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A B S T R A C T

We investigate the influence of scattering and geometry on the attenuation curve in disc

galaxies. We investigate both qualitatively and quantitatively which errors are made by either

neglecting or approximating scattering, and which uncertainties are introduced as a result of a

simplification of the star–dust geometry. We find that the magnitude of these errors depends

on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to

improper treatment of scattering dominate those due to imprecise star–dust geometry.

Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies,

scattering should be taken into account in a proper way.
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1 I N T R O D U C T I O N

During the past decade it has become clear that, in extragalactic

astronomy, dust obscuration plays an important role, and that the

construction of accurate galaxy models requires proper radiative

transfer modelling. However, it is often very time-consuming, and

therefore practically unfeasible, to solve radiative transfer prob-

lems exactly. For example, assume that we want to know the spatial

distributions of stars and dust for a certain galaxy, where the only

known data are observed surface brightnesses. The only means to

solve this problem is to assume a certain parametrized model for

the galaxy, containing a stellar component and a dust component,

solve the radiative transfer equation (RTE) for each set of

parameters, and then select the model that fits the observations

best. Such a modelling procedure demands an enormous number of

RTE solutions, because the parameter space has to be sufficiently

large in order to produce realistic models, in particular for disc

galaxies (Misiriotis et al. 2000). Therefore, it would be very useful

if we could simplify the RTE in some way.

A first way to simplify the RTE is rather obvious: neglect the

scattering term, which is responsible for the integro-differential

character of the RTE (Christensen 1990; Jansen et al. 1994; Ohta &

Kodaira 1995). However, more than a decade ago, Bruzual, Magris

& Calvet (1988) clearly demonstrated the importance of including

scattering in radiative transfer calculations. Several other authors

have since confirmed these warnings, in particular Witt, Thronson

& Capuano (1992). Another option to simplify the RTE is an

approximation of the scattering term, by either forward or

approximate isotropic scattering, or a combination of both (Natta

& Panagia 1984; Guiderdoni & Rocca-Volmerange 1987; Calzetti,

Kinney & Storchi-Bergmann 1994). Di Bartolomeo, Barbaro &

Perinotto (1995) compared the attenuation curves calculated with

these various approximate RTE solution methods, and found

significant differences. Although these differences can partly be

ascribed to different assumptions concerning the optical properties

of the dust, it is also very probable that the approximate solution

methods are responsible for a significant error.

It is obviously important to know the errors introduced in the

attenuation curve by the various approximate solution techniques,

but these have never been clearly determined. Either the

approximate solutions are simply adopted without concern about

the errors, or the errors are estimated for very simple galaxy

models, such as homogeneous slabs or sandwich models (Bruzual

et al. 1988; Di Bartolomeo et al. 1995). To make things worse,

Disney, Davies & Phillipps (1989) showed that the geometry of the

stellar and dust distributions strongly determines the observed

radiation field (without including the effects of scattering,

however). Lack of knowledge about the geometry can thus also

introduce significant errors on the attenuation of galaxies.

In paper I (Baes & Dejonghe 2001) we described four different

methods to solve the RTE in a plane-parallel geometry. These

methods accommodate arbitrary vertical distributions of stars and

dust. We will now use these methods to address both issues of the

RTE mentioned above. On the one hand, we can adopt them for a

disc galaxy model with a realistic vertical structure, and compare

the results with those obtained by using the various approximate

solutions. This will allow us to quantify the errors introduced by

the different approximations, and the importance of properly

including scattering effects. On the other hand, we can apply these

methods to a family of realistic galaxy models that can

accommodate a wide range in distributions of stars and dust.

This will allow us to investigate the influence of the geometry of

the stellar and dust components on the attenuation curve, without†Research Assistant of the Fund of Scientific Research, Flanders, Belgium.
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any simplifying assumptions on the RTE, such as the neglect of

scattering. Last but not least, we can solve our RTE problems with

four completely different methods: consistency is then a guarantee

for accuracy.

In Section 2 we describe the radiative transfer mechanism and

the ways to obtain the solution, and in Section 3 we present our set

of disc galaxy models. In Sections 4 and 5 we discuss respectively

the influence of scattering and geometry on the attenuation curve as

described above. In Section 6 we discuss the results.

2 R A D I AT I V E T R A N S F E R M O D E L S

2.1 The RTE in plane-parallel geometry

In plane-parallel geometry, the RTE can be written as

m
›I

›z
ðz;mÞ ¼ 2kðzÞIðz;mÞ1 h*ðzÞ

1 1
2
vkðzÞ

ð1

21

Iðz;m0ÞCðm;m0Þ dm0; ð1Þ

where I(z,m) is the specific intensity of the radiation at a height z

above the plane of the galaxy, and in a direction that makes an

angle arccos m with the face-on direction m ¼ 1. The known

quantities in this equation are the dust opacity k(z), the stellar

emissivity h*(z), the dust albedo v and the angular redistribution

function (hereafter ARF) C(m,m0). The RTE can be written in

another form by introducing the optical depth t instead of z,

tðzÞ ¼

ð1

z

kðz0Þ dz0; ð2Þ

which yields

m
›I

›t
ðt;mÞ ¼ Iðt;mÞ2 S*ðtÞ2 1

2
v

ð1

21

Iðt;m0ÞCðm;m0Þ dm0; ð3Þ

with S*ðtÞ ¼ h*ðtÞ/kðtÞ the stellar source function. This equation

is to be solved for 0 # t # t0, the total optical (face-on) depth of

the galaxy,

t0 ¼

ð1

21

kðzÞ dz: ð4Þ

Although the RTE can be solved for any point in the galaxy, we will

focus on the attenuation A(m), i.e. the fraction of the intensity that

is attenuated by the dust detected by an observer at t ¼ 0, into a

certain direction m. Because the RTE is a linear equation, this

fraction will be independent of the total amount of stellar emission.

We can thus choose the normalization of the stellar emissivity (or

the source function). We takeð1

21

h*ðzÞ dz ¼

ðt0

0

S*ðtÞ dt ¼ 1; ð5Þ

which means that the intensity that leaves the galaxy in the absence

of dust in the face-on direction equals 1. In another direction m, the

dust-free intensity is then simply 1/m and the attenuation (in

magnitudes) is

AðmÞ ¼ 22:5 log½mIð0;mÞ�: ð6Þ

2.2 Solution of the RTE

Because of the complexity of the RTE, a lot of authors have tried

their ingenuity to find sophisticated methods to solve it. In paper I

we presented four different methods to solve the RTE in plane-

parallel geometry, which can handle absorption and multiple

scattering, arbitrary vertical distributions of stars and dust and

arbitrary phase functions.

(i) The spherical harmonics method consists of expanding all the

angle-dependent terms in the RTE into a series of spherical

harmonics, such that the RTE is replaced by a set of ordinary

differential equations. The method turns out to be very efficient.

(ii) In the discretization method, originating from the theory of

stellar atmospheres, integrals are replaced by sums and

differentials by finite differences, resulting in a set of vector

equations that can be solved iteratively.

(iii) In the iteration method, the intensity is expanded in a series

of partial intensities. Each of the partial intensities obeys its own

RTE, which can be solved iteratively. It can easily be extended to

more complex geometries, but compared to the spherical

harmonics method it is a very costly algorithm.

(iv) The Monte Carlo method is probably the most widely

adopted method to solve radiative transfer problems, and the basic

idea of the method consists of following the trajectory of a large

amount of individual photons through the galaxy, whereby the fate

of a photon on its path is determined by random events. For one-

dimensional radiative transfer its efficiency is comparable to that of

the iteration method.

For more details about these methods and references to the

literature we refer the reader to paper I. In this paper we will study

the radiative transfer through a plane-parallel slab, as a function of

the different physical and geometrical parameters. Having these

four different methods to solve the RTE at our disposal proves to be

very useful, not only to check the accuracy of the numerical results,

as already mentioned, but also to understand the physical

background of observed phenomena.

3 T H E D I S C G A L A X Y M O D E L S

In order to construct disc galaxy models we have to characterize

the functions that appear in the RTE (1), i.e. specify the physical

properties and spatial distributions of stars and dust. We will adopt

a set of realistic galaxy models with a number of parameters.

Varying these parameters will then enable us to investigate the

influence of scattering and geometry on the attenuation curve. We

will also adopt a template model with which to compare other

models.

3.1 The optical properties of the dust

Although it has been shown that the physical properties of dust in

different environments can vary greatly (Witt, Bohlin & Stecher

1984; Mathis & Cardelli 1992), we will assume, for the sake of

simplicity, one single kind of dust grain. This means that the spatial

and wavelength dependences of all quantities appearing in

equation (1) are separable. In particular, the dust albedo and the

ARF are then independent of position.

To describe general anisotropic (conservative) scattering we

adopt Henyey–Greenstein scattering (Henyey & Greenstein 1941).

The ARF corresponding to this kind of scattering is a one-

parameter function parametrized by the asymmetry parameter g,

which is the average of the cosine of the scattering angle. A closed

expression and a plot of the Henyey–Greenstein ARF can be found

in Appendix A of paper I. In Section 4 other kinds of scattering,
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such as forward and isotropic scattering, will be compared with

Henyey–Greenstein scattering.

There are two ways to determine the wavelength dependences of

the albedo v, the asymmetry parameter g and the total optical depth

t0. On the one hand, values can be derived theoretically, by

assuming a certain dust grain composition and calculating the

optical properties of the dust (e.g. Draine & Lee 1984). On the

other hand, optical properties can be derived empirically, usually

based on a variety of observations of scattered light in the Galaxy

(e.g. Bruzual et al. 1988). Our data set consists of the optical

properties theoretically derived by Maccioni & Perinotto (1994),

displayed in Di Bartolomeo et al. (1995). The adopted values are

tabulated in Table 1 for the central wavelengths of various bands.

3.2 The stellar distribution

The vertical distribution of stars in disc galaxies is still a matter of

debate. The most straightforward way to derive such a vertical

distribution is to study the surface brightness of edge-on galaxies at

different heights above the plane. There is a general consensus that

at great heights the light distribution decreases exponentially.

Close to the plane of the galaxy, however, dust attenuation makes

the observation of the vertical distribution difficult. As a

consequence, different models have been proposed. The most

popular models are an isothermal sheet distribution (van der Kruit

& Searle 1981) and an exponential profile (Wainscoat, Freeman &

Hyland 1989). In order to allow a wide range in vertical density

distributions, we adopt a two-parameter family of stellar emissivity

profiles, which were adapted from van der Kruit (1988),

h*ðzÞ ¼
1

qBðq/2; 1=2Þh
sechq z

qh

� �
; ð7Þ

where the function B(x, y) in the denominator represents the Beta

function (Abramowitz & Stegun 1972). The first factor is

determined such that the normalization condition (5) is satisfied.

At great heights above the plane of the galaxy, the light distribution

(7) indeed decreases exponentially,

h*ðzÞ/e2|z|/h for |z| @ h: ð8Þ

The first parameter in equation (7) is the exponential scaleheight h.

It is generally known that the velocity dispersion of different stellar

types in the Galaxy is correlated with the age of the stars (e.g.

Dehnen & Binney 1998). As a result of this dynamical heating of

the disc, the vertical scaleheight of the stars increases as a function

of age (Wainscoat et al. 1992). Because younger stellar populations

are bluer than older ones, it can be expected that the scaleheight of

stars increases with wavelength. Xilouris et al. (1999) accurately

modelled several edge-on disc galaxies and found no significant

trend of the stellar scaleheight with wavelength (from the blue to

the near-infrared K band). Therefore we adopt a constant stellar

scaleheight.

The second parameter in equation (7), q, corresponds to the 2/n

used by van der Kruit (1988), and takes values between 0 and 2. It

determines the shape of the stellar density near the plane of the

galaxy, and hence is called the shape parameter. More precisely, the

peak of the emissivity at z ¼ 0 becomes sharper as q decreases. A

number of emissivity profiles for various values of q are illustrated

in Fig. 1. For the special cases corresponding to the values q ¼ 0, 1

and 2, we find the exponential, the sech and the isothermal disc

respectively,

q ¼ 0; h*ðzÞ ¼
1

2h
e2|z|/h; ð9Þ

q ¼ 1; h*ðzÞ ¼
1

ph
sech

z

h

� �
; ð10Þ

q ¼ 2; h*ðzÞ ¼
1

4h
sech2 z

2h

� �
: ð11Þ

Although the sechq profiles can be adopted for any value of q

between 0 and 2 (e.g. de Grijs, Peletier & van der Kruit 1997),

these three models are widely used in the literature to model the

vertical structure in disc galaxies. For example, Schwarzkopf &

Dettmar (2000) investigated the surface brightness of a set of 110

edge-on disc galaxies, and divided them into these three classes.

They found that the intermediate sech profile fitted the data (optical

as well as near-infrared) best for 55 per cent of the galaxies,

whereas the exponential and isothermal profiles fitted 35 per cent

and 10 per cent, respectively, of the galaxies.

This would suggest choosing q ¼ 1 as the typical value for our

template model. However, in Section 5 we will demonstrate that

the choice of q has only a minor effect on the attenuation curve,

such that we are relatively free to choose q to our convenience. We

Table 1. The adopted data sets for the
optical properties of the dust grains.
Tabulated are the optical depth t relative
to the V-band value, the scattering albedo
v and the asymmetry parameter g.

Band l (mm) t v g

UV1 125 3.44 0.42 0.60
UV2 150 2.75 0.42 0.59
UV3 175 2.44 0.48 0.58
UV4 200 2.87 0.48 0.54
UV5 225 3.01 0.51 0.46
UV6 250 2.38 0.57 0.46
UV7 300 1.92 0.57 0.47
U 360 1.60 0.57 0.49
B 440 1.32 0.57 0.48
V 550 1.00 0.57 0.44
R 700 0.73 0.54 0.37
I 850 0.47 0.51 0.31

Figure 1. The stellar emissivity h*(z) of the family of sechq models (7). It is

shown for different values of the parameter q, ranging between the extreme

values q ¼ 0 and q ¼ 2, which are indicated and plotted as thicker lines. It

is clear that they all have the same exponential asymptotic behaviour,

whereas the sharpness of the peak at z ¼ 0 is determined by q.
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choose an exponential profile q ¼ 0 because it has some

computational advantages (see Appendix A).

3.3 The dust distribution

Besides stars, we also need a dust component in the galaxy, which

is determined by the opacity k(z). Again, the actual vertical

distribution of dust in disc galaxies is difficult to investigate. Direct

information about the distribution of dust can be obtained by

spatially resolved far-infrared or submillimetre observations,

where the dust emission is directly observed. During the past few

years, several nearby spiral galaxies have been modelled at these

wavelengths using ISO and SCUBA data (Haas et al. 1998; Alton

et al. 1998a,b; Davies et al. 1999; Domingue et al. 1999; Trewhella

et al. 2000). For NGC 891, Alton et al. (2000) showed that the far-

infrared emission is in very good agreement with the dust

distribution derived from radiative transfer calculations (Xilouris

et al. 1998), where an exponential vertical dust profile was

assumed.

It therefore seems obvious to assume that stars and dust have a

similar distribution in the galaxy, but we allow the scaleheights to

be different. We thus adopt a family of opacity functions

kðzÞ ¼
t0

qBðq/2; 1=2Þzh
sechq z

qzh

� �
; ð12Þ

which satisfies the normalization condition (4). For our template

model we will thus adopt an exponential model for both stars and

dust. The quantity z represents the layering parameter, i.e. the ratio

of the scaleheights of dust and stars (Disney et al. 1989).

Combining the emissivity (7) and the opacity (12) we can

calculate the source function S*(t) for our galaxy models.1 It is

fairly straightforward to check that S*(t) will have the form

S*ðtÞ ¼
1

t0

s*
t

t0

; z; q

� �
; ð13Þ

where s*(t, z, q) is normalized asð1

0

s*ðt; z; qÞ dt ¼ 1: ð14Þ

The source function hence does not depend on the scaleheight of

either the stellar or the dust distribution, but only on their ratio z.

Therefore, the same is true for the attenuation A(m), which will thus

depend on two geometry parameters, the shape parameter q and the

layering parameter z.

What is a representative value for the layering parameter?

Normally, the interstellar matter sinks down to the central plane of

a galaxy and forms an obscuring layer that is narrower than the

stellar layer, such that z , 1. This is observed in the Galaxy, where

the scaleheights of the (thin) stellar disc and the dust disc are

approximately 300 and 100 pc respectively. Also, in edge-on

galaxies dust lanes suggest that there the dust distribution is

narrower than the stellar one. Using detailed radiative transfer

modelling for seven such galaxies, Xilouris et al. (1999) find that

the dust scaleheight is about half that of the stars. For our template

model we set z ¼ 0:5, but in Section 5 we will consider a wide

range of z in order to investigate the dependence of the relative

star–dust geometry on the attenuation.

The last parameter in our galaxy model is the total V-band

optical depth tV. Again, a realistic value for the optical depth in disc

galaxies has already been a subject of debate for a long time. An

extensive discussion can be found in e.g. Xilouris et al. (1997) and

Kuchinski et al. (1998). The most widely supported idea is that

spiral galaxies are transparent or moderately opaque if they are

seen face-on, with a typical V-band face-on optical depth of

around unity. For our template model we adopt tV ¼ 1, which

corresponds to an optical depth of 3 in the far-UV and 0.5 in the

I band (Table 1).

4 T H E I N F L U E N C E O F S C AT T E R I N G

4.1 Approximations of the RTE

The RTE as written in equation (3) is a partial integro-differential

equation, containing a differentiation along the path and an

integration over the angle. The scattering term is the one that

makes the RTE difficult, because this term is responsible for the

coupling of the RTE along different paths: because of the inte-

gration over m we cannot solve the RTE for different paths

consecutively, but we have to solve it for all paths at the same time.

Therefore it would be very useful if we could somehow get around

the last term.

4.1.1 No scattering

One way is to neglect the scattered emission altogether, i.e. to take

into account the photons that are removed from the beam, but

neglect the photons that are added to the beam due to scattering.

This is the same as assuming that all the interactions between dust

grains and photons are absorption events, and hence that there are

no scatterings. We will denote the resulting attenuation curve as

the ‘ns’ attenuation. Mathematically this translates into setting

v ¼ 0 (the albedo is the ratio of the scattering efficiency to the total

extinction efficiency), such that the last term in equation (3)

vanishes, which turns the RTE into an ordinary differential

equation

m
›I

›t
ðt;mÞ ¼ Iðt;mÞ2 S*ðtÞ: ð15Þ

With the appropriate boundary conditions this can be solved

directly, and the ‘ns’ attenuation becomes

A nsðmÞ ¼ 22:5 log

ðt0

0

S*ðtÞ exp 2
t

m

� �
dt: ð16Þ

A second way of getting around the scattering term is to neglect

scattering completely, both the scattering absorption and the

scattering emission. The photons that would normally be scattered

out of the beam are thus assumed to continue on their path. For the

RTE this means that not only the last term vanishes (the photons

added to the beam due to scattering), but also a fraction of the first

term (the photons removed from the beam due to scattering). In this

case the RTE becomes

m
›I

›t
ðt;mÞ ¼ ð1 2 vÞIðt;mÞ2 S*ðtÞ: ð17Þ

This kind of interaction can also be described as completely

forward scattering, because also then a scattering event has no net

effect on a beam. The ARF for pure forward scattering is

Cðm;m0Þ ¼ 2dðm 2 m0Þ, and inserting this in equation (3) we find

the same equation (17). This equation is readily solved, and the ‘fs’

1 In Appendix A, we explicitly calculate the source function for the

exponential model.
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attenuation is

A fsðmÞ ¼ 22:5 log

ðt0

0

S*ðtÞ exp 2
ð1 2 vÞt

m

� �
dt: ð18Þ

It is fairly straightforward to see that ‘fs’ attenuation is in fact

equivalent to ‘ns’ scattering, but with the total optical depth

replaced by an effective optical depth teff ¼ ð1 2 vÞt0. If we thus

obtain an expression for the ‘ns’ attenuation, we immediately find

the corresponding one for the ‘fs’ attenuation.

4.1.2 (Approximate) isotropic scattering

In radiative transfer problems, much attention has always been paid

to isotropic scattering. In some physical situations the assumption

of isotropy can be correct. For example, according to Bruzual et al.

(1988) and Corradi, Beckman & Simonneau (1996), the

asymmetry parameter is close to zero in the near-infrared K

band, such that scattering is virtually isotropic there.2 Another

useful situation where the assumption of isotropy can be applied is

a medium where photons have a large probability to be scattered

more than once, because multiple scattering tends to wash out the

anisotropy effects. This principle has been applied by Vansevičius,

Arimoto & Kodaira (1997), who solve the RTE in a disc galaxy

using the iteration method. For the first scattering they adopt the

general anisotropic scattering, and for the next scattering events

isotropic scattering is assumed.

For isotropic scattering the distribution of the angles after a

scattering event is uniform, such that the ARF is simply

Cðm;m0Þ ¼ 1. A proper treatment of isotropic scattering hence

does not change the integro-differential character of the RTE, and

still requires the solution of the RTE for all paths together. There

are, however, two ways to approximate isotropic scattering such

that the integration in the scattering term disappears.

The first possible approximation to isotropic scattering is the so-

called isotropic two-stream approximation, introduced by Code

(1973)3. In the ‘ts’ approximation a photon always remains on the

same path, and after a scattering event it will move either in the

same direction (i.e. forward scattering) or in the opposite direction

(i.e. reflection). The probabilities of forward scattering and

reflection are equal. The ARF corresponding to this kind of

scattering is thus infinitely peaked in two directions, and can be

written as Cðm;m0Þ ¼ dðm 2 m0Þ1 dðm 1 m0Þ. The intensity for a

certain value of m can then be found by solving the coupled set of

RTEs

m
›I

›t
ðt;mÞ ¼ 1 2 1

2
v

ÿ �
Iðt;mÞ2 1

2
vIðt;2mÞ2 S*ðtÞ;

2m
›I

›t
ðt;2mÞ ¼ 1 2 1

2
v

ÿ �
Iðt;2mÞ2 1

2
vIðt;mÞ2 S*ðtÞ:

ð19Þ

For each inclination angle m this set of ordinary differential

equations can be solved directly, such that we can calculate the

two-stream attenuation curve A ts(m).

Another approximation for isotropic attenuation has been

introduced by Natta & Panagia (1984), and afterwards adopted by

various authors (e.g. Guiderdoni & Rocca-Volmerange 1987;

Calzetti et al. 1994). Natta & Panagia (1984) suggest that a good

approximation can be achieved by considering an attenuation

equivalent to ‘ns’ attenuation, but replacing the total optical depth

by an effective optical depth teff ¼ ð1 2 vÞ1=2t0. The approximate

isotropic or ‘ai’ attenuation is thus

A aiðmÞ ¼ 22:5 log

ðt0

0

S*ðtÞ exp 2
ð1 2 vÞ1=2t

m

� �
dt: ð20Þ

Although there is no physical principle behind this approximation,

it is attractive because of its simplicity.

4.2 Comparison of the attenuation curves

In the previous section we have described five approximations for

the attenuation curve A(m). These are compared in Figs 2 and 3,

where we plot them respectively as a function of wavelength for

two different angles m, and as a function of angle for the V band.

4.2.1 Scattering versus no scattering

We first compare the attenuation curve with the ‘ns’ approxi-

mation, i.e. the situation where the scattering emission is neglected.

Qualitatively, the difference between the ‘ns’ and all other

attenuation curves is obvious: by not taking into account the

scattered emission, the attenuation is overestimated in all

directions. Because the probability of scattering is slightly higher

than the probability of absorption at optical wavelengths (see Table

1), it will be no surprise that this overestimation compared to the

true attenuation can be considerable. In particular, for face-on

directions, we obtain a difference of nearly half a magnitude for

our template model. Only for high inclinations is the ‘ns’

approximation more or less satisfactory.

Another way to understand the effect of scattering is to compare

the true attenuation curve with the ‘fs’ attenuation curve, i.e. the

situation where scattering is neglected completely. Particularly in

Fig. 3 the effect of including scattering on the attenuation curve is

clearly observable: the attenuation becomes larger for small m and

smaller for large m. The overall effect of scattering is thus

apparently that photons are removed from lines of sight with a high

inclination and sent into face-on directions, where they leave the

galaxy. This is due to the fact that the optical depth along a path

with inclination m is proportional to 1/m. Photons that initially (or

after a scattering event) move on a path with large inclination have

a large possibility to interact with a dust grain. If they are scattered

into a direction that is nearly face-on, the probability to interact

with another dust grain is much smaller, such that they can easily

leave the galaxy.

This overall effect of scattering is responsible for a rather strange

behaviour for face-on galaxies. If we look carefully at the right-

hand panel in Fig. 2, we see that the true face-on attenuation

becomes zero at the I band. The loss of radiation due to absorption

ð0:2 mag < 20 per cent) is thus completely balanced by the gain

due to scattering. This is not due to some particular properties of

the dust at the I band, but only to the smaller optical depth. When

we consider a smaller total optical depth, the extinction can even be

negative, i.e. a face-on galaxy can be brighter than it would be

without dust. This is illustrated in Fig. 4, where we plot the face-on

attenuation in the V band as a function of the total optical depth.

2 Note, however, that this assumption is not always followed, e.g. Gordon,

Calzetti & Witt (1997) find gK ¼ 0:43.
3 Code (1973) applied the two-stream approximation to calculate the flux

escaping from a spherical dust envelope surrounding a star, and found a

very good agreement with numerical results. He also proposes a second

approximate solution, which works even better. However, this method

cannot be applied to general plane-parallel (and other) geometries in a

straightforward way, and is therefore not considered in this paper.
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Using the iteration method the contribution of each partial intensity

can be considered separately. The attenuation corresponding to the

photons that leave the galaxy directly, i.e. the ‘ns’ attenuation, is of

course positive everywhere. However, adding the photons that

leave the galaxy after one scattering event, the attenuation already

is negative for t0 , 0:25. The total attenuation remains negative

for t0 , 0:5, a result in correspondence with Bruzual et al. (1988)

and Di Bartolomeo et al. (1995).

4.2.2 Anisotropic versus isotropic scattering

At first sight one would expect a significant difference between the

isotropic and the anisotropic attenuation curves. First, at optical

and UV wavelengths the anisotropy parameter is fairly large

ðg , 0:5Þ, and for these wavelengths the Henyey–Greenstein

phase function is far from isotropic (e.g. Bianchi, Ferrara &

Giovanardi 1996, fig. 2). Secondly, the total optical depth in our

galaxy model is only moderate, such that the anisotropy effects

should not be washed out by multiple scattering. However, Figs 2

and 3 show that the isotropic attenuation approximates the

anisotropic attenuation very well, with differences between both

attenuation curves being only a few hundredths of a magnitude.

Figure 3. The V-band attenuation curves A(m) as a function of m,

corresponding to those in Fig. 2.

Figure 4. The V-band face-on attenuation A(1) as a function of the total

optical depth t0. Shown are the attenuations corresponding to photons that

leave the galaxy directly, directly or after one scattering ðdirect 1 1sÞ,

directly or after one or two scatterings ðdirect 1 1s 1 2sÞ, and the total

attenuation. Except for the varying total optical depth, the galaxy models

have the same parameters as our template model ðq ¼ 0 and z ¼ 0:5:Þ

Figure 2. The various attenuation curves A(m) as a function of wavelength. The left and right panels correspond to m ¼ 0:25 and m ¼ 1 respectively. The

adopted model is the template model.
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In fig. A1 of paper I we plotted the Henyey–Greenstein ARF for

various values of m0. For nearly face-on lines of sight m0, the

distribution of the new angles m is far from uniform. For very

inclined lines of sight, however, the ARF is fairly uniform, as a

result of the averaging out over all azimuths. For photons that are

scattered from such lines of sight, the scattering thus seems

approximately isotropic. In our galaxy model, the majority of the

scattering events occur on paths that are nearly edge-on, because

along such paths the optical depth is much larger than on paths that

are nearly face-on. This explains why, even for the moderate

optical depth of our galaxy, the differences between isotropic and

anisotropic attenuation are fairly small.

As mentioned, there is little gain in the observation that the

isotropic attenuation curve approximates the true anisotropic

one so well, because the approximation does not simplify the

RTE. However, if the ‘ts’ or ‘ai’ attenuation curves were to be

satisfactory approximations for the isotropic attenuation curve, the

operational gain would be significant. Unfortunately, Figs 2 and 3

show that the approximations are not satisfactory. The two-stream

approximation is both qualitatively and quantitatively comparable

to the ‘fs’ approximation, i.e. an overestimation of the attenuation

in face-on directions of more than 0.1 mag, and an underestimation

of the same order for highly inclined directions. The ‘ai’

attenuation curve lies between the ‘ns’ and ‘fs’ attenuation curves,

which is logical if we compare the expressions (16), (18) and (20).

This means that the approximation is satisfactory for highly

inclined directions, but the attenuation is severely overestimated in

the face-on direction ðDA < 0:25 magÞ.

5 T H E I N F L U E N C E O F G E O M E T RY

Our models contain two parameters that specifically determine the

geometry of the galaxy model: the shape parameter q determines

the actual distributions of stars and dust near the galaxy plane,

whereas the layering parameter determines the relative distribution

of stars and dust. In this section we investigate the degree to which

these geometry parameters determine the attenuation curve of the

galaxy.

5.1 The shape parameter q

The RTE (3) shows that the source function completely determines

the attenuation curve, i.e. once S*(t) is known, we can calculate

A(m). Therefore, if we want to know the influence of q on the

attenuation curve, it is interesting first to study its influence on the

source function. In Fig. 5 we plot S*(t) for various models with

different shape parameters. The source function depends only

weakly on the parameter q; more precisely, the shape of S*
becomes slightly rounder at the centre of the galaxy as q increases.

It seems logical to predict a similar insensitivity on q for the

attenuation curves. This is confirmed by our calculations. Even the

differences between the attenuation curves of the two extreme

cases, the exponential disc and the isothermal sheet, are almost

negligibly small.

5.2 The layering parameter z

The layering parameter is the ratio of the scaleheights of dust and

stars and hence determines the relative distribution of the two

components. Variation of this parameter yields a wide range of

dust–stars geometries. This can be seen in Fig. 5, where the source

function is plotted for various models with different layering

parameter z. According to the shape of the source function for a

particular value of z, we can classify the different geometries into

three classes.

For z ¼ 1, the stars and dust have the same scaleheight and thus

the same spatial distribution. The source function is then

independent of the depth in the galaxy, and as a result of the

normalization (5) we find SðtÞ ¼ 1/t0. In general, each galaxy

model with similar distributions of stars and dust will have such a

constant source function. Because the attenuation curve is

completely determined by the source function only, all galaxy

models with similar distributions of stars and dust will be

equivalent. In particular, our model will be equivalent to the

homogeneous slab, i.e. a finite galaxy model with stars and dust

homogeneously mixed. Such a model has been considered by

many authors (e.g. Bruzual et al. 1988; Calzetti et al. 1994;

Di Bartolomeo et al. 1995) as an approximation of a disc galaxy.

For z , 1 the dust has a smaller scaleheight than the stars, such

that the attenuation will predominantly occur in the central regions.

As mentioned in Section 3.3, this is the most realistic range for the

layering parameter. If z , 1, the source function has its minimal

value in the centre of the galaxy, and diverges at the edges. If z

tends to zero, the dust will form an infinitely thin obscuring layer in

the central plane of the galaxy. We will refer to this model as the

thin dust disc model.

For z . 1 the dust has a larger scaleheight than the stars, and the

attenuation will thus occur relatively more in the outer regions of

the galaxy. The source function is then maximal in the centre of the

galaxy, and vanishes at the edges of the galaxy. If z grows larger,

the bulk of the dust attenuation will occur further away from the

central plane of the galaxy. In the limit z!1 the dust is infinitely

thinly distributed over all space, and will effectively behave as a set

of two obscuring layers on both sides of the galaxy. This geometry,

where the obscuring material is located only between the observer

and the source, is known as the overlying screen model. It is the

analogue of attenuation of stars in the Galaxy. Various authors

advise against the use of this model (Disney et al. 1989; Witt et al.

1992).

The source function is thus strongly dependent on the relative

distribution of stars and dust, whereas the actual shapes of the

Figure 5. The source function S*(t ) of the family of sechq models as a

function of the parameters q and z. In each of the panels the template model

is the black curve, and we vary one of the geometry parameters. Left:

Variation of the shape parameter q, taking the values 0, 1 and 2. Right:

Variation of the layering parameter z, taking the values 0.25, 0.5, 1 and 1.5.
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distributions are only of minor importance. We will now

investigate in detail whether this also means that the influence of

the layering parameter on the attenuation curve is significant.

5.2.1 Effects on the ‘fs’ attenuation curve

First we will only consider true absorption and neglect scattering,

and we will hence investigate the influence of z on the ‘fs’

attenuation curve. For the exponential model q ¼ 0, the source

function is fairly simple, and the integration (18) can be performed

analytically. One finds

A fsðmÞ ¼ 0:543
ð1 2 vÞt0

m
2 2:5 logWz

ð1 2 vÞt0

2m

� �
: ð21Þ

This expression is derived in Appendix A, and the definition and

some properties of the function Wz(x) are described in Appendix

B. The advantage of the expression (21) is that it easily allows us to

study the attenuation curve as a function of z. For every value of x,

Wz(x) is a decreasing function of z, moderately decreasing for

small x and strongly decreasing for large x. This implies that A fs(m)

will be an increasing function of z. The more extended the dust

distribution, relative to the stellar one, the larger the attenuation

and thus the fainter the galaxy appears. In particular, the overlying

screen model is the most efficient and the thin dust disc the least

efficient absorbing geometry. This behaviour is illustrated in

Fig. 6(a), where we plot the ‘fs’ attenuation curve A fs(m) as a

function of m for a set of layering parameters z. For highly inclined

directions (small values of m) the ‘fs’ attenuation changes

considerably as a function of the layering parameter.

5.2.2 Effects on the true attenuation curve

Let us now investigate the influence of z on the true attenuation

curve, which has to be calculated numerically. The results are

shown in Fig. 6(b): we see a different behaviour between the ‘fs’

and the true attenuation curves. Whereas the ‘fs’ attenuation is an

increasing function of z in all directions, the true attenuation is not:

for small inclination angles, the true attenuation decreases as a

function of z. This difference is also illustrated in Fig. 6(c), where

we plot the ‘fs’ and true attenuation explicitly as a function of the

layering parameter for different inclination angles. The ‘fs’ curves

all rise, whereas the true attenuation curve rises for small values of

m, but decreases in the face-on direction m ¼ 1.

If scattering is not taken into account, galaxies with an extended

dust distribution are more efficiently obscured than galaxies with

their dust concentrated in the central region. However, if scattering

is taken into account, the efficiency turns around for face-on

directions. In face-on directions, galaxies with their dust

concentrated in the central region are more efficiently obscured

than galaxies with an extended dust distribution. How can this be

understood physically? In Section 4 we showed that scattering

biased the preferential direction for photons to leave the galaxy: it

is easier to leave it face-on than for highly inclined directions. In

particular, photons that are scattered near the edge of the galaxy are

responsible for this: if a photon is scattered there into a face-on

direction, its probability to leave the galaxy without another

interaction is high. Now, the more extended the dust distribution in

the galaxy, the more dust there is in the outer regions, and the more

photons there are that are scattered out of the galaxy in nearly face-

on directions. Relative to galaxies with concentrated dust, galaxies

with an extended dust distribution, on the one hand, efficiently

absorb photons and, on the other, scatter a considerable amount of

photons in the face-on direction.

Which of these two effects dominates is determined by the total

optical depth. For small optical depths, the scattering effect will be

more important, and A(m) will decrease with increasing z for nearly

face-on directions. In contrary, for large optical depths, the

absorption will dominate and A(m) will be an increasing function

of z. We can thus conclude that:

(i) inclined galaxies with a moderate optical depth are most

efficiently obscured if the dust is more extended than the stars;

(ii) nearly face-on galaxies with a moderate optical depth are

most efficiently obscured if the dust is concentrated in the central

regions;

Figure 6. (a) The ‘fs’ attenuation AV(m) curve as a function of m for some different values of the layering parameter z, which are indicated. The black curves

denoted by z ¼ 0 and 1 correspond to the thin dust disc and overlying sheet models respectively. (b) Same as (a), but now the true attenuation curve. (c) The

true and ‘fs’ attenuation curves AV(m) as a function of the layering parameter z. The solid lines represent the true attenuation curve, and the dotted lines are the

‘fs’ attenuation curves. The results are shown for four angles, which are indicated.
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(iii) optically thick galaxies are most efficiently obscured if the

dust is more extended than the stars.

Notice that the difference between small and large optical depth

can also be considered for one single galaxy, when we study the

attenuation as a function of wavelength. This is shown in Fig. 7,

where we plot the attenuation curve as a function of wavelength for

two angles m and for three models with a different layering

parameter. For a total V-band optical depth tV ¼ 1, the attenuation

behaves as an optically thick galaxy at the blue side of the

spectrum, and as an optically thin galaxy in the red wavelength

range, with the cross-over between the two regimes around 300 nm

ðt0 < 2Þ.

These results can be compared with those found by Bruzual et al.

(1988), who adopted a sandwich model (i.e. a slab where stars and

dust are homogeneously mixed, surrounded on both sides by a slab

containing stars only). They varied the relative thicknesses of the

slabs, and found a similar result for the dependence of the attenu-

ation curve on the layering parameter (only shown for the face-on

direction m ¼ 1Þ. Bruzual et al. (1988) concluded that the

differences in the attenuation curve between the various models

have the same order of magnitude as the uncertainties due to

imprecise knowledge of the optical parameters of the dust, and

hence that a homogeneous slab is a satisfactory model for disc

galaxies. We agree that, in the face-on direction, quantitatively the

difference in attenuation between centrally concentrated and

extended distributions is of the order DA < 0:1 mag for optical

wavelengths. These differences become even smaller if we

constrain the range of z to realistic values. The layering parameters

obtained by Xilouris et al. (1999) all lie between 0.30 and 0.75 at

optical wavelengths, and for these values DA(m) is only of the order

of a few hundredths of a magnitude. Also, for moderately inclined

galaxies, the attenuation curve will not seriously depend on z if this

parameter is constrained to a realistic range. Only if the optical

depth is considerably higher, because of (a combination of) a larger

amount of dust, a more opaque wavelength region or a large

inclination, will the uncertainty of the relative geometry of dust and

stars cause a considerable uncertainty in the attenuation.

6 D I S C U S S I O N A N D C O N C L U S I O N

The aim of this paper was to investigate how the RTE can be

simplified, and to see what errors are introduced by doing so. More

than a decade ago, Bruzual et al. (1988) investigated the effects of

scattering on the attenuation in disc galaxies (albeit for a simple

plane-parallel model), and Disney et al. (1989) showed that

the adopted geometry of the galaxy model strongly influenced the

attenuation (without taking scattering into account, however). We

wanted to re-examine these effects in detail and in the same

manner, i.e. within a realistic set of disc galaxy models and

properly taking multiple scattering into account.

In Section 4 we showed that the nature of the physical process of

scattering is such that it connects different lines of sight with each

other. The overall effect of scattering is that many photons that

originally move on a inclined line of sight leave the galaxy in the

face-on direction. Any approximate method to simplify the RTE

where photons cannot leave their initial path (such as the ‘ns’, ‘fs’,

‘ts’ and ‘ai’ approximations described in Section 4) will not be able

to reproduce this behaviour. In particular, for face-on galaxies, the

optical depth will always be underestimated by such approxi-

mations, as illustrated in Fig. 2. If we compare the attenuation

curves corresponding to isotropic and anisotropic scattering,

however, we see that the differences between them are only of the

order of a hundredth of a magnitude. Anisotropy effects are

essentially washed out. Inversely it will be impossible to determine

an ARF from photometry.

The effects of scattering are also important if we investigate the

influence of the star–dust geometry on the attenuation in disc

galaxies. If scattering is not taken into account, as in Disney et al.

(1989), we find that the attenuation is more effective if the dust

distribution is extended. For a same amount of dust, the larger the

layering parameter, the larger the attenuation. In particular this

means that the overlying screen geometry is the most efficient

obscuring geometry, whereas galaxies with a dust scaleheight

smaller than the stellar scaleheight are less efficiently obscured.

However, when scattering is taken into account, this picture does

not hold any more. We find the remarkable effect of scattering that,

in the face-on direction, galaxies with a moderate optical depth

ðt0 , 2Þ are most efficiently obscured by a centrally concentrated

dust distribution. This is very interesting because the optical depth

of spiral galaxies is thought to be of the order of unity in optical

bands.

The effects of scattering and geometry not only need to be

investigated in a qualitative way – it is important to know them

quantitatively. This allows us to answer questions as to how large

our error is when we approximate anisotropic scattering by

assuming that it is forward, or when we assume a dust scaleheight

equal to that of the stars, where in reality it is only half of it.

The magnitude of these errors depends on the inclination. In the

face-on direction, the errors induced by not properly taking

Figure 7. Three attenuation curves A(m ) as a function of wavelength for

three models with a different layering parameter. The values for z are 0.1,

0.5 and 1, and the other parameters are those of the template model ðtV ¼ 1

and q ¼ 0Þ. The upper and lower panels correspond to m ¼ 0:25 and m ¼ 1

respectively.
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scattering into account are largest. In the ‘ns’ approximation, the

induced errors rise to nearly half a magnitude; for forward

scattering they are of the order of 0.15 mag at optical wavelengths

(Fig. 2b). The errors introduced by uncertainty about the star–dust

geometry are only of the order of a few hundredths of a magnitude

(Fig. 7b), and thus significantly smaller. For inclined directions, the

optical depth along lines of sight towards the observer is much

larger. The attenuation curve then becomes less dependent on the

angular redistribution function, in agreement with Di Bartolomeo

et al. (1995). The differences between the attenuation curves

corresponding to different star–dust geometries grow significantly.

For example, for a galaxy with an inclination of 758 ðm ¼ 0:25Þ, the

differences between the true, isotropic, forward and two-stream

attenuation curves become about 0.1 mag at optical wavelengths,

and only a few hundredths of a magnitude in the UV (Fig. 2a).

However, assuming a homogeneous slab model instead of our

template model, the induced error on the attenuation curve is about

0.3 mag at optical and more than 0.5 mag at UV wavelengths. For

face-on galaxies it is thus important to include scattering in a

proper way in the modelling; for inclined galaxies it is important to

have a fairly good idea of the star–dust geometry of the galaxy.

In the light of the adopted models, two remarks are appropriate.

(1) By working in plane-parallel geometry we have the advantage

that we could use four independent methods to solve the RTE, such

that the accuracy of the obtained results can be checked carefully.

We are well aware of the fact that plane-parallel galaxy models do

not represent very realistic galactic discs. More detailed modelling

requires an exponential fall-off in the radial direction (Freeman

1970), a distinction in attenuation between arm and interarm

regions (e.g. White, Keel & Conselice 2000), and inclusion of the

effects of clumping of both stars and dust (Witt & Gordon 1996,

2000; Bianchi et al. 2000). Nevertheless, we are convinced that our

modelling can contribute to the understanding of the mechanism of

radiative transfer, and we have all reasons to believe that our results

would hold qualitatively in more complex models. (2) We know

that scattering and geometry are not the only two elements that

introduce uncertainties into the attenuation of disc galaxies. In

paper I we solved the RTE for identical galaxy models, but with

two different sets of optical dust parameters found in the literature.

We obtained differences between the attenuation curves of the

order of a few tenths of a magnitude. Uncertainty about the optical

properties of the dust hence also introduces errors into the

attenuation curve. However, these errors are independent of those

introduced by an inaccurate treatment of scattering or geometry,

and hence they do not affect the conclusion of this work.

As a final remark, we reiterate a warning that has also been

issued by others: do not use too simplistic models to determine the

opacity in disc galaxies. There are many ways to investigate the

amount of attenuation or the optical thickness of disc galaxies.

Following Xilouris et al. (1997), we can divide them into two

categories, the small-N approach and the large-N approach. The

small-N approach tries to determine the opacity of individual

nearby disc galaxies by constructing detailed radiative transfer

models. Obviously, these methods would reveal wrong results if

scattering is neglected. The large-N approach aims at determining a

mean value for the optical depth in disc galaxies, by statistically

studying a large sample of galaxies. A certain observable of such a

sample of galaxies is then compared to a galaxy model, in order to

derive the optical depth. However, these methods are difficult to

interpret because of selection effects (Davies et al. 1993), and they

are often model-dependent. For example, Saunders et al. (1990)

estimate an average effective optical depth of disc galaxies by

fitting a screen model to the optical and far-infrared luminosity

functions. Trewhella et al. (1997) redid these calculations with a

sandwich model, and found a very different conclusion. We want to

stress that also in such studies the effects of scattering need to be

taken into account, because they are, except for very inclined

galaxies, at least as important as the effects of geometry. An often

used prescription to take scattering into account is to determine

an effective optical depth teff for a galaxy model without

scattering and compensate the obtained value for scattering.

These compensations are simply multiplications, such as t0 ¼

teff / ð1 2 vÞ or t0 ¼ teff / ð1 2 vÞ1=2, which can (but do not

necessarily need to) have a physical justification. With our paper

we hope to have clearly showed that such approximations are not

able to reproduce accurately the effects of scattering. We therefore

argue that scattering needs to be accounted for properly in

statistical studies concerning the opacity of disc galaxies.
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A P P E N D I X A : T H E E X P O N E N T I A L M O D E L

In this Appendix we take a closer look at the exponential model

q ¼ 0, characterized by

h*ðzÞ ¼
1

2h
e2|z|/h; ðA1Þ

kðzÞ ¼
t0

2zh
e2|z|/zh: ðA2Þ

Disney et al. (1989) already considered a similar galaxy model

(their Triplex model). They managed to calculate an expression for

the observed intensity if scattering is not taken into account. We

will derive the solution of the RTE by direct integration of the

formal solution (16). Therefore, we first need an explicit

expression for the source function S*(t). The optical depth is

obtained by combining equation (A2) with equation (2),

tðzÞ ¼

1
2
t0½2 2 expðz/zhÞ� for z # 0;

1
2
t0 expð2z/zhÞ for z $ 0;

(
ðA3Þ

and inverting this relation we obtain

zðtÞ ¼
2zh lnð2tÞ for 0 # t # 1

2
;

2zh ln½2ð1 2 tÞ� for 1
2

# t # 1;

(
ðA4Þ

where t ¼ t/t0 is the relative optical depth. Introducing this

expression in equations (A1) and (A2) we find an expression for the

stellar source function S*(t),

S*ðtÞ ¼
ðz/t0Þð2tÞz21 for 0 # t # 1

2
;

ðz/t0Þ½2ð1 2 tÞ�z21 for 1
2

# t # 1:

(
ðA5Þ

The source function is of the form (13), and the normalization

condition (14) is satisfied. The fact that S*(t) has a fairly simple

power-law form will allow us to calculate an expression for the ‘ns’

attenuation, by direct integration of the formal solution (16).

Inserting S*(t) in equation (16) we obtain

A nsðmÞ ¼ 0:543
t0

m
2 2:5 log z

ð1

0

x z21 cosh
t0

2m
ðx 2 1Þ

� �
dx; ðA6Þ

which becomes, using the function Wz(x) defined as in Appendix

B,

A nsðmÞ ¼ 0:543
t0

m
2 2:5 logWz

t0

2m

� �
: ðA7Þ

This result is in agreement with the solution obtained by Disney

et al. (1989). Knowing this expression, we immediately also have

an expression for the ‘fs’ and ‘ai’ attenuation curves:

A fsðmÞ ¼ 0:543
ð1 2 vÞt0

m
2 2:5 logWz

ð1 2 vÞt0

2m

� �
; ðA8Þ

A aiðmÞ ¼ 0:543
ð1 2 vÞ1=2t0

m
2 2:5 logWz

ð1 2 vÞ1=2t0

2m

� �
: ðA9Þ

A P P E N D I X B : T H E F U N C T I O N W Z ( X )

For z . 0 and for all values of x, we define the functionWz(x) by

the integral

WzðxÞ ¼ z

ð1

0

ð1 2 tÞz21 cosh ðxtÞ dt: ðB1Þ

For natural values of z, the integral can immediately be solved in

terms of elementary functions, for example

W1ðxÞ ¼ ðsinh xÞ/ x; ðB2Þ

W2ðxÞ ¼ 2ðcosh x 2 1Þ/ x 2; ðB3Þ

W3ðxÞ ¼ 6ðsinh x 1 xÞ/ x 3: ðB4Þ

For non-integer values of z, the integral can be calculated by

expanding the cosh function,

WzðxÞ ¼ z
X1
k¼0

1

ð2kÞ!
x 2k

ð1

0

ð1 2 tÞz21t 2k dt

¼
X1
k¼0

Gðz 1 1Þ

Gðz 1 2k 1 1Þ
x 2k ðB5Þ

¼ 1 1
x 2

ðz 1 1Þðz 1 2Þ
1

x 4

ðz 1 1Þðz 1 2Þðz 1 3Þðz 1 4Þ
1 … :

ðB6Þ

Figure B1. The functionWz(x) as a function of x for different values of z.
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Using d’Alembert’s convergence theorem one can easily show that

this power series converges absolutely. It can be written as a

hypergeometric function,

WzðxÞ ¼1 F2 1;
z 1 1

2
;
z 1 2

2
;
x 2

4

� �
: ðB7Þ

Considering the expansion (B5) we can also consider the special

cases z ¼ 0 and z ¼ 1,

W0ðxÞ ¼ cosh x; ðB8Þ

W1ðxÞ ¼ 1: ðB9Þ

In Fig. B1 we plotWz(x) as a function of x for a few values of z. It

is an even function of x, increasing for positive x, the minimal value

being Wzð0Þ ¼ 1 for all z. Regarded as a function of z for fixed

values of x,Wz(x) is a decreasing function, depending weakly on z

for small x and strongly for large x.
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