valid for β0 < 1, reads in this case

F(E, L) =
2β0

(2π)3/2

L−2β0

Γ(1 − β0) Γ(1 − θ)
× d

dQ

∫ Q

0

dm f
dψm

dψ
(Q − ψ)θ

, (49a)

where

m = 1 + int
(

1
2
− β0

)
(49b)

θ = frac
(

1
2
− β0

)
. (49c)

The most interesting cases are those where β0 is either inte-
ger or half-integer. For integer values of β0, the general for-
mula (49abc) reduces to

F(E, L) =
2β0

2
√

2 π2

L−2β0

Γ(1 − β0)
d

dQ

∫ Q

0

d1−β0 f
dψ1−β0

dψ√
Q − ψ · (50)

For half-integer values of β0, the integral Eq. (1) is a degen-
erate integral equation, which can be solved without a single
integration (Dejonghe 1986; Cuddeford 1991)1,

F(E, L) =
2β0

(2π)3/2

L−2β0

Γ(1 − β0)

d
3
2−β0 f

dψ
3
2−β0


ψ=Q

· (51)

As for the Osipkov-Merritt models, the anisotropy of the
Cuddeford models has a very simple functional form, which
can be found through (11),

β(r) =
r2 + β0r2

a

r2 + r2
a
· (52)

1 Apparently, a factor Γ( 3
2 − β0) is missing in the denominator in

formula (30) of Cuddeford (1991).
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They hence have an anisotropy β0 in the center2, and be-
come completely radially anisotropic in the outer regions. The
anisotropy radius ra is again a degree for how quick this tran-
sition takes place. In particular, for ra → ∞, the Cuddeford
models reduce to models with a constant anisotropy β =
β0. Because the range of values for β0 for which the inver-
sion (49abc) is mathematically defined is only restricted by
β0 < 1, distribution functions can in principle be calculated
with any degree of anisotropy in the center, ranging from very
radial to extremely tangential. Whether these distribution func-
tions correspond to physically acceptable solutions depends on
the positivity, however.

5.2. Hernquist models with increasing anisotropy

5.2.1. The distribution function

For the Hernquist potential-density pair (2ab), the augmented
density corresponding to the Cuddeford formalism is readily
calculated. We obtain

f (ψ) =
1

2π

1 + λ
(
1 − ψ
ψ

)2
1−β0

ψ4−2β0

(1 − ψ)1−2β0
, (53)

where we have set λ = 1/r2
a . Combining this expression with

the general Cuddeford solution (49abc) we can obtain distri-
bution functions that self-consistently generate the Hernquist
potential-density pair, and which have an arbitrary anisotropy
in the center and a completely radial structure in the outer
regions. In order to represent physically acceptable dynam-
ical models, it is necessary that these distribution functions
are positive over the entire phase space, i.e. F(E, L) > 0 for
0 6 Q 6 1. Before trying to actually calculate the distribution
functions, it is useful to investigate which region in the (β0, λ)
parameter space corresponds to physically acceptable distribu-
tion functions.

First of all, it is obvious that the models with β0 >
1
2 will

not correspond to non-negative distribution functions: the dis-
tribution function is already too radial for λ = 0 (Sect. 4.2.1),
and will become even more radial for larger λ. We can there-
fore limit the subsequent discussion to β0 6 1

2 . Now consider
such a fixed value β0, and consider all Cuddeford models corre-
sponding to this central anisotropy. For λ → 0, the Cuddeford
model reduces to the model with constant anisotropy β0, which
is physically acceptable (Sect. 4.2.1). For λ → ∞, the distri-
bution function will only consist of radial orbits, for which
the distribution function is not positive. It can therefore be ex-
pected that, for a given value of β0 6 1

2 , a range of λ’s is al-
lowed, starting from 0 up to a certain λmax.

Next, we have to investigate how λmax varies with β0,
i.e. which anisotropy radii are allowed for a given central
anisotropy? Distribution functions with a strong central tan-
gential anisotropy and a small anisotropy radius are likely to be
negative. Indeed, consider the orbital structure of such a galaxy.
Because the outer regions of the galaxy (r � ra) are strongly
radially anisotropic, the vast majority of the stars there must be

2 This explains why we prefer the parameter β0 above α = −β0

originally adopted by Cuddeford (1991).

Table 1. The range of anisotropy radii which give rise to a positive dis-
tribution function of the Cuddeford type, consistent with the Hernquist
potential-density pair. For a given value of β0, this range corresponds
to 0 6 λ 6 λmax, or equivalently, to ra,min 6 ra 6 ∞.

β0 λmax ra,min

6 −1.500 0.000 ∞
−1.375 1.764 0.753
−1.250 3.598 0.527
−1.125 5.550 0.424
−1.000 7.582 0.363
−0.875 9.680 0.321
−0.750 11.83 0.291
−0.625 14.02 0.267
−0.500 16.23 0.248
−0.375 18.51 0.232
−0.250 20.57 0.220
−0.125 22.61 0.210

0.000 24.42 0.202
0.125 25.87 0.197
0.250 26.70 0.194
0.375 26.42 0.195
0.500 24.00 0.204

λ
30

20

10

0.5 0 -0.5 -1 -1.5 -2 β0

Fig. 3. The region in (β0, λ) space corresponding to a positive distri-
bution function of the Cuddeford type, consistent with the Hernquist
potential-density pair.

on nearly radial orbits. These stars also pass through the cen-
tral regions, where they will contribute to the central density
and radial velocity dispersion as well. The smaller the value
of ra, i.e. the larger the value of λ, the stronger the contribu-
tion of stars on such nearly radial orbits. In order to create a
core where the anisotropy is tangential, a large number of stars
hence have to be added which move on tightly bound nearly
circular orbits. But we are limited from keeping on adding
such stars, because we cannot exceed the spatial density of the
Hernquist profile, which has only a fairly weak r−1 divergence.
We therefore expect that no Cuddeford models will exist be-
yond a certain minimal β0 (except for the degenerate case of the
constant anisotropy models, which have no radial anisotropy at
large radii). Moreover, it can be expected that for models with
a tangential central anisotropy, the range of anisotropy radii is
more restricted than for models with a radial or isotropic cen-
tral anisotropy, i.e. that λmax(β0) is a increasing function of β0.

By numerical evaluation of the integral in Eq. (49a), we
calculated λmax(β0) for a number of values for β0 (Table 1).
The region in parameter space where the Cuddeford-Hernquist
models are physical is shown in Fig. 3. Notice that all models
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Fig. 4. Comparison of the distribution function corresponding to Hernquist models of the Cuddeford type and Hernquist models with a constant
anisotropy. The distribution functions are represented as isoprobability contours in turning point space. The solid lines correspond to the
Cuddeford distribution functions, with the parameters β0 and λ displayed in the down left corner of each diagram. The dotted lines represent
the distribution functions of the corresponding Hernquist models with a constant anisotropy β0.

with β0 6 − 3
2 and λ > 0 are negative at some point in phase

space and are thus unphysical: the Hernquist potential-density
pair can support no (non-degenerate) distribution functions of
the Cuddeford type with a central anisotropy β0 6 − 3

2 .

We are primarily interested in those models where the dis-
tribution function can be expressed in terms of elementary
functions. This is of course possible for all half-integer val-
ues of β0, because the calculation of the distribution function
involves no integrations. Also for the integer values of β0, the
distribution function can be calculated analytically, through the
formula (50). Because of the limited region in (β0, λ) space
where Cuddeford models are non-negative, this leaves us with
four models with analytical distribution functions, correspond-
ing to β0 =

1
2 , 0, − 1

2 and −1. The most simple of them is the
case β0 =

1
2 , for which we obtain

F(E, L) =
1

4π3

1
L

3Q2 + λ (3Q2 − 5Q + 2)√
1 + λ

(
1−Q

Q

)2
· (54)

It is straightforward to check that this distribution function re-
mains positive for 0 6 λ 6 24, in agreement with the numer-
ical result in Table 1. For β0 = 0, we recover the Osipkov-
Merritt model,

F(E, L) =
1

8
√

2π3

{
3 arcsin

√
Q

(1 − Q)5/2

+
√

Q (1 − 2Q)
[
8Q2 − 8Q − 3

(1 − Q)2
+ 8λ

]}
, (55)

in agreement with Hernquist (1990). For the two other cases,
β0 = − 1

2 and β0 = −1, the distribution function can also be
written in terms of elementary functions, but the expressions
are somewhat more elaborate.

In Fig. 4 we show the distribution function of the
Cuddeford type for four different models. The models on the
top row have a radial central anisotropy, whereas those in
the bottom panels have a tangential anisotropy in the center.
The left and right column correspond to two different values
of the anisotropy radius. The dotted distribution functions on
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the background are the distribution functions with a constant
anisotropy β0.

The character of the Cuddeford models can directly be
interpreted from these figures. Compared to the constant
anisotropy models, the Cuddeford models have a much larger
fraction of stars on radial orbits, visible for both models with
radial and tangential central anisotropy. The most conspicuous
feature of each of the Cuddeford distribution functions is that
the right part of the (r−, r+) diagram is completely empty, i.e.
at large radii only the most radial orbits are populated, which
is necessary to sustain the radial anisotropy. The boundary of
the region in turning point space beyond which no orbits are
populated can be calculated by translating the equation Q = 0
in terms of the turning points r− and r+.

r2− ψ(r−)

1 + λ r2−
=

r2
+ ψ(r+)

1 + λ r2
+

· (56)

When we substitute the Hernquist potential (2a), we can actu-
ally calculate the range of allowed orbits,

0 6 r− 6 rc,max (57)

r− 6 r+ 6
(1 + r−) +

√
1 + 2r− + r2− + 4λr3−
2λr2−

, (58)

where rc,max represents the radius of the largest allowed circular
orbit for a given λ,

rc,max =
31/3 + (9

√
λ +
√

81λ − 3)2/3

32/3
√
λ (9
√
λ +
√

81λ − 3)1/3
· (59)

Obviously, the larger λ, the more restricted the range of al-
lowed orbits, because the transition to radial anisotropy occurs
at smaller radii for large values of λ. This can be seen when
comparing the left and right panels of Fig. 4.

5.2.2. The velocity dispersions

In order to calculate the radial velocity dispersion associated
with models of the Cuddeford type, we use the general for-
mula (8a). After some manipulation, we obtain

σ2
r (r) =

r1−2β0 (1 + r)3

(1 + λr2)1−β0

∫ ∞

r

(1 + λr′2)1−β0 dr′

r′1−2β0 (1 + r′)5
· (60)

In general, this integral needs to be evaluated numerically, but
for the four models with integer and half-integer values of β0,
it can be performed analytically. For example, for the Osipkov-
Merritt model β0 = 0, we find

σ2
r (r) =

r (1 + r)3

1 + λr2
ln

(
1 + r

r

)

− r (25 + 52r + 42r2 + 12r3) − λ r (1 + 4r)
12 (1 + r) (1 + λr2)

, (61)

which reduces to the isotropic dispersion (19) for λ = 0. For the
other integer and half-integer values of β0, the radial dispersion
can also be expressed in terms of algebraic functions and loga-
rithms, but the expressions are somewhat more elaborate.

In the top panels of Fig. 5 we plot the radial velocity dis-
persion profiles for Hernquist-Cuddeford models, for varying

β0 and varying λ (left and right panels respectively). The be-
havior of σr as a function of β0 is predictable. At small radii,
the different models have a different behavior, with the largest
dispersion for the most centrally radial models. At large radii
they all have a similar, purely radial, orbital structure, and as
a consequence their dispersion profiles all converge towards a
single profile. This limiting profile is the radial velocity disper-
sion profile that corresponds to the (hypothetical) model with
a completely radial orbital structure, which we can obtain by
either setting β = 1 in the expression (32), or setting β0 = 1 in
the expression (60),

σ2
r (r) =

1
12

1 + 4r
r (1 + r)

· (62)

For a fixed central anisotropy, the behavior of the radial disper-
sion as a function of the anisotropy radius also follows a simple
trend: the σr profiles increase with increasing λ, and the curves
are all bounded by two limiting profiles: on the one hand the
dispersion profile (32) of the constant anisotropy model (ob-
tained by setting λ = 0), and on the other hand the hypothetical
dispersion profile (62) of the purely radial model (which corre-
sponds to λ → ∞). Dispersion profiles with large λ will more
quickly lean towards the purely radial profile than models with
small λ, because the transition to a strongly radial anisotropy
occurs at r ∼ ra = 1/

√
λ.

The bottom panels of Fig. 5 show the line-of-sight velocity
dispersion of the Hernquist-Cuddeford models. These profiles
had to be calculated numerically. The dependence of the line-
of-sight dispersion upon λ and β0 can be easily interpreted. In
particular, the line-of-sight dispersion profiles of the Cuddeford
models tend towards the line-of-sight dispersion profile of the
hypothetical purely radial Hernquist model, which reads

I(R)σ2
p(R) =

R
8
+

1
96R
− 1

48π (1 − R2)2

×
[
R2 (20 − 29R2 + 12R4) X(R) + (2 − 7R2 + 4R4)

]
. (63)

6. Models with decreasing anisotropy

6.1. Background

In order to construct dynamical models with a decreasing
anisotropy, i.e. with a tangentially anisotropic halo, no special
inversion techniques exist, such that we have to rely on the gen-
eral formulae of Dejonghe (1986) to invert the fundamental in-
tegral Eq. (1). A disadvantage is that these formulae are numer-
ically unstable. Their usefulness is therefore actually restricted
to analytical models. But this is not straightforward: a direct
application of the inversion formulae to an arbitrary analytical
augmented density ρ̃(ψ, r), even if its looks rather simple, can
result in a cumbersome mathematical exercise, because the in-
version formulae are quite elaborate.

A useful strategy to construct models with a tangential halo
without the need to cope with the complicated general formu-
lae, is to profit from the linearity of the integral Eq. (1). In par-
ticular, it is very interesting to generate augmented densities
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Fig. 5. The radial (upper panels) and line-of-sight (lower panels) velocity dispersion profiles of the Hernquist-Cuddeford models. The different
curves in the two left panels correspond to models with the same anisotropy radius λ = 1 (i.e. ra = 1), but with a different central anisotropy
parameter β0: plotted are β = 1

2 , 0, − 1
2 and −1. The dotted curves are the dispersion profiles of the (hypothetical) completely radial Hernquist

model, which corresponds to β0 = 1. The two panels on the right-hand side contain the dispersion profiles of models with the same central,
slightly tangential, anisotropy parameter β0 = − 1

2 , but with a varying anisotropy radius. The various curves correspond to λ = 0 (black solid
line), 0.2, 1, 3, 8 and λmax ≡ 16.23. Again, the dotted curves are the dispersion profiles of the (hypothetical) completely radial Hernquist model,
which corresponds to λ→∞.

ρ̃(ψ, r), which can be expanded in a series of functions ρ̃k(ψ, r),
which depend on r only through a power law,

ρ̃(ψ, r) =
∑

k

ρ̃k(ψ, r) =
∑

k

fk(ψ) r−2βk . (64)

Each of the augmented densities ρ̃k(ψ, r) corresponds to a dy-
namical model with a constant anisotropy βk. Combining the
linearity of the integral Eq. (1) with the results of Sect. 4.1,
we find that the distribution function corresponding to the den-
sity (64) reads

F(E, L) =
∑

k

Fk(E, L), (65a)

with

Fk(E, L) =
2βk

(2π)3/2

L−2βk

Γ(1 − βk) Γ( 1
2 + βk)

× d
dE

∫ E

0

d fk
dψ

dψ
(E − ψ)1/2−βk

· (65b)

Equivalently, the moments of the distribution function can be
derived from the series expansion.

6.2. Hernquist models with decreasing anisotropy

6.2.1. Construction of the augmented density

For every potential ψ(r), we can create an infinite number of
functions Z(ψ, r) which satisfy the identity Z(ψ(r), r) ≡ 1.

For the Hernquist potential, we can easily create such a one-
parameter family of functions Zn(ψ, r),

Zn(ψ, r) =
[
ψ (1 + r)

]n ≡ 1, (66)

with n a natural number. If we multiply this family with the
augmented density (27) of the constant anisotropy Hernquist
models, we create a new two-parameter family of dynami-
cal models, that will self-consistently generate the Hernquist
potential-density pair,

ρ̃(ψ, r) =
1

2π
ψ4−2β0+n

(1 − ψ)1−2β0

(1 + r)n

r2β0
· (67)

Defining a new parameter β∞ = β0 − n
2 , we can write this aug-

mented density also as

ρ̃(ψ, r) =
1

2π
ψ4−2β∞

(1 − ψ)1−2β0

(1 + r)2(β0−β∞)

r2β0
· (68)

Because we assumed that n is a natural number, we can expand
the binomial in the nominator of the density (67), and write it
in the form (64), with

fk(ψ) =
1

2π

(
n
k

)
ψ4−2β∞

(1 − ψ)1−2β0
(69a)

βk = β0 − k
2
, (69b)

with 0 6 k 6 n. The reason why we chose β0 and β∞
as parameters becomes clear when we look at the expres-
sion for the anisotropy corresponding to this family of density
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Fig. 6. Comparison of the distribution function corresponding to
Hernquist model with increasing anisotropy with β0 =

1
2 and β∞ = −2,

and the constant anisotropy model with β = −2. The distribution func-
tions are represented as isoprobability contours in turning point space.

functions – for the moment being without bothering whether
the density corresponds to a physically acceptable distribution
function. By means of the formula (11), we obtain

β(r) =
β0 + β∞ r

1 + r
· (70)

The anisotropy equals β0 in the center and decreases to β∞ at
large radii. Because n can in principle assume any natural num-
ber, this family of augmented densities hence corresponds to
dynamical models which can grow arbitrarily tangential in the
outer regions. In particular, by setting n = 0 we recover the
models with constant anisotropy β = β0 = β∞ from Sect. 4.2.

6.2.2. The distribution function

We can calculate the distribution function of these models by
applying the recipe (65b) to each of the components (69ab). We
obtain after some algebra

F(E, L) =
2β0

(2π)5/2
Γ(5 − 2β∞) L−2β0 E5/2−2β∞+β0

×
n∑

k=0

(
n
k

)
1

Γ( 2+k
2 − β0) Γ( 7

2 − k
2 − 2β∞ + β0)

(
L√
2E

)k

×2F1

(
5 − 2β∞, 1 − 2β0;

7
2
− k

2
− 2β∞ + β0;E

)
. (71)

This family of models is restricted by the condition β0 6 1
2 ,

because for higher values of β0 the distribution function be-
comes negative. For all half-integer and integer values of β0

(and therefore also of β∞), this expression can be written in
terms of elementary functions, very analogous with the distri-
bution functions of the constant anisotropy models: the expres-
sion contains integer and half-integer powers ofE and 1−E and
a factor arcsin

√E. The models characterized by β0 =
1
2 are of

a particular kind. The hypergeometric functions in Eq. (71) dis-
appears for β0 =

1
2 , such that the distribution function can be

written as a finite power series of
√E and L.

Fig. 7. The radial (upper panel) and line-of-sight (lower panel) ve-
locity dispersion profiles of Hernquist models with a decreasing
anisotropy. All models have the same tangential outer anisotropy
β∞ = −2, but they have a different central anisotropy parameter β0:
plotted are β0 =

1
2 , 0, − 1

2 , −1 and −2 (black line).

An interesting characteristic of these models is revealed
when we look at the asymptotic behavior of the distribution
function at large radii, i.e. for E → 0. The term corresponding
to k = n will contribute the dominant term in the sum (71), such
that we obtain

F(E, L) ≈ 2β∞

(2π)5/2

Γ(5 − 2β∞)

Γ(1 − β∞) Γ
(

7
2 − β∞

)
×L−2β∞ E5/2−β∞ + · · · (72)

This expansion is at first order independent of β0, such that
all models with the same β∞ will have a similar behavior at
large radii. In particular, all distribution functions correspond-
ing to a particular β∞ will at large radii behave as the Hernquist
model with constant anisotropy β = β∞. This is illustrated
in Fig. 6, where we compare the distribution function of a
model with a radial core and a tangential halo with the con-
stant anisotropy model that has the corresponding tangential
anisotropy. At small radii, the difference between both distri-
bution functions is obvious: the former one has more stars on
radial orbits, whereas the latter prefers to populate circular-like
orbits. At large radii, however, the isoprobability contours of
both models agree very well.

Finally, notice that there is no analogue for this behavior at
small radii: not all models with a fixed β0 will have a similar
behavior for E → 1, i.e. at small radii.

6.2.3. The velocity dispersions

In order to calculate the velocity dispersion profiles of the mod-
els of this type, we have various possibilities. We can either
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calculate the dispersion for each of the n terms (69a) through
formula (26) and sum the results, or directly apply the general
recipe (8ab) on the expression (68). In either case, we obtain an
expression very akin to the expression (32) of the models with
constant anisotropy,

σ2
r (r) = r1−2β0 (1 + r)3+2β∞−2β0 B 1

1+r

(
5 − 2β∞, 2β0

)
. (73)

This expression can be written in terms of elementary functions
for all β0 with 4β0 an integer (and hence also 4β∞ an integer).

Not as a surprise, the asymptotic expressions for σ2
r (r) for

r � 1 read

σ2
r (r) ≈ 1

5 − 2β∞
1
r
+ · · · (74)

i.e. they are similar to the corresponding expansions of the con-
stant anisotropy models with β = β∞. This behavior is illus-
trated in the upper panel of Fig. 7, where we plot the radial
velocity dispersion profile for a set of models with varying β0

and a fixed β∞. At small radii, the models have different profiles
(those with the most radial anisotropy have the largest values
of σr), but at large radii, they all converge towards a common
asymptotic expansion.

The calculation of the line-of-sight velocity dispersion is
also similar to the case of constant anisotropy. It is found that
σp(R) can be written in terms of elementary functions for all
integer and half-integer values of β0, and that the asymptotic
behavior for R� 1 reads

σ2
p(R) ≈ 8

15π

(
5 − 4β∞
5 − 2β∞

)
1
R
+ · · · , (75)

which is at first order independent of β0. An illustration is
shown in the bottom panel of Fig. 7.

7. Conclusions

Three new families of anisotropic dynamical models have
been presented that self-consistently generate the Hernquist
potential-density pair. For all models, in particular for the
Cuddeford models of Sect. 5, we checked the conditions on the
adopted parameters such that the distribution is positive, and
hence physically acceptable, in phase space.

They host a wide variety of orbital structures: in general,
the models presented can have an arbitrary central anisotropy,
and a outer halo with the same anisotropy, a purely radial or-
bital structure, or an arbitrary, but more tangential, anisotropy.
In order to produce models that have an arbitrary anisotropy
in the central regions, and a more radial, but not purely radial,
anisotropy at large radii, the most cost-effective way seems to
construct a linear combination of a number of ‘component’ dy-
namical models, such as the ones presented here. This tech-
nique has been adopted for several years in the QP formalism
(Dejonghe 1989, for an overview see Dejonghe et al. 2001),
where most of the components in the program libraries have an
intrinsically tangential orbital structure.

For all of the presented models, we have analytical expres-
sions for the distribution function and the velocity dispersions
in terms of elementary functions. They are hence ideal tools for

a wide range of applications, for example to generate the ini-
tial conditions for N-body or Monte Carlo simulations. At this
point, a number of remarks are appropriate.

First, very few elliptical galaxies are perfectly spherical;
actually, various observational and theoretical evidence sug-
gests that many elliptical galaxies are at least moderately triax-
ial (Dubinski & Carlberg 1991; Hernquist 1993; Tremblay &
Merritt 1995; Bak & Statler 2000). Unfortunately, an extension
of the presented techniques to construct analytical axisymmet-
ric or triaxial systems is not obvious, because the internal dy-
namics of such stellar systems is much more complicated than
in the spherical case. Nevertheless, our models can be used as
an onset to construct numerical axisymmetric of triaxial dis-
tribution functions with different internal dynamical structures,
for example by the adiabatic squeezing technique presented by
Holley-Bockelmann et al. (2001).

Second, the models presented here are self-consistent mod-
els, whereas it is nowadays believed that most elliptical galax-
ies contain dark matter, either in the form of a central black hole
(Merritt & Ferrarese 2001 and references therein) and/or a dark
halo (Kronawitter et al. 2000; Magorrian & Ballantyne 2001).
When constructing dynamical models with dark matter, an ex-
tra component must be added to the gravitational potential. For
example, Ciotti (1996) constructed analytical two-component
models in which both the stellar and dark matter components
have a Hernquist density profile and an Osipkov-Merritt type
distribution function. The models presented in this paper can
also be extended to contain a dark halo or a central black hole.
Indeed, the adopted inversion techniques are perfectly suitable
for this, because the augmented density functions ρ̃(ψ, r) do not
necessarily need to satisfy the self-consistency condition (5).
Adding an extra term to the potential does not conceptually
change the character of the inversion, but it might complicate
the mathematical exercise.

Third, we have not discussed stability issues for the pre-
sented models. The study of the stability of anisotropic stellar
systems is difficult, and a satisfactory criterion can not easily
be given. For stability against radial perturbations, we can ap-
ply the sufficient criterions of Antonov (1962) or Dorémus &
Feix (1973), but numerical simulations have shown that these
criteria are rather crude (Dejonghe & Merritt 1988; Meza &
Zamorano 1997). Moreover, the only instability that is thought
to be effective in realistic galaxies is the so-called radial orbit
instability, an instability that drives galaxies with a large num-
ber of radial orbits to forming a bar (Hénon 1973; Palmer &
Papaloizou 1987; Cincotta et al. 1996). The behavior of galaxy
models against perturbations of this kind can only be tested
with detailed N-body simulations or numerical linear stabil-
ity analysis. Meza & Zamorano (1997) used N-body simula-
tions to investigate the radial orbit instability for a number of
spherical models of the Osipkov-Merritt type, including the
Hernquist model. They found that the models are unstable for
ra . 1, which significantly restricts the set of models that
correspond to positive distribution functions (see Table 1). It
would be interesting to extend this investigation to the three
families of Hernquist models presented in this paper, but this
falls beyond the scope of this paper.
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Hénon, M. 1959, Ann. Astrophys., 22, 126
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