
Mon. Not. R. Astron. Soc. 335, 441–458 (2002)

Kinematics of elliptical galaxies with a diffuse dust component – III.
A Monte Carlo approach to include the effects of scattering
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ABSTRACT
This paper is the third one in a series, intended to investigate how the observed kinematics of
elliptical galaxies are affected by dust attenuation. In Papers I and II, we investigated the effects
of dust absorption; here we extend our modelling in order to include the effects of scattering.
We describe how kinematical information can be combined with the radiative transfer equation,
and present a Monte Carlo code that can handle kinematical information in an elegant way.

Compared to the case where only absorption is taken into account, we find that dust attenu-
ation considerably affects the observed kinematics when scattering is included. For the central
lines of sight, dust can either decrease or increase the central observed velocity dispersion. The
most important effect of dust attenuation, however, is found at large projected radii. The kine-
matics at these lines of sight are strongly affected by photons scattered into these lines of sight,
that were emitted by high-velocity stars in the central regions of the galaxy. These photons
bias the line-of-sight velocity distributions (LOSVDs) towards high line-of-sight velocities,
and significantly increase the observed velocity dispersion and LOSVD shape parameters.
These effects are similar to the expected kinematical signature of a dark matter halo, such that
dust attenuation may form an alternative explanation for the usual stellar kinematical evidence
for dark matter haloes around elliptical galaxies.

We apply our results to discuss several other topics in galactic dynamics, where we feel
dust attenuation should be taken into account. In particular, we argue that the kinematics
observed at various wavelengths can help to constrain the spatial distribution of dust in elliptical
galaxies.

Key words: radiative transfer – scattering – methods: numerical – dust, extinction – galaxies:
elliptical and lenticular, cD – galaxies: kinematics and dynamics.

1 I N T RO D U C T I O N

It is now generally accepted that elliptical galaxies are complicated
objects, containing a variety of stellar populations, with a still poorly
constrained dark matter content and a multicomponent interstellar
medium. The latter, and in particular the interstellar dust compo-
nent, is not well understood. Nevertheless, knowledge about the
dust component in galaxies is of fundamental importance. On the
one hand, interstellar dust plays an active role in, for example, inter-
stellar chemistry and star formation, and is therefore a key ingredient
to understand galaxy structure and evolution. On the other hand, dust
is very effective in absorbing and scattering ultraviolet and optical
light, and knowledge about its presence, quantity and properties is
necessary to interpret any observable correctly.

�E-mail: maarten.baes@rug.ac.be
†Postdoctoral Fellow of the Fund for Scientific Research, Flanders Belgium
(FWO-Vlaanderen).

The far-infrared (FIR) fluxes detected in the 1980s by the IRAS
satellite at 60 and 100 µm unveiled the presence of a substantial
amount of dust in elliptical galaxies (Jura 1986; Bally & Thronson
1989; Knapp, Gunn & Wynn-Williams 1992). At that time, dust was
already observed in the form of dust lanes and patches for a num-
ber of early-type galaxies (Hawarden et al. 1981; Ebneter & Balick
1985; Véron-Cetty & Véron 1988). Recent surveys indicate that
dust extinction features are present in a large fraction of early-type
galaxies (van Dokkum & Franx 1995; Ferrari et al. 1999; Tomita
et al. 2000; Tran et al. 2001). These dust features, however, cannot
account for the high IRAS fluxes: the dust masses estimated from the
IRAS measurements exceed those estimated from integrating the ex-
tinction features by nearly an order of magnitude (Goudfrooij & de
Jong 1995). Moreover, the IRAS dust mass estimates are a lower limit
for the true dust masses, because IRAS is not sensitive to cold dust,
which emits the bulk of its radiation longwards of 100 µm. Calcula-
tions with a more realistic dust temperature distribution (Merluzzi
1998) and submillimetre observations (Fich & Hodge 1993; Wiklind
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& Henkel 1995) may indicate dust masses up to a magnitude higher
than the IRAS estimates. The only plausible way to solve this dust
mass discrepancy is to assume that the interstellar dust in elliptical
galaxies exists as a two-component medium: the less massive com-
ponent is optically visible in the form of dust lanes, whereas the more
massive one is distributed diffusely over the galaxy (Goudfrooij &
de Jong 1995).

Such a diffusely distributed dust distribution can be traced in
two ways. The most obvious way is to map the thermal emission
of the dust with spatially resolved FIR or submillimetre obser-
vations. A first effort to do this was undertaken by Leeuw, San-
som & Robson (2000), who used SCUBA imaging at 850 µm to
look for thermal emission from dust in NGC 4374. Unfortunately,
they could not detect a diffuse dust component, and found that the
bulk of the 850-µm core emission is more likely the result of syn-
chrotron radiation. Deeper imaging covering a larger wavelength
range is necessary to constrain the spatial distribution of dust in
this way. Hopefully, the new generation of FIR and submillimetre
instrumentation such as SIRTF and ALMA will help to clarify this
issue.

A second way in which the diffuse dust component in elliptical
galaxies can be traced is by colour gradients. Because the extinction
efficiency of dust grains decreases with wavelength, a diffuse dust
component is expected to generate bluer colours at larger projected
radii. Goudfrooij & de Jong (1995) and Wise & Silva (1996) found
that the dust distributions necessary to create the colour gradients
observed in a sample of elliptical galaxies are in reasonable agree-
ment with their observed integrated FIR fluxes. However, various
arguments seriously complicate the interpretation of colour gradi-
ents. Foremost, dust attenuation1 is not the only process that gener-
ates colour gradients: also age and metallicity variations can cause
broad-band colour gradients. Recently, Michard (2000) argued that
the mean observed colour gradient ratios of a sample of elliptical
galaxies are more likely the result of metallicity than of diffuse dust.
Even if the dust attenuation were the only process responsible for the
generation of colour gradients, tracing and quantifying the amount
of dust would still be complicated. First, the dust is not located be-
tween the source and the observer, but well mixed with the stars. As
a result, the amount of dust is not simply proportional to the amount
of reddening (Disney, Davies & Phillips 1989). Secondly, blueing
due to scattering partly compensates the effects of reddening due
to absorption, which suppresses the formation of large broad-band
colour gradients even if a substantial amount of dust is present (Witt,
Thronson & Capuano 1992).

We have set up a programme to investigate the effects of diffuse
dust on the observed kinematics of elliptical galaxies. In the first
two papers of this series (Baes & Dejonghe 2000, hereafter Paper I;
Baes, Dejonghe & De Rijcke 2000, hereafter Paper II) we investi-
gated how the light profile and the observed kinematics of elliptical
galaxies are affected by dust absorption. In this paper we extend our
models by including the effect of scattering. In Section 2 we explain
how the processes of dust absorption and scattering can affect the
observables of galaxies. In particular, we explain how kinematical
information can be included in the radiative transfer equation. In
Section 3, we argue that a Monte Carlo method is the most straight-
forward way to do this. We describe the code we developed, with
a special emphasis on the calculation of the observed kinematics.
We use this code to investigate the effects of dust attenuation on the
observed kinematics in elliptical galaxies. In Section 4 we present

1We refer to dust attenuation as the combined effect of absorption and
scattering.

a set of simple elliptical galaxy models, consisting of a stellar and
a dust component. We demonstrate how dust attenuation affects the
light profile and observed kinematics of these models in Section 5.
Section 6 is devoted to a discussion of our results, and, finally,
Section 7 sums up.

2 R A D I AT I V E T R A N S F E R
I N D U S T Y G A L A X I E S

2.1 The general radiative transfer equation

The basis for any study of attenuation is the radiative transfer equa-
tion (RTE), which statistically describes the interaction between
matter and light. In a general form, the time-independent RTE can
be written as (Chandrasekhar 1960; Mihalas 1978)

dI

ds
(r , k) = j(r , k) − κ(r )I (r , k), (1)

where s is the path length and I (r , k) represents the intensity at a
position r into a direction k. The right-hand side of equation (1)
contains two terms that represent how the radiation field changes as
a result of interactions with matter. The first term, the total emissivity
j(r , k), accounts for the sources of the radiation field. The second
term, where κ(r ) is the total opacity coefficient, represents the sinks.
The specific forms of both terms depend on which physical processes
are taken into account (e.g. stellar emission, absorption, scattering)
and they can be complicated functions that depend on the intensity
itself.

In a galaxy without dust attenuation, there are no sink terms, and
the only source in the radiation field is the (isotropic) emission of
photons by stars, such that j(r , k) = �(r ), where �(r ) represents the
stellar emissivity. If we take absorption by dust grains into account,
a sink term must be added, which accounts for the loss of photons
from the radiation field.2 The total opacity then equals the absorp-
tion coefficient, i.e. κ(r ) = κabs(r ). In either of these situations, the
RTE is an ordinary differential equation, and it can be solved by an
integration along the line of sight.

Not only do dust grains absorb photons, they also scatter them,
i.e. a number of photons are, as a result of an interaction with a dust
grain, removed from their path and sent into another direction. This
physical process is not a rare phenomenon: for typical Milky Way
dust grains, the probability for scattering even slightly exceeds the
probability for absorption in the optical wavelength range (Table 1).
It is therefore obvious that scattering should be included in radiative
transfer calculations. This will add two extra terms to the RTE. The
first one is a sink term that accounts for the loss of photons scattered
out of the beam. The total opacity will hence be the sum of the
absorption coefficient and the scattering coefficient, κ(r ) = κabs(r ) +
κsca(r ). The second extra term is a source term that characterizes the
gain of photons scattered into the beam. More precisely, this term
will contain the contribution of photons that had another direction k′,
but are now scattered into the direction k. Generally, the distribution
of angles after a scattering process is described by a scattering phase
function �(r , k, k′), which describes the probability that a photon
that comes from the direction k′ and is scattered at r will have k as
its new direction. By convention, it is normalized as

2In fact, dust absorption will also account for an additional source term,
because the energy absorbed by grains will be re-emitted at infrared wave-
lengths. Because we are primarily interested in the optical and near-infrared
regimes, however, this source term can safely be neglected.
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Table 1. The adopted optical properties of the
dust grains, at the central wavelengths of the
standard optical and near-infrared wavebands.
Tabulated are the relative extinction coeffi-
cient Xλ, the scattering albedo ωλ and the
asymmetry parameter gλ.

Band λ (nm) Xλ ωλ gλ

U 360 1.52 0.63 0.65
B 440 1.32 0.61 0.63
V 550 1.00 0.59 0.61
R 700 0.76 0.57 0.57
I 850 0.48 0.55 0.53
J 1250 0.28 0.53 0.47
H 1650 0.167 0.51 0.45
K 2200 0.095 0.50 0.43

∫ ∫
d	′

4π
�(r , k, k′) = 1 for all r and all k. (2)

The fraction of the intensity scattered from a solid angle d	′ around
an arbitrary direction k′ into the direction k will therefore equal
κsca(r )I (r , k′)�(r , k, k′) d	′/4π, such that the extra source term that
has to be added to the RTE reads

jsca(r , k) = κsca(r )

∫ ∫
d	′

4π
I (r , k′)�(r , k, k′). (3)

It is convenient to introduce the scattering albedo ω as the ratio of
the scattering coefficient to the total opacity coefficient,

ω(r ) = κsca(r )

κ(r )
= 1 − κabs(r )

κ(r )
. (4)

We finally find for the RTE,

dI

ds
(r , k) = �(r ) − κ(r )I (r , k)

+ ω(r )κ(r )

∫ ∫
d	′

4π
I (r , k′)�(r , k, k′). (5)

The inclusion of scattering turns the RTE into an integro-differential
equation, far more complicated than the ordinary differential equa-
tion if only absorption is taken into account. In particular, the scat-
tering term is responsible for the coupling of the RTE along different
paths: as a result of the integration over the angle, we cannot solve
the RTE for a single path, but we have to solve it for all paths at the
same time.

2.2 The geometry

The complexity of the RTE depends not only on which physical
processes are taken into account (the right-hand side), but also on
the geometry of the system. Indeed, the path length appearing in the
left-hand side of the RTE is in general a function of position and
direction, i.e. s = s(r , k). As a consequence, the (time-independent)
RTE is a partial differential equation with five independent coordi-
nates (see e.g. Mihalas 1978). This complexity, however, is reduced
if the system has symmetries. For example, in an axially symmetric
geometry, the azimuthal dependence vanishes, such that only four
independent coordinates need to be considered.

Particularly interesting is the spherical geometry, because in that
case only two coordinates remain: the radius r and the cosine µ of
the angle between the direction k and the local radial direction. The
aim of this paper is to provide a global picture of the effects of dust
attenuation on the observed kinematics of elliptical galaxies, rather

than modelling a specific, possibly geometrically complex, object.
For this goal, the assumption of spherical symmetry is satisfactory.

There are no ways to solve the general RTE (equation 5) analyti-
cally, but several techniques have been developed to solve it numeri-
cally. Because many astrophysical systems can in a first approxima-
tion be considered spherically symmetric, many efforts have been
spent on the RTE in spherical geometry. The pioneering work started
nearly 70 years ago (Kosirev 1934; Chandrasekhar 1934), and, in
particular, since the 1970s, a vast number of different approaches
have been developed (e.g. Hummer & Rybicki 1971; Schmid-Burgk
1975; Witt 1977; Flannery, Roberge & Rybicki 1980; Yorke 1980;
Rowan-Robinson 1980; Rogers & Martin 1984; Peraiah & Varghese
1985; Gros, Crivellari & Simonneau 1997). Most of these tech-
niques, however, are not suitable for our needs, because it seems
hard (and at least not obvious) to extend them such that they can
handle kinematical information. Only for Monte Carlo methods can
the kinematical information be included in an elegant way.

2.3 Including kinematical information

As long as scattering is not taken into account, the inclusion of
velocity information in the RTE is rather straightforward. Indeed,
instead of taking into account the entire stellar emissivity, we can
just consider the light from those stars whose velocity component in
the direction of the observer equals v‖. The emissivity of these stars
is given by �(r )φ(r , k, v‖), where φ(r , k, v‖) is the spatial LOSVD,
i.e. the probability for a star at position r to have a velocity com-
ponent v‖ in the direction k (Appendix A). Solving the RTE with
this emissivity, we obtain the LOSVDs observed in the plane of
the sky. Hence, if either dust attenuation is completely neglected or
only absorption by dust grains is taken into account, the observed
LOSVDs can be calculated from the spatial LOSVDs through a
single integration along the line of sight. Similar relations hold be-
tween the moments of the distribution function, and the moments
of the LOSVDs, e.g. the observed velocity dispersion profile can
be determined from the intrinsic velocity dispersions by a simple
integration along the line of sight. For more details, we refer the
reader to Paper I.

When scattering is included, however, the inclusion of kinemati-
cal information becomes much more complicated, because the ve-
locities of both the stars and the dust grains that scatter their light
need to be taken into account. Consider, for example, Fig. 1. A
photon with rest wavelength λ0 is emitted by a star moving with

Figure 1. The inclusion of kinematical information in the radiative transfer
equation. This figure shows the trajectory of a photon through the galaxy
(undulating line): after being emitted by the star, it is scattered once before
it leaves the galaxy. See text for more details.
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a velocity v∗ into a direction k0 (in a reference frame centred on
the galaxy centre). Assume that this photon is scattered by a dust
grain moving with velocity vd, and then scattered towards the ob-
server. The wavelength ‘detected’ by the dust grain is determined by
the relative velocity between star and dust grain, i.e. the dust grain
detects a wavelength

λ = λ0

[
1 − (v∗ − vd) · k0

c

]
. (6)

The dust grains scatter the photon coherently into the direction kobs,
such that the wavelength detected by the observer equals

λ = λ0

[
1 − (v∗ − vd) · k0

c

][
1 − (vd + v sys) · kobs

c

]
, (7)

where vsys is the system velocity with respect to the observer. The
line-of-sight velocity v‖ detected by the observer can be found from
the relation

λ = λ0

[
1 − v‖ + vsys · kobs

c

]
, (8)

which defines v‖ and already incorporates the system velocity. Be-
cause the velocities of dust grains and stars in galaxies are very
small compared the speed of light, second-order terms in v/c can
be safely neglected, such that with equations (7) and (8),

v‖ = v∗ · k0 + vd · (kobs − k0). (9)

When more scattering events are involved in the photon’s trajectory,
the relative velocities of each pair of subsequent dust grains have
to be taken into account. If we denote the total number of scatter-
ing events by M, the velocities of the dust grains by vdi and the
propagation directions by ki (for i = 1, . . . , M), we obtain

v‖ = v∗ · k0 +
M∑

i=1

vdi · (ki − ki−1) . (10)

In general, therefore, the inclusion of kinematical information into
radiative transfer problems is very complex. For our problem of
dust attenuation in elliptical galaxies, however, we can make one as-
sumption that reduces the complexity considerably: the summation
in formula (10), i.e. the common contribution of the dust velocities,
is in general negligible with respect to the first term, the contribution
of the stellar velocity. Several arguments support this assumption.
(i) It is reasonable to assume that the dust grains have smaller ve-
locities than the stars in elliptical galaxies. Indeed, if the dust grains
were to have large velocities, they would collide and heat up. How-
ever, the lion’s share of the dust in elliptical galaxies is assumed to be
cold (Fich & Hodge 1993; Goudfrooij & de Jong 1995; Wiklind &
Henkel 1995; Merluzzi 1998). (ii) Scattering off interstellar dust is
generally anisotropic, with a larger probability for forward scatter-
ing (see Section 4.2.2). In Appendix B we show that the anisotropic
nature of scattering contributes to reducing the importance of the
dust grain velocity terms in equation (10). (iii) There is no reason
why the velocity of dust grains in an elliptical galaxy would have
a preferential direction. The individual terms in the summation in
formula (10) will therefore have a random sign, and the summation
will in the mean be washed out by multiple scattering.

As a consequence, we can write equation (10) simply as v‖ =
v∗ · k0. Each photon hence carries the velocity component of the star
in the direction of the emission of the photon.

3 D E S C R I P T I O N O F T H E M O N T E
C A R L O RO U T I N E

3.1 Basic characteristics

We constructed a Monte Carlo code to solve our radiative trans-
fer problem. Usually, the main argument against the Monte Carlo
method is that it is computationally rather expensive compared to
other methods (see e.g. Baes & Dejonghe 2001a). It has other ad-
vantages, however, which make it very competitive, in particular in
an era when CPU time is not the most stringent limitation any more.
Important qualities of the Monte Carlo method are the possibility
for a proper error analysis and a very wide flexibility. Nice exam-
ples of this flexibility are the ability to handle arbitrary geometries
(Wolf, Fischer & Pfau 1998; Wood & Reynolds 1999; Gordon et al.
2001), the polarization of the scattered radiation (Code & Whitney
1995; Bianchi, Ferrara & Giovanardi 1996), the clumpiness of the
interstellar medium (Witt & Gordon 1996; Bianchi et al. 2000b) and
the self-consistent heating and re-emission of the absorbed radiation
(Wolf, Henning & Stecklum 1999; Bianchi, Davies & Alton 2000a;
Misselt et al. 2001). Although other methods have also been suc-
cessful in including some of these issues (e.g. Boissé 1990; Popescu
et al. 2000), the Monte Carlo method can generally be considered as
the most flexible method available. We make use of another possi-
bility of the Monte Carlo method: its ability to include kinematical
information in an elegant way. This possibility has recently been
explored by Matthews & Wood (2001), who studied the effect of
dust attenuation on the observed rotation curve in spiral galaxies.
Our modelling opens up the possibility to construct all LOSVDs
and hence to investigate the entire observed kinematical structure
of galaxies.

The principles of the Monte Carlo technique are outlined in de-
tail by various authors (Cashwell & Everett 1959; Mattila 1970;
Witt 1977; Yusef-Zadeh, Morris & White 1984; Fischer, Henning
& Yorke 1994; Bianchi et al. 1996). Basically, the routine consists
of following the individual trajectory of a very large number of pho-
tons through the galaxy. A photon’s history is given by a number
of quantities such as the position and propagation direction at birth,
the distance the photon travels before it interacts with a dust grain,
the kind of this interaction, etc. Each of these quantities is described
statistically by a random variable, taken from a particular probabil-
ity density. Our approach is based on Witt (1977) and Bianchi et al.
(1996). It includes the use of a continuous three-dimensional Carte-
sian reference system (no grid). Furthermore, we use the classical
tricks to optimize the routine: we assign a weight to each photon in
order to avoid the loss of photons due to absorption, and we apply
the forced first scattering mechanism to improve the statistics of
the scattered radiation (Cashwell & Everett 1959; Witt 1977). The
novelty of our Monte Carlo code is that it can calculate both pho-
tometric and kinematic data: not only the light profile, but also the
LOSVDs and the projected kinematic moments. It calculates these
data simultaneously in three modes: without dust attenuation, with
only absorption taken into account, and with dust attenuation fully
taken into account. It is a monochromatic code, i.e. it calculates the
observables in one single wavelength. If desired, the wavelength
dependence of the results can be investigated by running the code
various times at different wavelengths. We implemented the central
wavelengths of the optical U, B, V, R, I and the near-infrared J, H
and K broad bands.

3.2 Calculation of the light profile

The light profile of the galaxy is constructed by simulating an imag-
ing process. If a photon leaves the galaxy, we record the position of
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the last scattering event and the final propagation direction of the
photon. Because, in spherical symmetry, a path can be determined
by its projected radius, we only need to record the projected radius
of the photon’s final path. The registration of the photons is done
by constructing a histogram of the photons leaving the galaxy as a
function of R, where the contribution of each photon is measured
by its weight (see Witt 1977).

3.3 Calculation of the LOSVDs

The Monte Carlo method provides an elegant possibility to include
kinematical information. Indeed, we argued that the velocity infor-
mation that a photon carries is essentially the velocity component of
the star in the direction of the emission. This extra information can
easily be included in the Monte Carlo routine. The only extension
is that we have to generate not only an initial position and propaga-
tion direction for each photon, but also a stellar velocity. The initial
position and the stellar velocity have to be extracted in accordance
with the phase-space distribution function F(r , v), which represents
the probability of finding a star at the position r with velocity v . A
practical way to do so is to follow the strategy of Wybo & Dejonghe
(1996), who generated sets of phase-space coordinates of stars to
create N-body representations of globular clusters. First, a random
position r 0 is determined from the stellar emissivity, and then a
random stellar velocity v∗ is generated from the three-dimensional
probability density p(v) =LF(r 0, v)/�(r 0), using the acceptance–
rejection method (Abramowitz & Stegun 1972; Press et al. 1989).
Next, we determine a random emission direction k0, and determine
the velocity component of v∗ in the direction k0, i.e. v‖ = v∗ · k0.
Given these initial conditions, we follow the photon until the exit
conditions are satisfied, and calculate the projected radius of the
final line of sight. The photon will then be stacked, according to its
weight, in the appropriate bin in a two-dimensional array with axes
R and v‖. This process is repeated for a large number of photons,
and two-dimensional histograms are formed.

This method can be optimized in two ways. First, we see that
the velocity vector v∗ does not show up in the Monte Carlo pro-
cedure itself, but only in the classification process. Moreover, we
actually do not need the entire information contained in the velocity
v∗: we only need the component v‖ of the velocity in the direction
k0. Therefore it is sufficient to generate a random v‖ from the spatial
LOSVD φ(r 0, k0, v‖), which represents the probability density of
line-of-sight velocities for a star at position r 0 in the direction k0.
Instead of generating a three-dimensional velocity vector for each
photon in the beginning of the Monte Carlo cycle, it is hence suffi-
cient to generate one single line-of-sight velocity component. This
saves many random number generations and distribution function
evaluations, which are costly processes.

A second optimization eliminates the generation of v‖ altogether.
Instead of generating one single random v‖, we can, for each bin in
the velocity direction, calculate the probability that the line-of-sight
velocity will fall in that bin. If the boundaries of a bin are given by
v‖, j−1 and v‖, j , this probability equals∫ v‖, j

v‖, j−1

φ(r 1, k0, v‖)dv‖

≈ 1

2

φ(r 1, k0, v‖, j−1) + φ(r 1, k0, v‖, j )

v‖, j − v‖, j−1
.

(11)

For each photon, we assign a weighted value to each velocity bin cor-
responding to the final projected radius, which gives better statistics
than dropping the photon in a single bin.

3.4 Calculation of the projected kinematics

Of course, we are no longer able to write down a direct connec-
tion between the intrinsic moments of the distribution function and
the projected moments on the plane of the sky, contrary to the
absorption-only case (Paper I). Instead, we will calculate the pro-
jected moments directly from the obtained LOSVDs. The projected
kinematics we consider are the mean projected velocity v̄p, the pro-
jected velocity dispersion σp, the skewness k3, the kurtosis k4 and
the lowest-order Gauss–Hermite coefficients h3 and h4. Note, how-
ever, that for spherically symmetric non-rotating galaxies all odd
moments vanish, i.e. v̄p = k3 = h3 = 0.

3.5 Error analysis

Obviously, a reliable error analysis is necessary to estimate the ac-
curacy of the results. However, it will be even more important in
a later stage. Indeed, we are presently incorporating this radiative
transfer mechanism into the QP program (Dejonghe 1989), a code
for the dynamical modelling of gravitating systems. Therefore, it is
necessary that we can dynamically evaluate the error bars on any
observable: the program has to be able to calculate any observable
with a preset accuracy, required by either the user or another part
of the code itself. Monte Carlo methods satisfy this need: they can
keep on adding photons until any accuracy requirement is satisfied.

The determination of the errors is easy for observables that are
directly proportional to the number of photons detected in the bins,
e.g. the intensity. Because of the Poisson character of the noise,
the error bars on these quantities can be directly calculated from
the square root of the number of photons. The observed kinematics
we calculate, however, are not directly proportional to number of
photons obtained in the bins, such that we cannot adopt this simple
procedure. Therefore, we estimate the error on our observables us-
ing an alternative method. Assume we have calculated a value f for
a given observable (either photometrical or kinematical) after a run
with N photons. We divide the total number of photons into M sub-
sets, and, for each of these subsets, we calculate the corresponding
observable fi . The uncertainty on f is estimated as

� f =
[

1

M

M∑
i=1

( fi − f )2

]1/2

. (12)

Typically, we set M = 100, and we adopt a minimum number of
106 photons, i.e. 104 photons per subset.

4 T H E G A L A X Y M O D E L S

To investigate the effects of dust attenuation on the light profile and
the observed kinematics, we will adopt a set of dusty galaxy models,
similar to those in Papers I and II. They are spherically symmetric,
and consist of a stellar and a dust component.

4.1 The stellar component

For the stellar component we use a self-consistent Plummer model
(Plummer 1911; Dejonghe 1987), defined by the potential–density
pair

ψ(r ) = GM√
r 2 + c2

, (13a)

ρ(r ) = 3M

4π

(
1 + r 2

c2

)−5/2

. (13b)
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We adopt a core radius c = 5 kpc, a total mass M = 6 × 1011 M
and a (constant) mass-to-light ratio ϒ = 4ϒ, such that the total
emitted luminosity equals L= 1.5 × 1011 L.3 As in Paper I, we
consider different Plummer models, each with a different value for
the parameter q, which describes the internal anisotropy of the stellar
orbits. We adopt three different models: a radial model (q = 2), the
isotropic model (q = 0) and a tangential model (q = −6). These are
the same values as in Paper I, except that we replace the radial model
with q = 1 by the model with q = 2. The reason for preferring q = 2
above q = 1 has a computational nature: the spatial LOSVDs can
be calculated analytically for q = 2, whereas this is not possible for
the q = 1 model (Appendix A).

4.2 The dust component

As shown in Section 2.1, a complete characterization of the dust
component requires a specification of the opacity κ(r ), the albedo
ω(r ) and the scattering phase function �(r, k, k′). The opacity sets
the total amount of dust and its spatial distribution, whereas the other
two quantities describe the optical properties at a given distance to
the galaxy centre. In order to limit the number of parameters in our
model, we will assume that the optical properties of the dust grains
are the same all over the galaxy, such that the albedo and the phase
function become independent of r. We will return to this assumption
in Section 5.3.3.

4.2.1 The dust distribution

We adopt the same family of dust components considered in Papers I
and II, characterized by the dust number density

n(r ) = n0

(
1 + r 2

c2

)−α/2

, (14)

where n0 is the dust density at the centre of the galaxy, and c and
α determine the actual shape of the dust distribution. Because the
effects of varying α and c are roughly similar, we restrict ourselves to
varying the dust exponent α, and we fix the dust core radius to c = 5
kpc, equal to the stellar core radius. The variation of α still allows
us to explore a large variety of star–dust geometries: small values
of α correspond to centrally concentrated distributions, whereas for
large α the distribution is shallower (Paper I).

At a fixed wavelength λ, the opacity function κλ(r ) can be de-
rived from the dust density by multiplication with the (wavelength-
dependent) dust cross-section sλ. To characterize the dust distribu-
tion at a given wavelength, we thus need three parameters: the dust
exponent α, the central dust number density, and the dust cross-
section sλ. It is more convenient, however, to use another, equiva-
lent, set of parameters. Indeed, if the opacity function is known at
one particular wavelength, it can be determined at any other wave-
length. Usually, the V band is used as the reference wavelength. We
can then write κλ(r ) = XλκV (r ), where Xλ ≡ sλ/sV is the extinction
coefficient, relative to the V band. It is then customary to introduce
the total V-band optical depth as4

3These parameters differ from those adopted in Paper II, which contains an
error: the adopted mass is inconsistent with the velocity dispersion. When
we refer to results of Paper II, these are scaled to the parameters adopted in
this paper.
4In this definition, τV is defined as the optical depth from the centre of the
galaxy to the edge. We want to stress that this definition differs by a factor
of 2 from the definition of the optical depth that we adopted in Papers I and

τV =
∫ ∞

0

κV (r ) dr. (15)

If we use the triplet (τV , α, Xλ) as parameters, the opacity at an
arbitrary wavelength λ can be written as

κλ(r ) = 2√
π

�
(

α

2

)
�

(
α−1

2

) XλτV

c

(
1 + r 2

c2

)−α/2

. (16)

4.2.2 The phase function

We can safely assume that the phase function does not depend inde-
pendently on the four variables (k, k′), but only on the angle between
the two directions k and k′. Setting k · k′ = cos α, we can write the
phase function as �(cos α). Probably the most widely adopted phase
function that can describe anisotropic scattering is the one named
after Henyey & Greenstein (1941). It has been derived empirically,
as a description of the scattering of light in reflection nebulae in the
Galaxy, and has a simple analytical form,

�(cos α) = 1 − g2

(1 + g2 − 2g cos α)3/2
. (17)

This family of phase functions contains the so-called asymmetry
parameter g, which is a measure of the anisotropy of the scattering.
In particular, for g = 0 the scattering is isotropic, whereas for g = 1
the scattering is completely forward.

4.2.3 The optical properties

From the previous subsections, we see that, in total, we need five
parameters to describe a dust component at a given wavelength λ:
the V-band optical depth τV , the dust exponent α, the relative ex-
tinction coefficient Xλ, the scattering albedo ωλ and the asymmetry
parameter gλ. In principle, all of these parameters could be consid-
ered as free parameters. In order to limit the degrees of freedom,
however, we decided not to consider the optical properties of the
dust as a set of free parameters, but to use a fixed set of dust pa-
rameters. The values we use are listed in Table 1. They are taken
from Gordon, Calzetti & Witt (1997), who derived them from an
interpolation between a large set of empirical data of typical Milky
Way dust. Notice in particular that the scattering albedo does not
vary greatly within the optical and near-infrared regime. It is always
slightly greater than 0.5, i.e. the probability for absorption is always
slightly smaller than the probability for scattering.

4.3 A template model

Our models contain three parameters, the orbital structure parameter
q, the V-band optical depth τV and the dust exponent α. By vary-
ing these, we can describe a set of dusty elliptical galaxy models
with a large variety in internal dynamics, dust content and star–dust
geometry. We apply the same strategy as in Paper I to present the
results of our modelling. First, we keep the geometry of the dust
component fixed, and we investigate how dust distributions with
various optical depths affect the light profile and observed kinemat-
ics of our three Plummer models. Next, we keep the optical depth

II, where we defined τV as the total optical depth along the central line of
sight, i.e. from one edge to the other. The definition of τV we adopt here,
however, is more commonly used, and it will allow the reader to link the
obtained results more easily to those found in the literature (e.g. Witt et al.
1992; Wise & Silva 1996). When we refer to the results of Papers I and II,
we will adopt the convention used here.
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fixed and consider a set of star–dust geometries by varying the dust
exponent α.

We therefore require a template model, where we can vary one
parameter while keeping the other one fixed. For the optical depth
of this template model, we choose τV = 1, a value that could be in
agreement with both the far-infrared emission and the colour gra-
dients in elliptical galaxies (Witt et al. 1992; Goudfrooij & de Jong
1995; Wise & Silva 1996). For the dust geometry of the template
model, we adopt a modified Hubble profile, characterized by setting
α = 3. It is shallower than the stellar distribution, which seems in-
dicated by colour gradient models (Wise & Silva 1996). As a note,
we would like to stress that both the optical depth and geometry
of the diffuse dust component in elliptical galaxies are very poorly
known, apart from the solid result that FIR emission indicates that
it is present. We return to this issue in Section 6.2.

Finally, we need to choose a template wavelength to present our
results. Because the present paper focuses on the effects of dust
attenuation on the observed kinematics, and because most of the
kinematical observations are presently conducted at optical wave-
lengths, we will work in the V band, unless mentioned otherwise.

5 R E S U LT S

5.1 Putting the method to the test

The Monte Carlo routine yields results in three modes, the ‘nodu’,
‘abso’ and ‘dust’ modes. Whereas we are of course mainly interested

Figure 2. A comparison of the results of the Monte Carlo code in ‘nodu’ mode (grey error bars) and the corresponding analytical results (black lines). The
upper and lower panels correspond to different values for the total number of emitted photons. Shown are the surface brightness profile, the projected velocity
dispersion and the h4 profile, for the three different orbital modes considered.

in the ‘dust’ mode results, the other data sets are useful as a check on
the accuracy of our results. If dust is not taken into account, the light
profile and the projected kinematics can be calculated analytically
for the galaxy models we consider (Dejonghe 1987). If only dust
absorption is taken into account, they can be calculated through one
single quadrature (Paper I). In Fig. 2 we compare the results of our
Monte Carlo code with the corresponding analytical results, for two
different values of N, the total number of emitted photons. Even
for N as low as 106, the minimum number of photons we consider,
the analytical results are very well reproduced, and are everywhere
within the error bars.

5.2 The light profile

5.2.1 Dependence on the optical depth

In Fig. 3 we demonstrate how the light profile is affected when both
absorption and scattering are included. In the centre of the galaxy
(where the lines of sight contain most of the dust), the attenuation
is strongest, and the attenuation decreases as one goes to the outer
regions. As a consequence, also the apparent luminosity decreases,
and the apparent size of the core (as measured by the effective radius
Re) increases as a function of τV .

Within the first few kiloparsecs, dust attenuation has at first order
the same effect on the light profile as absorption alone. Roughly, the
effects of an attenuating dust component with optical depth τV can be
approximated by a purely absorbing dust component with effective
optical depth τV /2. This approximation has a natural explanation: it
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Figure 3. The effects of dust attenuation on the light profile, with the optical depth τV as a parameter. The left-hand panel shows the attenuation profile of the
galaxy, i.e. the fraction of the light output attenuated by the dust in magnitude units. It is shown for absorption only (dotted lines), and for full attenuation (solid
lines), for optical depths τV = 0, 1

2 , 1 and 2 – only the extreme ones are labelled. The middle plot shows the cumulative luminosity function, i.e. the fraction of
the total emitted luminosity detected inside an aperture of radius R. The plots on the right-hand side show the effect of dust attenuation on the total attenuation
and the effective radius, as a function of optical depth.

follows from assuming that the scattering is purely forward. Indeed,
the phase function corresponding to forward scattering is a simple
Dirac delta function, �(k, k′) = 4πδ(k − k′), and substituting this
into the RTE (equation 5), we find

dI

ds
(r , k) = �(r ) − (1 − ω)κ(r )I (r , k). (18)

This radiative transfer problem is completely analogous to a radia-
tive transfer problem where only absorption is accounted for, but
where the optical depth of the dust component is diminished with
a factor 1 − ω ≈ 1

2 . This approximation is an appealing way to esti-
mate the effects of scattering without elaborate and costly radiative
transfer calculations. An argument in favour of this approximation
is that multiple scattering events tend to wash out the effects of
anisotropy of the scattering phase function. Hence, in media with
a large opacity, any phase function can in principle be adopted, in-
cluding the degenerate one corresponding to forward scattering (e.g.
Di Bartolomeo, Barbaro & Perinotto 1995).

However, the effects of scattering should never be underestimated.
In a previous study on the RTE in plane-parallel geometry, we in-
vestigated several ways often used in the literature to approximate
scattering (Baes & Dejonghe 2001b). One of our main conclusions
was that none of these methods provides a satisfactory approxima-
tion to the exact solution. The reason is that the physical process of
scattering has a completely different nature than absorption, because
it changes the path along which the photons propagate. The effect
of scattering is that photons have a preferential direction in which
to leave the galaxy. In a plane-parallel geometry, photons prefer the
face-on direction to leave the galaxy, because when a photon is scat-
tered into that direction, its chances to leave the galaxy are larger
(the optical depth along the path is shorter) than when it is scattered
into inclined directions. An analogous reasoning holds for spherical
geometry, where photons will generally prefer large projected radii
to leave the galaxy.5 As a consequence, the net effect of scattering
is that photons are scattered out of lines of sight close to the centre

5 At any position in a spherical galaxy, the optical depth is obviously smallest
along the path in the radial direction, i.e. the path directed away from the
centre of the galaxy. One would therefore be inclined to think that the photons
will prefer to leave the galaxy through the central lines of sight. However, the
connection between lines of sight and directions is not one-to-one: to every

of the galaxy, into lines of sight with a large projected radius. In
the outer regions of the galaxy, these extra photons will reduce the
loss of radiation due to absorption. At very large projected radii, the
attenuation will even be negative, i.e. the galaxy will even appear
brighter than when dust extinction is not taken into account (Fig. 3).
These results are in agreement with those found by Wise & Silva
(1996), and they will be very important when we investigate the full
effects of attenuation on the observed kinematics.

5.2.2 Dependence on the dust geometry

In Fig. 4 we show the effects of varying the dust exponent on
the light profile of our galaxy models. In the central regions of
the galaxy, the combined effects of scattering and absorption on the
light profile can roughly be approximated by pure absorption with
an effective optical depth τ eff

V = (1 − ω)τV . Therefore, the depen-
dence on the dust exponent is similar to that when absorption only
is taken into account (Paper I): the attenuation is stronger for ex-
tended dust distributions (α small) than for centrally concentrated
ones (α large). Because the central regions emit most of the light
and therefore dominate the total observed luminosity, also the total
attenuation will decrease as a function of α.

At large projected radii, the dust has another effect on the light
profile: the net effect is that photons scattered into these lines of sight
cause a negative attenuation, i.e. the galaxy appears brighter. This
effect should be stronger for extended dust distributions, because
these distributions imply more dust in the outer regions of the galaxy,
and hence an enhanced probability to be scattered into the outer
lines of sight. This can indeed be observed in Fig. 4. In particular,
this negative attenuation is nearly non-existent for a model where
dust and stars have the same spatial distribution (α = 5), whereas

possible line of sight into which a photon can be scattered (i.e. to every
R � r ), there correspond two directions, one directed towards the centre of
the galaxy and one towards the edge of the galaxy. The probability that a
photon scattered at r into a line of sight R will leave the galaxy equals the
weight function K(R, r ), defined in Section 2 of Paper I. For fixed values
of r , the function K(R, r ) is an increasing function of R, hence having its
maximal value at R = r . Photons will hence on average more easily leave
the galaxy at large projected radii.
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Figure 4. The effects of dust attenuation on the light profile, with the dust exponent α as a parameter. The four panels in this figure are analogous to those in
Fig. 3. The models shown here all have τV = 1, but different values for α. The values shown are α = 1.25, 2, 3 and 5. The black dotted lines in the left and
middle panels correspond to the model without dust attenuation. The grey dotted lines on the right-hand side represent models with only absorption taken into
account, as in Fig. 3.

it is clearly noticeable if the dust distribution is shallower than the
stellar distribution.

5.3 The observed kinematics

5.3.1 Dependence on the optical depth

In an optically thin galaxy, the LOSVD is formed by summing
the contribution of the line-of-sight velocities of all stars that are
situated along that line of sight. If absorption is included in the pro-
jection process, still the same stars on the line of sight contribute
to the LOSVD, but the contribution of each star is weighted by the
amount of starlight that is able to survive the absorption and reach
the observer. The net effect is that, for a given line of sight, the stars
at the outer parts of the line of sight contribute relatively more to
the LOSVD than the stars in the central parts (Paper I). Because the
largest line-of-sight velocities along a given line of sight are usually
found around the tangent point, the LOSVDs will be biased towards
smaller velocities. In particular, the projected velocity dispersion
generally decreases if absorption is taken into account. Only for the
outer lines of sight of galaxies with a very radially anisotropic orbital
structure are the largest line-of-sight velocities found in the outer
regions. Indeed, the stars at the tangent point have small line-of-sight
velocities, because their (radial) orbits are nearly perpendicular to
the line of sight. We showed in Paper I that the effects of dust
absorption on the LOSVDs are only considerable for large optical
depths (τV > 5), which are probably not appropriate for elliptical
galaxies.

If scattering is taken into account, the situation changes drasti-
cally. The net effect of scattering, at least for the light profile, is that
photons are taken away from the central lines of sight and sent into
lines of sight at larger projected radii. Now consider a photon that is
emitted by a star near the centre of the galaxy, and that, after one or
several scattering events, propagates towards the observer at a large
projected radius. Although this photon will contribute to the LOSVD
at this large projected radius, it carries the velocity information from
the emitting star. Notice that this star does not physically belong to
that line of sight. Hence, when scattering is taken into account, the
LOSVDs are not LOSVDs any more in the strict meaning of the
term: the LOSVD at a certain line of sight can contain information
about stars at totally different lines of sight. More generally, every
single star in the galaxy will contribute to every single LOSVD,

whereby its contribution will be weighed by the number of photons
that leave the galaxy along that line of sight.

Beside the photons that disappear from the line of sight due to
attenuation, we hence also have to account for the photons scattered
into the line of sight, which contribute the additional kinematical
information from stars that physically do not belong there. How this
process affects the LOSVDs is more complex than the effects due
to the photons taken away from the line of sight. In particular, this
effect is different for lines of sight that pass through the centre of the
galaxy (R ≈ 0) and lines of sight at larger projected radii (R � c).

If scattering is not taken into account, the LOSVD at the central
line of sight R = 0 only contains information on the radial velocity
component of stars, because along the central line of sight v‖ = vr.
Because the vast majority of the stars along this line of sight reside
in the central regions, the central LOSVDs will be dominated by the
distribution of radial velocities in the galaxy centre. If scattering is
included, the central line of sight will also contain photons scattered
into it that would normally leave the galaxy at a larger projected ra-
dius. The vast majority of these photons will also originate from
near the central region, but the line-of-sight velocities carried by
them are not necessarily the radial velocity components of the stars
that emitted them. These photons contaminate the LOSVD with
tangential velocities: instead of containing pure radial velocity in-
formation, it will reflect a mix of radial and tangential components.
As a consequence, the effect of scattering will depend on the ratio
of radial to tangential velocity components in the central regions of
the galaxy, i.e. on the orbital structure. In the panels on the middle
row in Fig. 5, we plot the effect of increasing optical depth on the
central projected velocity dispersion.

For isotropic galaxies, radial and tangential velocities are in bal-
ance throughout the galaxy, such that the photons scattered into the
central lines of sight will hardly affect the LOSVD. The total effect
of attenuation on the central LOSVDs will be dominated by the ab-
sorption effect, i.e. a bias towards smaller line-of-sight velocities. In
particular, the central projected dispersion decreases if dust is taken
into account, in a very similar way to when only absorption is taken
into account.

In a radially anisotropic galaxy, stars have on average a larger
radial than tangential velocity component. Stars scattered into the
central line of sight that contribute part of their tangential velocity
will therefore bias the LOSVD towards smaller velocities. Because
the effect of absorption is also a bias towards smaller velocities,
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Figure 5. The effects of dust attenuation on the observed velocity dispersion, as a function of the optical depth τV . In the top panels, the projected velocity
dispersion profiles are plotted for different values of τV . We have used the same values of τV and the same layout as in Fig. 3. The left, middle and right columns
correspond to our radial, isotropic and tangential models respectively. The three panels on the middle row show the central projected velocity dispersion as
a function of τV . The values are normalized by σp,0, the central projected velocity dispersion in an optically thin galaxy. The solid lines represent the effect
of dust attenuation, whereas the dotted lines show the effects of absorption only. Analogously, the three bottom panels show the effects of dust attenuation,
respectively absorption, on the normalized projected velocity dispersion at R = 25 kpc.

the total effect of attenuation on the central LOSVDs of radially
anisotropic galaxies is to turn them more peaked, i.e. to decrease
the central projected dispersion. The strength of the effect is stronger
than the effect of absorption alone.

On the contrary, for tangentially anisotropic galaxies, the tangen-
tial velocity of the stars generally exceeds their radial velocity. As a
consequence, if the central LOSVD is contaminated with tangential
velocity information, it will be biased towards larger line-of-sight
velocities. Two processes hence affect the LOSVD in opposite ways:
absorption (and scattering of photons out of the line of sight) favours
smaller velocities, whereas scattering of photons into the line of sight
biases the LOSVD towards larger velocities. The way the central
LOSVDs are affected depends on which of the two mechanisms
is stronger. For the modest optical depths appropriate in elliptical
galaxies, the scattering effect dominates, and the central projected
dispersion increases due to scattering.

For lines of sight at large projected radii, the situation is com-
pletely different. We argued that the net effect of scattering is that
photons are scattered from the central lines of sight into the outer
lines of sight. These scattered photons will strongly affect the ob-
served kinematics. Indeed, the majority of these scattered photons
are emitted by stars in the central regions of the galaxy. They carry

along the kinematical information of the stars that emitted them, i.e.
the typical velocities appropriate in the central regions of the galaxy.
These are on average larger than the typical line-of-sight velocities
in the outer regions of the galaxy, where the kinetic energy of the
stars is much lower. As a consequence, they will contaminate the
LOSVDs with high velocities. In particular, it should be noted that
line-of-sight velocities will be observed in the LOSVDs that would
normally be impossible at these projected radii. If scattering is not
taken into account, the maximal line-of-sight velocity of the LOSVD
at a projected radius R is the escape velocity vesc(R) = √

2ψ(R),
where ψ(R) is the potential at the tangent point r = R. If scattering
is taken into account, the photons observed at the line of sight R can
originate from stars in the centre of the galaxy where the line-of-
sight velocity can be larger than the escape velocity at R. These large
line-of-sight velocities will cause ‘forbidden’ high-velocity wings
in the outer LOSVDs. As a result, the projected dispersion at large
projected radii will increase.

In the top panels of Fig. 5, we plot the projected velocity dis-
persion profiles for various values of the optical depth. Clearly,
the velocity dispersion increases significantly in the outer regions.
The strength of this increase depends on the orbital structure of the
galaxy. Radially anisotropic models are more strongly affected than
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tangential ones, because their (optically thin) outer LOSVDs are
more strongly peaked, and thus more vulnerable to the contribution
of photons from high-velocity stars in the centre. This is clearly
shown in the bottom row of Fig. 5, where the effect of dust attenu-
ation on the projected velocity dispersion at large projected radii is
shown as a function of the optical depth. The effects are significant:
for example, for an optical depth of unity, the projected dispersion
increases by more than 40 per cent for the radial model.

Of course, the LOSVDs are not completely determined by the
projected velocity dispersion alone, which just gives a measure for
the broadness of the LOSVD. The extra information contained in
the (symmetric) LOSVDs, the actual shape of the LOSVDs, can be
represented by either the kurtosis or the h4 parameter. In the top
panels of Fig. 6 we show how dust attenuation affects the shape of
the LOSVDs of our Plummer galaxies, as quantified by the kurtosis.
In the inner regions, the effect is fairly small. As the effect on the
projected dispersion, its sign is dependent on the orbital structure:
for the radial and isotropic models, the kurtosis increases with op-
tical depth, whereas it decreases for the tangential model. At large
projected radii, the kurtosis increases spectacularly if dust attenua-
tion is taken into account, and again the effect is much stronger for
radial than for tangential models. The reason for this increase is the
high-velocity wings in the LOSVDs.

The bottom panels in Fig. 6 show the effects of dust attenuation
on the shape of the LOSVDs of our models, as quantified by the h4

parameter. The effects are comparable to those on the kurtosis. This
comes as no surprise, because kurtosis and h4 are proportional to
first order (van der Marel & Franx 1993).

Figure 6. The effects of dust attenuation on the observed LOSVD shape parameters (the kurtosis k4 and the Gauss–Hermite coefficient h4), parametrized by
the optical depth. As in Fig. 5, the left, middle and right columns correspond to the radial, isotropic and tangential models respectively. The adopted optical
depths and layout are similar to those used in Fig. 3.

5.3.2 Dependence on the dust geometry

In Section 5.2.2, we showed that the contribution of scattered pho-
tons to the surface brightness at large radii depends rather critically
on the dust geometry. If, on the one hand, the dust distribution is shal-
lower than the stellar distribution, the contribution of these photons
is important, and they even cause a negative attenuation at the outer
lines of sight. If, on the other hand, the dust follows the stellar dis-
tribution, the effects of scattering are nearly negligible. Because we
showed that these scattered photons affect the observed kinematics
rather strongly, it can be expected that the effect of dust attenuation
on the observed kinematics will also be very sensitive to the dust
geometry.

In Fig. 7 we illustrate how the observed kinematics depend on
the dust geometry. We find indeed that the kinematics are much
more affected for an extended dust distribution than for centrally
concentrated ones. In particular, when the dust has the same spatial
distribution as the stars, the effects of scattering on the observed
kinematics are nearly negligible. On the contrary, when the dust
density decreases very slowly, the outer regions have a large dust-
to-stars ratio, such that the photons scattered into these lines of sight
form a large fraction of the total number of photons that contribute
to the LOSVDs. The high-velocity stars gradually contribute more
as the dust geometry becomes more extended. As a consequence,
the projected velocity dispersion profile increases significantly with
decreasing α at large projected radii, and also the effect on the h4

shape parameter depends strongly on the dust geometry. The dust
distribution is clearly an important parameter in our models.
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Figure 7. The effects of dust attenuation on the observed kinematics, with the dust exponent as a parameter. Shown are the projected dispersion profile and
the h4 profile, for different values of the dust exponent α. The presented models and the layout are the same as in Fig. 4. As in the previous figures, the three
columns correspond to the three different Plummer models.

5.3.3 The influence of optical property gradients

From the previously obtained results, we know that the effects of dust
attenuation on the observed kinematics are due to photons emitted
by high-velocity stars in the centre of the galaxy, scattered in the
outer regions on lines of sight at large projected radii. The strength
of these effects will hence depend on the probability that a photon
from a high-velocity star will be scattered on to outer lines of sight.
There are various factors that can contribute to this probability. We
already encountered two of them: the larger the dust content of
the galaxy (high τ ) and/or the more extended the dust distributions
(small α), the greater the probability for scattering at large radii,
and hence the stronger the effects on the observed kinematics. Also
the optical properties of the dust can contribute to the number of
scattering events that send photons from the inner lines of sight to
outer lines of sight. Imagine, for example, that the scattering would
be completely forward at large radii, or that the scattering albedo
would become negligible in the outskirts of the galaxy. In either case,
the probability that a photon emitted in the centre would reach the
observer along a line of sight at large projected radii would be very
small, such that the observed kinematics would hardly be affected
by dust attenuation.

So far, we have adopted the assumption that the optical proper-
ties of the dust are equal all over the galaxy. However, this assump-
tion might not always be satisfied in real elliptical galaxies. Indeed,
gradients in, for example, the metallicity, the stellar radiation field
or the X-ray luminosity density of a galaxy can cause systematic
changes in the size distribution and/or chemical composition of the
dust grains, which can result in gradients in their optical properties.

In our own Galaxy, the physical properties of interstellar dust have
been found to vary substantially in different environments (Witt,
Bohlin & Stecher 1984; Mathis & Cardelli 1992).

With our Monte Carlo technique, we can easily include gradients
of optical properties in our models. The strongest effect can be
expected for a gradient in the scattering albedo, because ω(r ) is
directly related to the number of scattering events at a distance r.
We add to the template model of Section 4.3 an albedo gradient of
the form

ω(r ) = ω0c2 + ω∞r 2

c2 + r 2
, (19)

which changes smoothly from ω0 in the centre to ω∞ at large radii. In
Fig. 8 we show the effect of such a gradient on the σp and h4 profiles,
with the central albedo ω0 value taken from Table 1, and a number of
different values for ω∞. This figure demonstrates that the attenuation
effect on the observed kinematics becomes stronger for larger values
of ω∞, which agrees with the prediction that more scattering events
correspond to a larger effect on the observed kinematics. Notice
that, for reasonably large gradients in ω (more than 30 per cent), the
differences between the various kinematical profiles are relatively
small, and definitely within the observational errors.

6 D I S C U S S I O N

6.1 Dark matter haloes around elliptical galaxies

In the outer regions of the galaxy, the observed kinematics are
strongly affected by photons emitted in the central regions of the
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Figure 8. The effect of a dust albedo gradient on the attenuation curve and the observed kinematics, more precisely the projected dispersion and h4 profiles.
The adopted model is the isotropic template model in the V band, but with a variable dust albedo of the form (19), with ω0 = ωV = 0.59, and three different
values of ω∞, being 0.79, 0.59 and 0.39. The black dotted curves correspond to the model without dust attenuation.

galaxy that leave the galaxy after one or more scattering events along
lines of sight with a large projected radius. Because these photons are
emitted by stars that generally have larger velocities than the typical
line-of-sight velocities appropriate along these lines of sight, they
bias the LOSVDs towards larger velocities, and cause high-velocity
wings. As a result, the projected velocity dispersion and the shape
parameters k4 and h4 increase significantly at large projected radii.

These results are particularly important for the interpretation of
the stellar kinematical evidence for dark matter haloes around el-
liptical galaxies. For disc galaxies, the observational evidence for
the existence of dark matter haloes is convincing: the H I rotation
curves that remain flat or even rising out to very large radii provide
a clear proof of their existence (Freeman 1970; Faber & Gallagher
1979). For elliptical galaxies, this important tracer can generally not
be used. A number of early-type galaxies, most of them classified
as S0, have neutral or ionized gas discs that can be used to estimate
their dark matter content (Bertola et al. 1993; Franx, van Gorkom
& de Zeeuw 1994), but these galaxies are exceptional cases and
may not be representative of the general class of elliptical galax-
ies. The most convincing evidence for the existence of dark matter
haloes comes from measurements of the density and temperature
of their hot X-ray emitting atmospheres (Forman, Jones & Tucker
1985; Matsushita et al. 1998; Loewenstein & White 1999), and
from gravitational lensing (Griffiths et al. 1996; Keeton, Kochanek
& Falco 1998). This evidence indicates that elliptical galaxies must
have very large mass-to-light ratios at large radii, but, unfortunately,
they do not contain much information about the detailed structure
of a dark matter halo and its coupling to the luminous matter.

The most important way to trace dark matter haloes around ellip-
tical galaxies at small scales is by studying the stellar kinematics.
With the present 8-m class telescopes, stellar kinematics can be
reliably traced out to several effective radii. If a dark matter halo
is present, one expects the velocity dispersion profile to drop only
slowly or to remain constant with projected radius. Such a behaviour
was interpreted as a signature for the presence of a dark matter halo
(Saglia, Bertin & Stiavelli 1992; Saglia et al. 1993). However, a
slowly decreasing or nearly constant velocity dispersion profile can
also be due to a strong tangential anisotropy at large radii. This so-
called mass–anisotropy degeneracy (Gerhard 1993) can be broken
by studying the LOSVD shape parameters: galaxies with a tangen-
tially anisotropic orbital structure have a negative h4. The combina-
tion of a slowly decreasing velocity dispersion profile and a positive
h4 at large projected radii is generally interpreted as an indication

of the presence of a dark matter halo. For a number of elliptical
galaxies, the existence of dark haloes has been advocated by such
evidence (Rix et al. 1997; Gerhard et al. 1998, 2001; Kronawitter
et al. 2000).

We show here that scattering off dust grains has the same effect
on the dispersion profile as a dark halo: the dispersion will decrease
more slowly than expected. Moreover, also the h4 profiles are con-
siderably biased towards larger values, such that the signature of an
intrinsically tangential anisotropy can be weakened. Dust attenua-
tion hence makes a foolproof detection of dark matter haloes from
stellar kinematical evidence much more complicated. It is obvi-
ously important to investigate the degree to which dust can reduce
or eliminate the need for a dark matter halo to explain the observed
kinematics. Our first results indicate that a dust component that is
shallower than the stars with τV = 1 has the same kinematic signa-
ture as a dark matter halo that contains half of the total mass of the
galaxy (Baes & Dejonghe 2001c). An in-depth investigation of this
topic, however, is beyond the scope of this paper, and a forthcoming
paper will be devoted to this problem.

6.2 The determination of the dust distribution
in elliptical galaxies

In the previous subsection, dust attenuation is considered as some-
thing troublesome or inconvenient – as an obstacle that prevents the
observation of the true projected kinematics, and therefore compli-
cates the interpretation of the true dynamical structure of elliptical
galaxies. The fact that the observed kinematics are seriously affected
by dust attenuation can also serve in a more positive way: it can be
used to trace the spatial distribution of the diffuse dust component
in elliptical galaxies.

This is illustrated in Fig. 9, where we illustrate how the observed
kinematics change with colour. The σp and h4 profiles in blue bands
are more strongly affected by dust attenuation than those in red
or near-infrared bands, because the extinction efficiency decreases
with wavelength (Table 1). Combining this with the sensitive de-
pendence of the observed kinematics on the dust geometry, we see
that multicolour kinematical profiles can help to constrain the spa-
tial distribution of the dust. Indeed, if the dust is shallower than the
stars (α small), the blue kinematics will be significantly affected by
dust attenuation, whereas this effect will gradually become weaker
if we look towards longer wavelengths. If, on the other hand, the
dust has a similar distribution as the stars, the observed kinematics
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Figure 9. The observed kinematics in different colours as a tool to constrain the dust distribution in ellipticals. This figure shows the projected velocity dispersion
profile (upper panels) and the h4 profile (lower panels) as they are observed in different wavebands. In each panel, the wavebands shown are the U, B, V, I, J
and K bands. All models correspond to an isotropic Plummer model with a V-band optical depth τV = 1, but the three columns correspond to three different
dust geometries: α = 1.25 (left), α = 3 (template model, middle) and α = 5 (right).

are hardly affected, even in blue colours, such that we will see no
change of the kinematics with wavelength.

This method is also subject to a degeneracy: differences between
the stellar kinematics at different wavelengths can also be due to vari-
ations in the stellar populations, i.e. different absorption lines can
trace different stellar types that do not necessarily need to be in the
same dynamical state. This is the kinematical analogue of the pho-
tometric degeneracy between age/metallicity and dust, discussed in
Section 1. With additional FIR and submillimetre data, one might be
able to break this degeneracy, as suggested by Popescu et al. (2000).
The major problem, however, is the observational challenge: the
projected kinematics need to be measured at different wavelengths
with a sufficient accuracy out to several effective radii. Whereas
this is nowadays possible in the optical, it is probably beyond the
limit of the possibilities of the current generation of telescopes and
instruments to do this at near-infrared wavelengths.

As a remark, we want to note that a similar principle has already
been applied in another context: a number of authors have tried to
constrain the dust content of disc galaxies by multiwavelength analy-
sis of the apparent rotation curves. Bosma et al. (1992) demonstrated
how dust absorption can affect the observed rotation curve of edge-
on spiral galaxies, and argued that the comparison of the optical and
H I rotation curves can be used as a new opacity test. Applying this
test to the edge-on spiral galaxy NGC 891, they found that at least
the outer regions of this galaxy must be optically thin. In a similar
way, Prada et al. (1994) measured the ionized gas rotation curve of
the inclined galaxy NGC 2146 at different wavelengths. They found

a few discrepancies between the optical Hα and the near-infrared
[S III] rotation curves in the centre of the galaxy, which they could
attribute to a dust lane, and a nice agreement between the rotation
curves at large projected radii. Whence they concluded that NGC
2146 has to be largely transparent in its outer regions.

6.3 The central velocity dispersion in dusty galaxies

In Paper I, we found that the effects of absorption on the observed
kinematics are only noticeable in the most central regions. For opti-
cal depths of order unity, absorption causes a decrease of the central
dispersion by a few per cent. When scattering is taken into account,
the effect of dust attenuation on the central dispersion is more com-
plicated to predict. In particular, the nature (increase or decrease)
and strength depend on the orbital structure of the galaxy. Although
the magnitude of these effects is still modest (in particular compared
to the effects of dust attenuation at large projected radii), this has
some important implications.

A first area where the effects of dust attenuation should be taken
into account is mass estimates. Indeed, the observed central velocity
dispersion of galaxies is a parameter that is often adopted to quan-
tify the total mass of a galaxy. For elliptical galaxies in the nearby
Universe, more accurate dynamical mass estimates are available
through modelling of the entire observed kinematics. For other sys-
tems, however, in particular in the high-z Universe, the central veloc-
ity dispersion is often the only available kinematic property that can
be measured with some reliability. The effects of dust attenuation
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can hence lead to a bias in simple mass estimates. Moreover, it is
currently unclear how much dust is present in high-z galaxies – a
significant amount of dust production can be expected at the early
epochs of star formation.

The central velocity dispersion also appears as an important pa-
rameter in the discussion about the presence and masses of black
holes. It is believed that a significant fraction of galaxies, if not all,
harbour a massive black hole in their inner regions. The most reli-
able determination of the black hole masses in quiescent galaxies
is by means of spatially resolved kinematics. This, however, rep-
resents a challenge for both observers and modellers, because it
requires a very high spatial resolution and detailed dynamical mod-
elling techniques. Mainly with high-resolution HST data, black hole
masses have been determined for a number of nearby galaxies. It was
found that they are tightly correlated with the central velocity dis-
persion6 of the host galaxies by the relationship M• ∝ σ a , with a ≈ 4
(Gebhardt et al. 2000a; Ferrarese & Merritt 2000). Black hole masses
of nearby active galactic nuclei (AGNs), which can be determined
by reverberation mapping (Blandford & McKee 1982; Kaspi et al.
2000), seem at first sight to satisfy this relation as well, albeit with
some more scatter (Gebhardt et al. 2000b; Ferrarese et al. 2001). It
is of course very tempting to adopt this relation for the determina-
tion of black hole masses in other galaxies, in particular at high z,
where spatially resolved kinematics are beyond the present obser-
vational capabilities. However, because of the lack of knowledge
about the dust content of these galaxies, some caution is advised
when applying this relation without taking attenuation effects into
account.

6.4 Disc heating processes in spiral galaxies

It is generally known that the velocity dispersion of stars in the
Galaxy increases with age (Wielen 1977). This is believed to be a
result of the gradual heating of a initially cold disc due to irregular-
ities in the gravitational potential. A number of possible scattering
agents have been proposed for this heating, but the two most im-
portant mechanisms that contribute to this heating are thought to
be scattering off giant molecular clouds (Spitzer & Schwarzschild
1951, 1953) and spiral density waves (Carlberg & Sellwood 1985).
The study of the velocity ellipsoid in disc galaxies provides an in-
teresting way to distinguish between these mechanisms, because
each of them leaves a different kinematical signature. Spiral density
waves are inefficient in scattering the stars in the vertical direction,
such that it will result in a small σz/σR ratio. On the other hand,
molecular clouds tend to scatter stars rather isotropically, yielding
an intermediate value for σz/σR . The axial ratio of the velocity ellip-
soid is hence a very useful tool to identify the principal heating agent
in spiral galaxies (Jenkins & Binney 1990; Merrifield, Gerssen &
Kuijken 2001).

Unfortunately, the determination of the shape of the velocity ellip-
soid in spirals is not straightforward. Gerssen, Kuijken & Merrifield
(1997, 2000) showed that, in theory, it is possible to constrain the
shape of the velocity ellipsoid of intermediately inclined spiral
galaxies from the observed dispersion profiles on the major and
minor axes.

From the results in this paper, however, we anticipate that dust
attenuation has a strong effect on the projected dispersion profiles
in disc galaxies, for two reasons. First, disc galaxies contain large

6 Gebhardt et al. (2000a) use an effective dispersion in their relation, defined
as the aperture dispersion within 1Re, whereas Ferrarese & Merritt (2000)
adopt an aperture dispersion within an effective aperture of radius Re/8.

amounts of dust, typically several orders of magnitude larger than
the average elliptical galaxy. The effects of attenuation are therefore
probably too important to be considered as a second-order effect.
Secondly, the differences in intrinsic velocity dispersion between
bulge and disc are very large. If a photon emitted by a high-velocity
bulge star propagates into the disc and is scattered there such that
it leaves the galaxy at a large projected radius, it will contribute a
very large line-of-sight velocity to that LOSVD. A relatively small
number of bulge-star photons can therefore already seriously con-
taminate the LOSVDs and increase the observed projected disper-
sion at these lines of sight. Moreover, both the dust content and the
bulge–disc ratio vary along the Hubble sequence, which definitely
complicates a simple picture. These ideas need a detailed investiga-
tion before major conclusions can be drawn on the heating processes
in disc galaxies from the observed velocity ellipsoids.

7 C O N C L U S I O N S

The aim of this series of papers is to investigate the effects of a diffuse
dust component on the observed kinematics of elliptical galaxies.
We started in Paper I by investigating the effects of absorption only,
neglecting the scattering effects. We found that, for realistic optical
depths, these effects are modest, i.e. of the order of a few per cent
in the central regions and completely negligible at larger projected
radii.

In this paper, we extended our models to include the effects of
scattering, which are usually considered as a second-order effect
compared to absorption. The underlying thought is that the main
effect of scattering is a reduction of the effects of absorption. It
is therefore believed that the effects of scattering can be modelled
by considering absorption with a reduced effective optical depth.
From this point of view, it is often considered not worth the effort
to include scattering in a proper way, thereby bypassing a costly
radiative transfer treatment.

If we had adopted this prescription, there would have been no rea-
son to include scattering in our models. Indeed, because the effects
of absorption only on the observed kinematics are already fairly
small, the extra second-order effect of scattering should be com-
pletely negligible. However, a number of authors, foremost Witt
et al. (1992), have shown that the effects of scattering are important,
even for small optical depths, and that any way of neglecting or
approximating them can lead to serious errors. We confirmed this in
a previous study on the effects of dust attenuation on disc galaxies
(Baes & Dejonghe 2001b).

In this paper, we have clearly demonstrated that, concerning the
observed kinematics in elliptical galaxies, scattering cannot be con-
sidered as a second-order effect to absorption. On the contrary,
we find that the effects of dust attenuation are much more com-
plicated and fascinating if scattering is included in the modelling.
The way the kinematics of elliptical galaxies are affected can dif-
fer drastically, depending on which line of sight is considered, on
the star–dust geometry and on the internal orbital structure of the
galaxy. The most striking effect is the serious increase of both the
velocity dispersion and the LOSVD shape parameters at large pro-
jected radii, as a result of considering photons from high-velocity
stars scattered into the line of sight. This effect, which complicates
the interpretation of the stellar kinematical evidence for dark mat-
ter haloes around elliptical galaxies, has absolutely no counterpart
when only absorption is taken into account. Results such as these,
which may seem unexpected at first sight, can be easily understood,
once the idea of scattering as a second-order effect of absorption is
abandoned.
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A P P E N D I X A : T H E S PAT I A L L O S V D
F O R T H E P L U M M E R M O D E L

A1 The spatial LOSVD

The dynamical structure of a certain stellar population of a galaxy
is completely determined by its phase-space distribution function
F(r , v). Whereas this function gives us, at a certain position in the
galaxy, the three-dimensional distribution of the velocities, from an
observational point of view, it is interesting to know the (marginal)
distribution of velocities into an arbitrary direction k, for example
the direction towards the observer. To calculate this distribution,
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we construct a new Cartesian reference system (e⊥1 , e⊥2 , e‖), such
that k = e‖. The spatial LOSVD φ(r , k, v‖) is defined through the
relation

�(r )φ(r , k, v‖) = L
∫ ∫

F(r , v) dv⊥1 dv⊥2 . (A1)

The emissivity is taken into this definition in order to have the
normalization∫

φ(r , k, v‖) dv‖ = L
�(r )

∫ ∫ ∫
F(r , v) dv = 1. (A2)

The spatial LOSVD hence represents the probability for a star at a
position r to have a velocity component v‖ in the direction k. The
quantity �(r )φ(r , k, v‖) then represents the stellar emissivity at r of
stars that have a velocity v‖ in the direction k.

For the calculation of the spatial LOSVD, it is important to know
that a distribution function will not depend on the six phase-space
coordinates (r , v) independently, but only through a number of inte-
grals of motion. In a spherical galaxy, we can write the distribution
function generally as F(E, L), where E and L are the binding energy
and angular momentum integrals respectively (Binney & Tremaine
1987). Because the distribution function only depends on vθ and vφ

through the combination v2
T = v2

θ +v2
φ , we can choose our reference

system such that e⊥2 = eθ . If we denote the angle between k and er

as η, we then find

E = ψ(r ) − 1

2
v2

⊥1
− 1

2
v2

⊥2
− 1

2
v2

‖ (A3)

L2 = r 2
[
v2

⊥1
cos2 η + v2

⊥2
+ v2

‖ sin2 η − v⊥1v‖ sin(2η)
]
. (A4)

Substitution of these expressions into the distribution function
allows one, in principle, to calculate the spatial LOSVD using
expression (A1).

A2 The Plummer model

A major advantage of the Plummer model is that it allows the con-
struction of a completely analytical one-parameter family of self-
consistent dynamical models (Dejonghe 1987). The different mod-
els are characterized by a parameter q, restricted by q � 2. This
parameter determines the orbital structure of the galaxy: negative
values of q correspond to a tangential anisotropy, positive values
to a radial anisotropy, whereas for q = 0 the model is isotropic. By
means of Laplace–Mellin transforms the corresponding distribution
function F(E, L) can be calculated analytically for all values of q
(Dejonghe 1986). For general values of q, the distribution func-
tion can be expressed in terms of hypergeometric functions. For
even integer values of q, however, the distribution function becomes
much simpler, which will allow us to calculate the spatial LOSVD
explicitly.

A2.1 The isotropic model q = 0

For the isotropic dynamical models, the distribution function is only
a function of the binding energy. For the Plummer model, it is a
simple power law of E,

F(E) = 3

7π3

1

c3u3

(
2E

u2

)7/2

, (A5)

where u = √
G M/c represents a characteristic velocity. Substitut-

ing the distribution function (A5) into the definition (A1), we obtain,
using the expression (A3),

φ(r , k, v‖) = 256

63π

1√
2ψ(r )

[
1 − v2

‖
2ψ(r )

]9/2

. (A6)

Because the distribution function of isotropic galaxies is completely
symmetric in the three velocity components, the spatial LOSVD is
independent of the direction k. It is straightforward to check that the
normalization condition (A2) is satisfied.

A2.2 The radial model q = 2

For q = 2, the most radial model in the Plummer family, the dis-
tribution function vanishes for 2E � L2/c2, whereas it reduces to a
simple form for 2E � L2/c2,

F(E, L) = 3

4π3

1

c3u5

(
2E − L2

c2

)3/2

. (A7)

To calculate the spatial LOSVD, one has to substitute the expressions
(A3) and (A4) into this distribution function, and integrate it with
respect to v⊥1 and v⊥2 , where the integration surface in determined
by the condition 2E � L2/c2. After some algebra, one finds that the
LOSVD is given by

φ(r , k, v‖) = 16

5π

1√
2Aψ(r )

[
1 − v2

‖
2Aψ(r )

]5/2

, (A8)

for |v‖| �
√

2Aψ(r ), with

A = r 2 cos2 η + c2

r 2 + c2
� 1. (A9)

The normalization condition (A2) can be easily checked.

A2.3 Tangential models with q = −2m

For general negative values of q, the Plummer distribution function
can be written in terms of hypergeometric series. If q is a negative
even integer, q = −2m, this series breaks down after a finite number
of terms, and the distribution function then becomes a finite series,
where each term is a power law of E and L (Dejonghe 1986). The
spatial LOSVD can be calculated for each of these distribution func-
tions following the same recipe as for the radial q = 2 model. An
alternative, elegant way to calculate the spatial LOSVDs for these
models using Laplace transforms is presented by De Rijcke (2000).
After lengthy calculations, one finds eventually

φ(r , k, v‖)

= 1√
π

�(6 + 2m)

�
(

11
2 + 2m

) 1√
2ψ(r )

[
1 − v2

‖
2ψ(r )

] 9
2 +2m

×
m∑

j=0

(
1
2

)
j
(−m) j

( j!)2

(
r 2 sin2 η

r 2 + c2

)2 j[
1 − v2

‖
2ψ(r )

]− j

× 2 F1

(
− j, 5 + 2m;

1

2
;

v2
‖

2ψ(r )

)
, (A10)

where (a) j represents the Pochammer symbol

(a) j = a(a + 1)(a + 2) · · · (a + j − 1). (A11)

Setting q = m = 0 in expression (A10), it reduces to expression (A6)
that we found for the isotropic Plummer galaxy. To check the nor-
malization of the spatial LOSVDs we have to evaluate the integral

I(m, j) =
∫ 1

0

(1 − x2)
9
2 +2m− j

2 F1

(
− j, 2m + 5;

1

2
; x2

)
dx, (A12)
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for all j � m. By means of formula (7.512.4) of Gradshteyn &
Ryzhik (1965) we find that this integral vanishes for j > 0, whereas
for j = 0 we obtain

I(m, 0) =
√

π

2

�
(

11
2 + 2m

)
�(6 + 2m)

. (A13)

Only the first term in the summation in equation (A10) will hence
contribute to the integral over v‖, and it is obvious that the final
result will equal unity.

A P P E N D I X B : A N I S OT RO P I C S C AT T E R I N G
A N D T H E I M P O RTA N C E O F T H E D U S T G R A I N
V E L O C I T Y T E R M S I N E QUAT I O N ( 1 0 )

Each term in the summation in expression (10) is an inner product
of the velocity vector vdi and the relative direction vector ki − ki−1.
It is obvious that the contribution of one such term depends not only
on the dust grain velocity vdi , but also on the scattering angle. The
distribution of scattering angles will therefore also play a role in the
importance of the dust grain velocity terms in equation (10). If, for
example, the propagation direction of a photon is on average only
slightly changed during a scattering event, we find that ki ≈ ki−1,
which reduces the magnitude of the dust grain velocity terms.

We can illustrate this nicely by calculating the statistical distribu-
tion of the modulus of the vector ki − ki−1, i.e. we will calculate the
probability density ϕ(ζ ) for ζ ≡ ‖ki − ki−1‖. Since the directions
ki−1 and ki represent unit vectors, elementary trigonometry shows
that

ζ =
√

2(1 − cos α), (B1)

where α is the scattering angle. The scattering angle is distributed
according to the phase function �(cos α), such that

Figure B1. The probability density ϕ(ζ ) for ζ ≡ |ki − ki−1‖, corresponding
to the Henyey–Greenstein phase function. Curves are shown for different
values of the asymmetry parameter g, ranging between g = 0 and g = 0.8,
in steps of 0.1. The black lines indicates the probability density for g = 0.6,
appropriate for the optical regime.

Table B1. The mean, the median and the maximum
value for the probability density ϕ(ζ ) correspond-
ing to the Henyey–Greenstein phase function, for
different values of the anisotropy parameter g.

g ζmean ζmed ζpeak

0.0 1.33 1.41 2.00
0.1 1.25 1.30 2.00
0.2 1.16 1.19 1.26
0.3 1.07 1.06 0.90
0.4 0.98 0.93 0.67
0.5 0.87 0.79 0.50
0.6 0.75 0.64 0.37
0.7 0.63 0.49 0.25
0.8 0.48 0.33 0.16
0.9 0.29 0.17 0.07
1.0 0.00 0.00 0.00

ϕ(ζ ) = 1

2
�

(
1 − 1

2
ζ 2

)
ζ, (B2)

with ζ taking values between 0 and 2. If the scattering is isotropic,
the phase function has the simple form �(cos α) = 1, such that
ϕ(ζ ) = ζ/2. Larger values for ζ will hence be preferred. If we adopt
Henyey–Greenstein scattering (see Section 4.2.2), we can calcu-
late the corresponding values for different degrees of anisotropy. In
Fig. B1, the probability density ϕ(ζ ) corresponding to the Henyey–
Greenstein phase function (17) is shown for different values of
anisotropy parameters g. In the limit g = 0, this function of course
reduces to the isotropic equivalent ϕ(ζ ) = ζ/2. If the anisotropy
parameter increases, however, smaller values for ζ will gradually
become dominant. We can quantify this trend by calculating the
mean value ζmean, the median ζmed or the value ζpeak for which ϕ(ζ )
reaches its maximum value. For the isotropic phase function we
find ζmean = 4

3 , ζmed = √
2 and ζpeak = 2, whereas for the Henyey–

Greenstein phase function we obtain

ζmean = 1 − g

g

[
1 + g√

g
ln

(
1 + √

g√
1 − g

)
− 1

]
, (B3)

ζmed =
√

g3 − 3g + 2, (B4)

ζpeak = min

(
2,

1 − g√
2g

)
. (B5)

In Table B1 we tabulate ζmean, ζmed and ζpeak as functions of the
asymmetry parameter. This table confirms that smaller values of ζ

quickly start to dominate as g grows larger. In particular, for the
anisotropy parameters appropriate in the optical regime, g ∼ 0.6
(see Table 1), the density ϕ(ζ ) clearly favours fairly small values for
ζ (black curve in Fig. B1). As a consequence, ‖ki − ki−1‖ will be
fairly small in the majority of the scattering events. The anisotropic
nature of scattering hence contributes to reducing the importance of
the dust grain velocity terms in equation (10).
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