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A B S T R A C T

Accurate photometric and kinematic modelling of disc galaxies requires the inclusion of

radiative transfer models. Because of the complexity of the radiative transfer equation (RTE),

sophisticated techniques are required. Various techniques have been employed for the

attenuation in disc galaxies, but a quantitative comparison of them is difficult, because of the

differing assumptions, approximations and accuracy requirements that are adopted in the

literature. In this paper, we present an unbiased comparison of four methods to solve the RTE,

in terms of accuracy, efficiency and flexibility. We apply them all to one problem that can

serve as a first approximation of large portions of disc galaxies: a one-dimensional plane-

parallel geometry, with both absorption and multiple scattering taken into account, with

arbitrary vertical distributions of stars and dust and an arbitrary angular redistribution of the

scattering. We find that the spherical harmonics method is by far the most efficient way to

solve the RTE, whereas both Monte Carlo simulations and the iteration method, which are

straightforward to extend to more complex geometries, have a cost that is about 170 times

larger.
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1 I N T R O D U C T I O N

In order to study the structure of galaxies, it is necessary to obtain

their intrinsic three-dimensional light distribution, i.e. to deproject

their two-dimensional image. This deprojection is complicated by

the effects of interstellar dust, which changes the field of radiation

on its way through the galaxy by absorption, emission and

scattering. The amount of interstellar dust present in disc galaxies

has been the subject of debate for the past few years. The most

widely supported idea is that spiral galaxies are moderately

optically thick in their central regions (a face-on optical depth of

order unity in the V band) and optically thin in their outer regions.

This idea is supported by statistical studies (Giovanelli et al. 1994;

Boselli & Gavazzi 1994; Buat & Burgarella 1998), studies of the

extinction of galaxies in overlapping pairs (White & Keel 1992;

Berlind et al. 1997; Rönnback & Shaver 1997; Pizagno & Rix

1998; White, Keel & Conselice 2000), and detailed modelling of

extinction in individual galaxies (Jansen et al. 1994; Ohta &

Kodaira 1995; Xilouris et al. 1997, 1998, 1999; Kuchinski et al.

1998). However, there is still no consensus, and other authors claim

that spiral galaxies are optically thick all over their disc (Valentijn

1990, 1994; Burstein, Haynes & Faber 1991; James & Puxley

1993; Peletier et al. 1995). Moreover, other arguments complicate

the discussion: it is a gross simplification to talk about the opacity

of spiral galaxies, because there can be a large difference in opacity

between arm and interarm regions (White et al. 2000). For a

detailed overview of the opacity of disc galaxies, we refer to

Davies & Burstein (1995) and Kuchinski et al. (1998).

Many authors have demonstrated that dust attenuation (i.e. the

combined effect of absorption and scattering) has considerable

effects on photometric properties such as magnitudes, colours and

scalelengths (Witt, Thronson & Capuano 1992; Byun, Freeman &

Kylafis 1994; Corradi, Beckman & Simonneau 1996). These

effects are of a complicated nature, and are not simply proportional

to the optical depth of the galaxy. Also kinematic studies can be

complicated by dust attenuation because the projected kinematics

will be biased towards the motions of stars on the near side of the

line of sight (Bosma et al. 1992; Matthews & Wood 2001; Baes &

Dejonghe 2001a). Both photometric and kinematic studies of disc

galaxies hence require sophisticated deprojection techniques that

take dust attenuation into account. The only means to do this

properly is by constructing radiative transfer models.

The radiative transfer problem is a well-defined problem. It is

described by the radiative transfer equation (RTE), which requires

as input a precise knowledge of the optical properties of the dust

grains, the opacity (the total amount and the spatial distribution of

the dust) and the emissivity (the spatial and energy distributions of

the stars). If a convenient algorithm is found to solve the equation,

the output is the projected image on the sky, or the surface†Research Assistant of the Fund of Scientific Research, Flanders, Belgium.
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brightness. However, usually the problem is the reverse. Given the

observed image on the plane of the sky, can we recover the three-

dimensional distribution of stars and dust? The most straight-

forward way to solve this problem is to construct a large set of

models with various parameters, solve the transfer equation for

each of these models, and then determine the parameters such that

the obtained solution fits the observations. It is clear that efficient

algorithms to solve the RTE are necessary.

Unfortunately, the RTE is a fairly complicated equation, and it is

not straightforward to solve it, unless some simplifying

assumptions are made. The most widely adopted way to simplify

the RTE is an approximation or downright neglect of the scattering

by dust grains (Guiderdoni & Rocca-Volmerange 1987; Disney,

Davies & Phillipps 1989; Calzetti, Kinney & Storchi-Bergmann

1994; Ohta & Kodaira 1995). Nevertheless, many efforts have been

made to develop methods to solve the RTE exactly. Four of the

methods that have been explored are the following:

(i) The spherical harmonics method, where all terms in the RTE

are expanded into a series of spherical harmonics, such that the

RTE is replaced by a set of ordinary differential equations.

(ii) The discretization method, a technique borrowed from the

stellar atmospheres theory. In this method the integrals are replaced

by sums and the differentials by finite differences, resulting in a set

of vector equations, which can be solved iteratively.

(iii) The iteration method, where the intensity is expanded in a

series of partial intensities. Each of the partial intensities obeys its

own RTE, which can be solved iteratively.

(iv) Monte Carlo simulations, where the transfer of photons

through the galaxy is investigated by examining the individual

paths of a large number of photons.

Each of these methods will have its advantages and

disadvantages. On the one hand, the different approaches have

different physical backgrounds, and the selection of a certain

algorithm can be useful to gain physical insight into the problem.

For example, the spherical harmonics method gives direct access to

the moments of the radiation field, whereas the iteration method

yields direct information about the importance of multiple

scattering. On the other hand, computational and practical

considerations can be motives to prefer one method over another.

However, these considerations are often based on general truths

without quantification. For example, it is generally accepted that

Monte Carlo methods are costly, but how costly compared to other

methods?

It is important to be able to estimate how a certain solution

method scores in terms of accuracy, efficiency and flexibility.

According to one’s specific interest (e.g. providing a tool for

statistical studies of attenuation, or constructing detailed radiative

transfer models for individual galaxies), one of these properties

may be more important than another. Knowing the relative

performance of the different methods then allows one to select the

most suitable candidate for the problem.

The aim of this paper is to present an unbiased comparison of the

four methods considered. All of them have already been applied to

construct radiative transfer models in order to investigate the

attenuation in disc galaxies (references will be given). However,

the assumptions concerning geometry and dust properties made by

the various authors often differ significantly. This makes a

comparison of the various methods adopted in the literature in

terms of accuracy, efficiency and flexibility next to impossible.

Therefore we adapt them such that they can be used to solve the

same radiative transfer problem. We restrict ourselves to a one-

dimensional plane-parallel geometry, but with absorption and

multiple scattering properly accounted for. Moreover, all of these

models allow an arbitrary vertical distribution of stars and dust, and

an arbitrary angular redistribution function (ARF), such that they

can serve as a first approximation to model large portions of

galactic discs.

In Section 2 we discuss the radiative transfer problem and

present a disc galaxy model to illustrate the solution techniques,

which are presented in the next four sections. In Section 3 the RTE

is solved by an expansion in spherical harmonics; in Section 4 we

describe the discretization technique; in Section 5 the RTE is

solved by an iterative method; and in Section 6 a Monte Carlo

simulation is used. In Section 7 we compare the different

techniques in terms of accuracy and numerical efficiency, and we

discuss them in the light of their use to construct detailed models

for disc galaxies. Section 8 sums up.

2 T H E R A D I AT I V E T R A N S F E R P R O B L E M

2.1 The RTE in plane-parallel geometry

In plane-parallel geometry, there are only two independent

variables necessary to determine a position and a direction in the

galaxy: the depth z and m, the cosine of the angle between that

direction and the face-on direction (plane-parallel geometry

implies an azimuthal symmetry around the face-on direction

m ¼ 1Þ. The general form of the transfer equation in plane-parallel

geometry can be written as (in this paper we omit all explicit

reference to the wavelength dependences)

m
›I

›z
ðz;mÞ ¼ 2kðzÞIðz;mÞ1 h*ðzÞ

1 1
2
vkðzÞ

ð1

21

Iðz;m0ÞCðm;m0Þ dm0: ð1Þ

Here I(z,m) is the specific intensity of the radiation, k(z) is the dust

opacity, h*(z) is the stellar emissivity, v is the dust albedo and

C(m,m0) is the ARF. The last term in equation (1) represents the

scattering term, i.e. the net amount of photons that are scattered off

dust grains into the direction m from all other directions m0 at z (see

Appendix A). We assume that the scattering is coherent, i.e. there is

no energy redistribution of the scattered light. The thermal

emission of the absorbed light by the dust grains is neglected,

because this occurs at far-infrared wavelengths, whereas we will

focus on shorter wavelengths. Furthermore we assume that the dust

grains have the same properties over the galaxy. This means that

the albedo and the redistribution function are independent of

position, and that both the emissivity and the opacity are separable

functions of position and wavelength.

We replace the height z above the galactic plane by the optical

depth t, defined as

tðzÞ ¼

ð1

z

kðz0Þ dz0; ð2Þ

and the RTE then becomes

m
›I

›t
ðt;mÞ ¼ Iðt;mÞ2 S*ðtÞ2 1

2
v

ð1

21

Iðt;m0ÞCðm;m0Þ dm0; ð3Þ

where S*ðtÞ ¼ h*ðtÞ/kðtÞ is the stellar source function. This

equation is to be solved for 0 # t # t0, the total optical depth of
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the slab,

t0 ¼

ð1

21

kðzÞ dz: ð4Þ

The boundary conditions for our radiative transfer problem are

Ið0;2mÞ ¼ Iðt0;mÞ ¼ 0 for m . 0; ð5Þ

which means that there is no incident radiation on either side of the

galaxy. The RTE (3) together with the boundary conditions (5)

allow us to calculate the radiation field at any position and into any

direction in the galaxy. In the first place, however, we are interested

in the radiation field I(0,m) that leaves the galaxy at t ¼ 0 into a

certain direction m, and more precisely in the fraction of this

intensity that is attenuated. Because the RTE is a linear equation,

this fraction will be independent of the total amount of stellar

emission. We can thus choose the normalization of the stellar

emissivity (or the source function) arbitrarily. We takeð1

21

h*ðzÞ dz ¼

ðt0

0

S*ðtÞ dt ¼ 1; ð6Þ

which means that the intensity that leaves the galaxy in the absence

of dust in the face-on direction equals 1. In another direction m, the

dust-free intensity is then simply 1/m and the attenuation (in

magnitudes) is

AðmÞ ¼ 22:5 log½mIð0;mÞ�: ð7Þ

2.2 A disc galaxy model

In order to solve the problem we still need to characterize the

parameters and functions that appear in equation (1), i.e. the optical

properties of the dust and the spatial distributions of stars and dust

have to be specified. Because the present paper focuses on the

comparison of different methods to solve the RTE rather than on an

investigation of the impact of dust attenuation on disc galaxies, we

restrict ourselves here to a single galaxy model to illustrate our

results. For a thorough study of the attenuation curve as a function

of various parameters determining the distributions of stars and

dust, we refer to paper II in this series (Baes & Dejonghe 2001b).

The vertical distribution of stars in disc galaxies is still a matter

of debate. Stars were first believed to be isothermally distributed in

the z direction (van der Kruit & Searle 1981), and later on an

exponential behaviour was proposed (Wainscoat, Freeman &

Hyland 1989). Nowadays it is believed that the true distribution lies

in between these two profiles (Pohlen et al. 2000; Schwarzkopf &

Dettmar 2000). We adopt an exponential profile,

h*ðzÞ ¼
1

2h
e2|z|/h; ð8Þ

where h is the scaleheight, which satisfies the normalization

condition (6). For the dust distribution we also assume an

exponential distribution. In a normal disc galaxy, the interstellar

matter will sink down to the central plane and form an obscuring

layer that is narrower than the stellar layer. Detailed radiative

transfer models of edge-on galaxies indicate that the scaleheight of

the dust is about half of the stellar one (Xilouris et al. 1999). As

opacity function we then obtain

kðzÞ ¼
t0

h
e22|z|/h: ð9Þ

The normalization of equation (9) is such that equation (4) is

satisfied. For the total optical depth we adopt a moderate value

tV ¼ 1, which seems to be appropriate for disc galaxies, as we

argued in the ‘Introduction’.

For C(m,m0) we adopt the Henyey–Greenstein ARF (see

Appendix A), appropriate to describe anisotropic scattering. It is a

one-parameter function with a (wavelength-dependent) parameter

g, which is called the asymmetry parameter and is the average of

the cosine of the scattering angle. Values for the optical properties

of the dust grains (the wavelength dependence of the opacity k, the

albedo v and the asymmetry parameter g) are those calculated by

Maccioni & Perinotto (1994) and displayed in Di Bartolomeo,

Barbaro & Perinotto (1995). The adopted values of the U, B, V, R

and I bands are tabulated in Table 1.

We wish to stress again that this galaxy model is only

illustrative, and that the methods discussed in this paper are

applicable to any galaxy model of the kind we consider here, i.e.

with arbitrary vertical distributions of stars and dust and with

arbitrary ARF.

3 T H E S P H E R I C A L H A R M O N I C S M E T H O D

One of the most popular techniques to solve the radiative transfer

equation is a method that uses an expansion in spherical harmonics.

Many papers have been written that describe this method in detail,

e.g. Davison (1957), Flannery, Roberge & Rybicki (1980),

Roberge (1983) and Di Bartolomeo et al. (1995). Our approach

is based on Roberge (1983), whose method can account for any

vertical distributions of stars and dust, and uses the adaptations of

Di Bartolomeo et al. (1995) in order to make the matrix in the

eigenvalue problem symmetric.

In plane-parallel symmetry, spherical harmonics reduce to

Legendre polynomials, and we expand the intensity and the

redistribution function in a series of Legendre polynomials,

Iðt;mÞ ¼
X1
l¼0

ð2l 1 1Þf lðtÞPlðmÞ; ð10Þ

Cðm;m0Þ ¼
X1
l¼0

ð2l 1 1ÞslPlðmÞPlðm
0Þ: ð11Þ

The coefficients fl(t) are unknown functions, whereas the

coefficients sl are known. For example, in the case of Henyey–

Greenstein scattering, sl ¼ g l, with g the asymmetry parameter

(Appendix A). Inserting the expansions (10) and (11) in equation

(3), and using the recurrence relations for Legendre polynomials,

we findX1
l¼0

½lf 0l21ðtÞ1 ðl 1 1Þf 0l11ðtÞ2 hlf lðtÞ�PlðmÞ ¼ 2S*ðtÞ; ð12Þ

where we set hl ¼ ð2l 1 1Þð1 2 vslÞ. Defining the functions cl and

Table 1. The adopted values for the
optical properties of the dust grains.
Tabulated are the optical depth t relative
to the V-band value, the scattering albedo
v and the asymmetry parameter g.

Band l (mm) t v g

U 360 1.60 0.57 0.49
B 440 1.32 0.57 0.48
V 550 1.00 0.57 0.44
R 700 0.73 0.54 0.37
I 850 0.47 0.51 0.31
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Gl as

clðtÞ ¼
ffiffiffiffi
hl

p
f lðtÞ; ð13Þ

GlðtÞ ¼ 2
S*ðtÞffiffiffiffiffi

h0

p dl;0; ð14Þ

we find an infinite set of linear first-order differential equations

lffiffiffiffiffiffiffiffiffiffiffiffi
hlhl21

p c0l21ðtÞ1
l 1 1ffiffiffiffiffiffiffiffiffiffiffiffi
hl11hl

p c0l11ðtÞ ¼ clðtÞ1 GlðtÞ: ð15Þ

We adopt the so-called PL approximation [which consists in

assuming clðtÞ ¼ 0 for l . L, for a certain value of L, L odd] in

order to turn this infinite set into a finite one, which we can write as

a vector equation

Ac0ðtÞ ¼ cðtÞ1 GðtÞ: ð16Þ

The RTE is thus reduced to a set of ordinary differential equations,

for which the system matrix A is a non-singular, symmetric,

tridiagonal matrix with fixed coefficients. Such a problem is best

solved by diagonalization of the matrix, i.e. an eigenvalue problem.

The procedure to obtain the expressions for cl(t) are nicely

described in Roberge (1983).

We note in particular that for the PL solution, the two boundary

conditions (5) can only be satisfied for ðL 1 1Þ=2 directions mi,

which are the positive zeros of the Legendre polynomial of order

L 1 1. The intensity

Iðt;mÞ ¼
XL

l¼0

2l 1 1ffiffiffiffi
hl

p clðtÞPlðmÞ ð17Þ

at other directions can be obtained by a cubic spline interpolation.

In general we found that the PL solution converges very fast, and

that the boundary conditions were met when L * 15, which we

adopted in our calculations. This value is slightly larger than that

used by Di Bartolomeo et al. (1995).

4 T H E D I S C R E T I Z AT I O N M E T H O D

One of the first major efforts to investigate the effects of

absorption and multiple scattering in disc galaxies is the paper

by Bruzual, Magris & Calvet (1988). They solve the RTE for a

galaxy model consisting of a homogeneous mixture of stars and

dust. Their technique is based on a discretization of the RTE on

a fixed mesh of points, and difference equations replace the

differential equations. We extend the technique of Bruzual et al.

(1988) such that it can account for any vertical distributions of

stars and dust, i.e. any source function S*(t). As we will discuss

in Section 4.2, we will have to make a distinction between source

functions that remain finite everywhere and source functions that

diverge in places.

4.1 Finite source functions

If the source function S*(t) remains finite for all values of t, we

can easily generalize the procedure of Bruzual et al. (1988).

Starting from the transfer equation (3) we introduce the even and

odd fields

uðt;mÞ ¼ 1
2
½Iðt;mÞ1 Iðt;2mÞ�; ð18Þ

vðt;mÞ ¼ 1
2
½Iðt;mÞ2 Iðt;2mÞ�: ð19Þ

The transfer equation can then be written as

m
›u

›t
ðt;mÞ ¼ vðt;mÞ2 v

ð1

0

vðt;m0ÞCoðm;m0Þ dm0; ð20Þ

m
›v

›t
ðt;mÞ ¼ uðt;mÞ2 S*ðtÞ2 v

ð1

0

uðt;m0ÞCeðm;m0Þ dm0; ð21Þ

where

Ceðm;m0Þ ¼ 1
2
½Cðm;m0Þ1 Cðm;2m0Þ�; ð22Þ

Coðm;m0Þ ¼ 1
2
½Cðm;m0Þ2 Cðm;2m0Þ�: ð23Þ

The new boundary conditions are

uð0;mÞ ¼ vð0;mÞ; ð24Þ

uðt0;mÞ ¼ 2vðt0;mÞ: ð25Þ

These equations are analogous to the ones that Bruzual et al. (1988)

use for their homogeneous slab, with the exception that the

constant source function for the homogeneous slab is replaced by a

non-constant, but finite, source function S*(t). A similar dis-

cretization procedure can be followed. We introduce a grid of

N 1 1 mesh points ti, uniformly spaced in optical depth space. In

between these points we introduce a second grid, denoted by half-

integer numbers ti11
2
. A derivative evaluated in a half-integer grid

point ti11
2

becomes a difference evaluated in the nearest integer

mesh points ti and ti11, and analogous for the integer mesh points.

At the boundaries t0 and tN the derivatives are expressed by means

of the boundary conditions. The integrals over m are approximated

by M-point Gauss–Legendre quadrature, and we hence introduce a

mesh of M points mj, being the roots of the Mth-order Legendre

polynomial. The RTEs are then replaced by a set of linear vector

equations, where the ð2N 1 1ÞM unknowns are the even and odd

fields ui,j and vi11
2;j

evaluated at the integer and half-integer mesh

points respectively. These equations are solved recursively using (a

simplification of) the elimination scheme of Milkey, Shine &

Mihalas (1975).

Optimal values for M and N are hard to determine. On the one

hand, these values should not be too high, because of

computational limitations. Indeed, the elimination scheme consists

of two loops, and every step in the first loop consists of two matrix

inversions, where the order of the matrices is M, the number of

angle quadrature points. This means that in total 2N 1 1 matrices

of order M need to be inverted, which is a numerically costly

process. Moreover, the memory requirement is high, because the

2N 1 1 matrices calculated in the first loop need to be stored for

use in the second loop. On the other hand, the values for M and N

should not be taken too low, such that the approximation of

differentials by differences and integrals by quadrature sums is

acceptable. Typically M ¼ 10, while typical values for N are

dependent on the total optical depth t0 and should be chosen such

that Dt never exceeds 0.01. For our galaxy model this meant

N * 100.

4.2 Diverging source functions

The above procedure can no longer be used when the source

function diverges at the boundaries t ¼ 0 and/or t ¼ t0, because

the source function needs to be evaluated in these end-points. Such

source functions are realistic, because they correspond to all

distributions where the dust distribution is narrower than the stellar

distribution, which is observed in most galaxies. In particular, the
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galaxy model described in Section 2.2 has a diverging source

function.

One obvious solution would be to apply a cut-off, but the method

then becomes very dependent on the actual position of the cut-off.

Moreover, such a solution is inaccurate, because it involves a lot of

matrix inversions, and these are difficult operations if the matrices

contain elements of very different magnitudes.

If the source function diverges, we do not use the optical depth

coordinates, but we define a similar independent variable j,

jðzÞ ¼

ð1

z

h*ðz
0Þ dz0; ð26Þ

which assumes values between 0 and 1, because of the

normalization of the emissivity (6). The RTE (1) becomes

m
›I

›j
ðj;mÞ ¼ R*ðjÞIðj;mÞ2 1 2 1

2
vR*ðjÞ

ð1

21

Iðj;m0ÞCðm;m0Þ dm0;

ð27Þ

where R* is the reciprocal of the stellar source function,

R*ðjÞ ¼
1

S*ðjÞ
¼

kðjÞ

h*ðjÞ
: ð28Þ

Starting from this form of the RTE, we can repeat the discretization

procedure from the previous section, i.e. we construct a uniform

mesh ji and an intermediate mesh ji11
2

for the finite differences, and

a mesh mj for the Gauss–Legendre quadrature, and we obtain a set

of vector equations for the unknowns ui,j and vi11
2
; j, which are

solved by the elimination scheme of Milkey et al. (1975).

The arguments leading to the choice of N and M are the same as

in the previous section.

5 I T E R AT I O N M E T H O D S

5.1 The intensity as a series

In a very early paper on scattering, Henyey (1937) shows that the

RTE (3) can be solved iteratively by writing the intensity as a

summation of partial intensities In, which represent the radiation

field consisting of photons that have been scattered exactly n times.

This technique has been adopted by van de Hulst & de Jong (1969)

and Xu & Helou (1996) to solve the RTE in plane-parallel

geometry. Specifically, in our case, we write the intensity as

Iðt;mÞ ¼
X1
n¼0

Inðt;mÞ: ð29Þ

The nth partial intensity satisfies the RTE

m
›In

›t
ðt;mÞ ¼ Inðt;mÞ2 Snðt;mÞ; ð30Þ

where

S0ðt;mÞ ¼ S*ðtÞ; ð31Þ

Snðt;mÞ ¼
1
2
v

ð1

21

In21ðt;m
0ÞCðm;m0Þ dm0; ð32Þ

and is subject to the boundary conditions

Inð0;2mÞ ¼ Inðt0;mÞ ¼ 0 for m . 0: ð33Þ

The solution of equation (30) can be directly written as

Inðt;mÞ ¼
1

m

ðt0

t

Snðt
0;mÞ exp

t 2 t0

m

� �
dt0; ð34Þ

Inðt;2mÞ ¼
1

m

ðt
0

Snðt
0;mÞ exp

t0 2 t

m

� �
dt0: ð35Þ

We calculated the partial intensities and source functions on a mesh

of size L in optical depth and size M in angle. Because the

integration over the angle in equation (32) always has the same

integration domain, we chose the M angle points as the abscissae

for an M-point Gauss–Legendre quadrature. For the calculation of

the In, the integration along the path has variable boundaries, and

hence a simple quadrature would yield bad results near the edges of

the mesh. Instead, we used a uniform mesh of optical depth points,

and for each fixed angle mj, we constructed a cubic spline

approximation to Sn(t,mj), and performed the integration using this

function. Typical values for L and M are 40 and 10 respectively.

The number of terms necessary in the summation (29) in order to

obtain an accurate result depends on the wavelength, because the

nth term in the expansion is proportional to the nth power of the

albedo v n. Xu & Helou (1996) used 20 terms for their sandwich

model; we find that, in general, about 10 terms are sufficient. For

our one-dimensional plane-parallel geometry this number of

integrations is still manageable. However, if the method is

extended to more complicated geometries, more dimensions will

be added, and calculation of such a high number of terms becomes

very time-consuming, such that adaptations of the method are

desirable.

5.2 The intensity as a geometric series

A simplification of the iteration method was introduced by Kylafis

& Bahcall (1987). They use the approximation that the ratio of the

amount of photons that are scattered exactly n 1 1 times to the

amount of photons scattered exactly n times is constant, i.e.

In11ðt;mÞ

Inðt;mÞ
¼

Inðt;mÞ

In21ðt;mÞ
for all n: ð36Þ

If this approximation holds, only two terms in the sum (29) need to

be calculated, because it can be written as a geometric series

Iðt;mÞ ¼ I0ðt;mÞ
X1
j¼0

I1ðt;mÞ

I0ðt;mÞ

� �j

: ð37Þ

To test the accuracy of the approximation (36), we calculated

several terms in the sum (29) for our galaxy model. The results are

shown in Fig. 1, where we plot the ratio PnðmÞ ¼

Inð0;mÞ/ In21ð0;mÞ as a function of n, for four different values of

m. It is clear that Pn(m) is indeed constant for n * 3, and that this

constant is independent of the angle m. For the first values of n,

Figure 1. The ratio PnðmÞ ¼ Inð0;mÞ/ In21ð0;mÞ at the V band of two

consecutive terms in the series (29), as a function of n. It is shown for four

different inclination angles, for the model described in Section 2.2.
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however, the condition (36) is clearly not satisfied. Therefore we

adapt the strategy of Kylafis & Bahcall (1987), and we assume that

the condition (36) is valid for n . N. The intensity can then be

written as

Iðt;mÞ ¼ I0ðt;mÞ1 I1ðt;mÞ1 … 1 IN21ðt;mÞ
X1
j¼0

IN ðt;mÞ

IN21ðt;mÞ

� �j

:

ð38Þ

The parameter N thus determines the last of the partial intensities

that needs to be calculated explicitly. We find that already for

N ¼ 2 the results are correct with less than a one per cent error. The

number of integrations that then has to be performed for the

solution of the RTE is 3LM.

6 M O N T E C A R L O S I M U L AT I O N

The last method we considered to solve the RTE is a Monte Carlo

simulation, which is probably the most widely adopted method for

radiative transfer problems. The principles of this method are

described in detail by Cashwell & Everett (1959), Mattila (1970),

Witt (1977), Yusef-Zadeh, Morris & White (1984) and Bianchi,

Ferrara & Giovanardi (1996).

6.1 The principles

The Monte Carlo method basically follows the individual path of a

very large number N of photons through the galaxy. At each

moment, the fate of a photon on its path is determined by a number

of quantities such as the free path-length between two interactions,

the nature of the interaction (scattering or absorption) and the

direction change during a scattering event. Each of these quantities

can be described by a random variable, taken from a particular

probability density p(x) dx.

More specifically, in plane-parallel geometry a photon is

characterized by two variables: the position (or equivalently the

optical depth t) and the direction m. To start, the initial position t1

and direction m1 are generated randomly as

X1 ¼

ðt1

0

S*ðxÞ dx; ð39Þ

X2 ¼

ðm1

21

dx

2
or m1 ¼ 2X2 2 1; ð40Þ

where X1 and X2 are uniform deviates. Next we generate a random

free path-length ‘ (also in optical depth units) by setting

X3 ¼

ð‘

0

e2x dx or ‘ ¼ 2 lnð1 2 X3Þ: ð41Þ

This randomly determined path-length is to be compared with the

maximal free path-length L of the photon under consideration,

L ¼
t1/m1 if m1 . 0;

2ðt0 2 t1Þ/m1 if m1 , 0:

(
ð42Þ

If ‘ . L, the photon will leave the galaxy, and its direction m1 is

recorded. If ‘ , L, the photon will interact with a dust grain. The

nature of this interaction can be determined by choosing a uniform

deviate X4 and setting

interaction ¼
scattering if X4 , v;

absorption if X4 . v:

(
ð43Þ

If the interaction is an absorption, the photon disappears and will

not contribute to the final intensity. If the interaction is a scattering,

the photon will have a new position and a new direction. Given the

free path-length ‘ and the original position t1 and direction m1, the

new position of the photon is

t2 ¼ t1 2 m1‘; ð44Þ

whereas the new direction m2 is determined by the uniform deviate

X5 ¼
1
2

ðm2

0

Cðm1; xÞ dx: ð45Þ

This procedure can now be repeated until the photon is either

absorbed or leaves the galaxy. In the latter case it will contribute to

the observed intensity and its direction must be recorded. After a

sufficiently large number of such experiments, an M-binned

histogram of the emerging angular distribution can be constructed.

As a result of the planar symmetry of our galaxy models, photons

leaving the galaxy at the back side can be added to those leaving at

the front side. The ratio of the number of photons to the number of

photons that would be in the bin if there were no dust attenuation

(i.e. the distribution of the initial directions) then yields the

attenuation in that bin. The final attenuation curve A(m) is

determined by fitting a smooth curve to these results.

6.2 Optimizing the routine

There are two simple ways in which the above-described routine

can be optimized, i.e. adapted such that better statistics can be

obtained with less photons.

The first adaptation is to avoid photons disappearing from the

radiation field by absorption. This can be done by assigning a

weight to each photon. At each interaction the probability that the

photon will be scattered is v, whereas the probability for

absorption is 1 2 v. Instead of simulating absorption as described

above, we let the photon scatter and we reduce its weight by a

factor v. This way, no photons disappear from the radiation field,

and each photon will eventually leave the galaxy. At that point,

both direction and weight are recorded. The final histogram is

obtained by counting the number of photons in each bin, weighted

by their individual weight.

A second adaptation is the concept of forced first scattering, by

which each photon is forced to be scattered at least once before it

leaves the galaxy. Given the initial maximal free path-length

L(t,m) of the photon, the probability that the photon leaves the

galaxy is exp(2L). When the total optical depth of the galaxy is

low, many photons leave the galaxy without interaction, such that a

large number of photons is necessary to obtain reliable statistics of

the scattered radiation. Hence, instead of allowing a photon to

escape from the galaxy, we split it. A fraction with weight w ¼

expð2LÞ leaves the galaxy and will be classified. The other

fraction with weight w ¼ v½1 2 expð2LÞ� is forced to scatter

before it leaves the galaxy. Therefore a free path-length ‘ has to be

generated such that ‘ , L. This can be done by replacing (41) with

X3 ¼

ð‘

0

e2x dxðL

0

e2x dx

or ‘ ¼ 2 ln½1 2 X3ð1 2 e2LÞ�: ð46Þ

After this forced first scattering, the following scatterings are as

described above.

These two concepts reduce the number of photons, necessary to
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obtain reliable statistics, significantly. The typical values of N and

M that we use in our calculations are N ¼ 105 and M ¼ 100, such

that the mean number of photons in each bin is around 1000.

7 D I S C U S S I O N O F T H E A D O P T E D

T E C H N I Q U E S

7.1 Comparison of the numerical results

Because we have at our disposal four different methods to solve the

RTE, it is straightforward to check the correctness of the individual

methods by comparing their results. In Fig. 2 we plot the V-band

attenuation for the model described in Section 2.2, for the four

methods considered. We can obviously conclude that the four

modelling procedures are in complete agreement with each other.

However, as already mentioned, the modelling techniques do not

reveal the solution at any direction m. The spherical harmonics

method only yields A for the ðL 1 1Þ=2 positive zeros of the

Legendre polynomial of order L 1 1. The discretization and

iteration methods yield A at the abscissae of the adopted quadrature

formulae. The Monte Carlo method actually yields a histogram of

the attenuation in each of the bins into which the interval of

possible m values is divided. In order to find the attenuation in a

randomly chosen direction m, we use a spline interpolant for the

first three methods, and a fitting polynomial for the Monte Carlo

method. In Table 2 we tabulate the attenuation curve A(m),

calculated by each of the four methods, for four inclination angles

m. This table shows that the differences between the different

solutions is always of the order DA < 0:01 mag. Fig. 2 and Table 2

prove that the four methods are accurate and consistent.

In principle, we could also check the correctness of the methods

by comparing our results with those obtained by other teams, who

adopted similar techniques. Such a comparative analysis is

conducted by Di Bartolomeo et al. (1995), who compared their

results for a homogeneous slab with those of Guiderdoni & Rocca-

Volmerange (1987), Kylafis & Bahcall (1987), Bruzual et al.

(1988), Witt et al. (1992), Byun et al. (1994) and Calzetti et al.

(1994). The discrepancies between the extinction curves are

significant (e.g. DAU up to 0.3 mag for tV as small as 0.5), and it is

important to investigate why this is so. Are they due to the adopted

Figure 2. Comparison of the V-band attenuation curve AV(m ) obtained by the four different methods. The results are only shown for the particular values for

which the different methods yield the solution directly (see text).

Table 2. A check on the accuracy of the four
adopted methods of solving the RTE. We
computed the attenuation A(m ) of the model
described in Section 2.2, for four angles and
for the five bands U, B, V, R and I. The four
results correspond to the spherical harmonics
method (sh), the discretization method (di),
the iteration method (it) and the Monte Carlo
simulation (mc).

m 0.25 0.50 0.75 1.00

U sh 1.113 0.617 0.356 0.209
di 1.113 0.617 0.355 0.209
it 1.119 0.617 0.354 0.208

mc 1.108 0.616 0.360 0.213

B sh 1.010 0.520 0.278 0.149
di 1.010 0.520 0.277 0.148
it 1.014 0.519 0.276 0.148

mc 1.003 0.524 0.277 0.129

V sh 0.865 0.398 0.187 0.081
di 0.866 0.398 0.187 0.081
it 0.867 0.397 0.186 0.081

mc 0.851 0.402 0.188 0.078

R sh 0.721 0.299 0.123 0.038
di 0.721 0.298 0.123 0.037
it 0.722 0.298 0.123 0.038

mc 0.710 0.300 0.127 0.029

I sh 0.537 0.197 0.068 0.007
di 0.538 0.196 0.067 0.006
it 0.538 0.196 0.067 0.007

mc 0.533 0.195 0.070 0.007
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solution technique or to other causes? Generally, the discrepancies

can be the result of differences in the following:

(i) Solution method. In five of the mentioned papers the RTE is

solved exactly (i.e. taking absorption and scattering fully into

account) using the discretization, iteration or Monte Carlo

techniques, whereas Guiderdoni & Rocca-Volmerange (1987)

and Calzetti et al. (1994) use approximate analytical solutions.

(ii) Grain properties. The fact that different authors use different

sets of optical properties can introduce substantial discrepancies in

the attenuation curve. These differences between the various values

for the grain properties can be very substantial, as clearly shown in

figs 1 and 2 of Di Bartolomeo et al. (1995).

(iii) Geometry. As Di Bartolomeo et al. (1995) indicated, it is

sometimes impossible to compare results because the geometrical

configuration used by the various authors is not always the same.

Witt et al. (1992) use a spherical symmetry, Kylafis & Bahcall

(1987) and Byun et al. (1994) adopt an axisymmetric galaxy

model, whereas the other authors use a plane-parallel homo-

geneous slab.

In fact, in only two of the seven papers, the RTE is solved

exactly for a plane-parallel homogeneous slab: Bruzual et al.

(1988) by using the discretization technique and Di Bartolomeo

et al. (1995) by adopting the expansion in spherical harmonics.

However, the authors adopt a different set of optical properties of

the dust grains, and the differences DA(m) between the attenuation

curves can still be due to the first two points mentioned above.

To test the degree to which the adopted technique contributes to

the differences in the extinction curve, we consider a plane-parallel

slab, and solve the RTE twice for each of the four methods at our

disposal: once with the dust grain parameters of Di Bartolomeo

et al. (1995) – the ones we adopt throughout this paper – and once

with those of Bruzual et al. (1988). For a galaxy with total optical

depth tV ¼ 1, the results are shown in Fig. 3 for the U and I bands.

We find a very good agreement between the results obtained by

Bruzual et al. (1988) and Di Bartolomeo et al. (1995) respectively,

and our results with the corresponding dust parameters. This

demonstrates that the attenuation differences DA are completely

due to the differing dust properties, and that the spherical

harmonics and iteration methods are reliable.

7.2 Computational efficiency

Besides being accurate, another desirable quality of a solution

method is computational efficiency, as we explained in the

‘Introduction’.

For the spherical harmonics method the only numerically costly

operations are the calculation of the eigenvalues of a matrix of

order L 1 1, the inversion of such a matrix, and L 1 1 simple

integrations. Given L < 15 this cost is relatively low. For the

discretization method 2N 1 1 matrices of the order M need to be

inverted, with typical values M ¼ 12 and N ¼ 100. Because the

computation time for the inversion of a matrix of order M is

proportional to M 2.8 (Press et al. 1989), the numerical cost of the

discretization method will be considerably higher. The iteration

method requires 3M cubic spline fits, and 3LM integrations along

the line of sight, with typical values L ¼ 40 and M ¼ 10. Although

the integrands are well behaved (the product of a smooth source

function with an exponential), such that each individual integration

is relatively easy to perform, the high number of integrations makes

the iteration method numerically costly. Finally, for the Monte

Carlo simulation, the only costly operation for each photon

trajectory is the generation of 2n 1 3 pseudo-random numbers,

where n is the number of scatterings for the photon. Because the

number of photons must be fairly high in order to achieve reliable

statistics (we use N ¼ 105Þ, the numerical cost of the Monte Carlo

method is considerable.

In Table 3 we tabulate the mean computation time necessary for

the calculation of the attenuation curve for a single wavelength.

This table shows that the iteration method and the Monte Carlo

simulation have the same efficiency, and that the spherical

harmonics method is significantly more efficient that the other

methods. Although for this simple one-dimensional plane-parallel

geometry the efficiency is less important (the computation times

are very feasible for all methods), it will be important if we want to

extend these solutions to more complex geometries.

7.3 Extension to more complex geometries

The implementations described in this paper can handle the RTE in

a plane-parallel geometry, and although they can accommodate any

vertical star–dust geometry, they cannot model real disc galaxies.

More realistic models require a light distribution that also

Figure 3. Comparison of our work with that of Bruzual et al. (1988) and Di

Bartolomeo et al. (1995). Shown is the attenuation curve for the U and I

bands, for a homogeneous slab with tV ¼ 1. The open stars and asterisks

represent the results obtained by Bruzual et al. (1988) and Di Bartolomeo

et al. (1995) respectively; the curves are our results where we used the

corresponding dust parameters.

Table 3. A comparison of the computation time
necessary for the calculation of the attenuation curve
A(m ) for a single wavelength. The first number gives
the actual computation time in seconds, the second
number is the computation time relative to the
spherical harmonics method.

Calc. method Actual time (s) Rel. time

spherical harmonics 0.091 1
discretization 2.55 28
iteration 15.68 172
Monte Carlo 15.25 168
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decreases exponentially in the radial direction (Freeman 1970;

Saio & Yoshii 1990; Firmani, Hernandez & Gallagher 1996).

Instead of a one-dimensional plane-parallel geometry, the RTE

then has to be solved in a two-dimensional axisymmetric geometry,

with a set of four independent coordinates instead of a pair. This

extra dimension complicates the RTE substantially. This

observation forces us to think about how the techniques described

in this paper can be generalized to solve the RTE in axisymmetric

disc galaxy models.

The most obvious candidate for extension to axisymmetric

galaxy models (or any other geometry) is the Monte Carlo

simulation. This technique has already been applied several times

to realistic disc galaxy models (e.g. Bianchi et al. 1996; Ferrara

et al. 1996; de Jong 1996; Wood & Jones 1997; Matthews & Wood

2000). Besides being able to treat any geometry, it is also

sufficiently flexible to treat, for example, clumpy dust distributions

(Witt & Gordon 1996, 2000; Bianchi et al. 2000). This flexibility

makes Monte Carlo simulations probably the most powerful

technique for solving complicated radiative transfer problems.

However, their great numerical cost is a disadvantage, and this cost

will grow strongly if the method is extended to axisymmetric

geometries. Indeed, given an initial position, direction and a path-

length, the next position on the path is directly calculated in our

plane-parallel geometry, but in axisymmetric geometries this

becomes a very time-consuming operation (Bianchi et al. 1996).

Therefore it is worth while to investigate how the other techniques

can be generalized.

The iteration technique can be easily extended to more complex

geometries. Also, in contrast to the Monte Carlo simulation, it can

be expected that the numerical cost will grow in proportion to the

number of dimensions. If meshes of order J and K are constructed

in order to account for the extra radial and azimuthal dimensions in

axisymmetric geometry, the entire routine can be expected to take

about JK times as much computation times. The iteration method

has been adopted to solve the RTE for axisymmetric disc galaxies

in its original form (Vansevičius, Arimoto & Kodaira 1997), but it

is the modification by Kylafis & Bahcall (1987) that has increased

the efficiency considerably, and turned the method into a very

practical instrument to investigate dust attenuation in disc galaxies

(Bosma et al. 1992; Byun et al. 1994; Misiriotis et al. 2000). In

particular, the method has been adopted to construct detailed

radiative transfer models for a set of highly inclined disc galaxies

(Xilouris et al. 1997, 1998, 1999), which have been compared with

dust emission models (Alton et al. 2000). It is interesting that the

results of Xilouris et al. (1999) seem at a first glance not in

correspondence with the Monte Carlo results of Kuchinski et al.

(1998), whose computed optical depths are approximately a factor

2–3 higher.

In the previous section, it was shown that, while the efficiencies

of the Monte Carlo and iteration techniques are comparable (at

least for the one-dimensional geometry), the spherical harmonics

method is superb in efficiency. It is in fact possible to extend the

expansion in spherical harmonics to geometries other than plane-

parallel or spherical (Davison 1957). However, another way to

extend the spherical harmonics technique to axisymmetric disc

galaxies has been proposed by Corradi et al. (1996), who assume a

local plane-parallel geometry along each line of sight. The RTE

can then be solved for each line of sight separately, such that the

computation time will be very small. The limitation of this method,

however, is that the assumption of a local plane-parallel geometry

must remain acceptable. For (nearly) face-on galaxies this may be

the case, because the scale at which the galaxy’s structure (i.e. the

source function) changes on the plane of the sky is small compared

to the mean free path of the photons. For highly inclined galaxies,

however, the mean free path of the photons is large compared to the

scale of variation of the source function on the plane of the sky,

such that the assumption of local plane-parallel geometry will not

be applicable.

The last described method, the discretization method, is a typical

one-dimensional technique and is least suitable for extension to

more complex geometries.

8 C O N C L U S I O N

Constructing radiative transfer models for disc galaxies requires a

solution of the RTE. This equation is, even for the most simple

geometries, sufficiently complex that sophisticated methods are

necessary to solve it. The RTE typically takes as input the

distribution of stars and dust, and the output is the projected image

on the sky. However, usually the problem is the reverse: the

distribution of dust and stars has to be derived from the observed

intensity. The simplest way to solve this problem is to find a best-

fitting solution of the RTE in a large parameter space. This means

that the RTE has to be solved repeatedly, such that efficiency is a

very important property of a good solution method. For the same

reason accuracy is important: the effects of dust on the attenuation

of certain physical parameters can be very weak, such that a high

accuracy is required to determine the stellar and dust distribution.

Last but not least, there are many ways to solve the RTE for simple

one-dimensional geometries, but the modelling of real galaxies

demands methods that are applicable to geometries other than

plane-parallel or spherical, in the first place axisymmetric.

Therefore flexibility is necessary.

Several techniques are adopted in the literature to solve the RTE,

even for realistic axisymmetric disc galaxy models, but the

accuracy, efficiency and flexibility of these methods have never

been properly compared. Nevertheless, it is clear that knowledge of

these properties is necessary in order to select the most suitable

method for a particular radiative transfer problem.

In this paper we investigate four different methods to solve the

RTE in a simple plane-parallel geometry: the spherical harmonics

method, the discretization method, an iterative method and a

Monte Carlo simulation. All of them are adapted such that they

solve the RTE exactly (i.e. with the physical processes of

absorption and multiple scattering properly taken into account),

and that they allow arbitrary vertical distributions of stars and dust

and an arbitrary ARF. In this way our methods can contribute to

understanding of the transfer of radiation in realistic galactic discs.

For a galaxy model with realistic vertical structure and dust

parameters, all four methods yield exactly the same results, with

differences between the attenuation curves at most a few

hundredths of a magnitude. They can thus be considered as

accurate. We also compare our results with those obtained by

others, and find that the results are in agreement with each other.

Concerning efficiency, the iteration method and Monte Carlo

method are close, whereas the discretization method is six times as

efficient, and the spherical harmonics method even 170 times so.

Whereas the Monte Carlo method can easily be generalized to an

arbitrary geometry, we anticipate that the iteration method will

probably be the most efficient routine in axisymmetric geometry.

The adaptation of the routine to axial symmetry is more or less

straightforward, and the efficiency will not suffer as much from the

extra dimensions as the Monte Carlo simulation. This issue will be

thoroughly investigated and presented in a forthcoming paper.
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A P P E N D I X A : T H E H E N Y E Y – G R E E N S T E I N

A N G U L A R R E D I S T R I B U T I O N F U N C T I O N

In general, the phase function F(n, n0) defines the probability that a

photon scattered from a direction n0 will obtain a new direction n.

If we normalize the phase function asð ð
Fðn; n0Þ

dn0

4p
¼ 1 for all n; ðA1Þ

then the amount of photons added to the radiation field I(r, n) at a

position r into a direction n due to scattering is

vkðrÞ

ð ð
Iðr; n0ÞFðn; n0Þ

dn0

4p
: ðA2Þ

It can be assumed that the scattering phase function does not

depend independently on the four variables ðn; n0Þ ¼ ðm;f;m0;f0Þ.

We assume that it depends on them only through the angle Q

between the incident and the scattered radiation. In our plane-

parallel geometry, we have azimuthal symmetry, and the scattering

term can then be written as

1
2
vkðzÞ

ð1

21

Iðz;m0ÞCðm;m0Þ dm0; ðA3Þ

where the ARF C(m, m0) is defined as (van de Hulst & de Jong

1969; Bruzual et al. 1988)

Cðm;m0Þ ¼
1

2p

ð2p

0

FðcosQÞ df0: ðA4Þ

A widely used phase function is the one named after Henyey &

Greenstein (1941),

FðcosQÞ ¼
1 2 g 2

ð1 1 g 2 2 2g cosQÞ3=2
; ðA5Þ

which is an accurate one-parameter family to describe the average

scattering in galactic dust. Its parameter g is the asymmetry

parameter and is the mean cosine of the scattering angle,

g ¼ kcosQl. A very useful characteristic of this function is that it

has a very simple expansion in Legendre polynomials. Using the

generating function for Legendre polynomials, it is easily shown

that

FðcosQÞ ¼
X1
l¼0

ð2l 1 1Þg lPlðcosQÞ; ðA6Þ

such that we immediately have an expression for the angular

Radiative transfer in disc galaxies – I 731

q 2001 RAS, MNRAS 326, 722–732



redistribution function (Chandrasekhar 1960; Roberge 1983)

Cðm;m0Þ ¼
X1
l¼0

ð2l 1 1Þg lPlðmÞPlðm
0Þ: ðA7Þ

In order to derive a closed expression for C(m,m0) we use

cosQ ¼ mm0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 m 2Þð1 2 m

02Þ
p

cosðf 2 f0Þ: ðA8Þ

and combine this expression with (A4) and (A5), to obtain

Cðm;m0Þ ¼
1 2 g 2

p

ðp
0

dt

ða ^ b cos tÞ3=2
ðA9Þ

with

aðm;m0Þ ¼ 1 1 g 2 2 2gmm0; ðA10Þ

bðm;m0Þ ¼ 2|g|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 m 2Þð1 2 m02Þ

p
: ðA11Þ

For all values of the asymmetry parameter, these functions obey the

relation a . b $ 0 such that we find (Gradshteyn & Ryzhik 1965,

section 2.575)

Cðm;m0Þ ¼
2ð1 2 g 2Þ

pða 2 bÞ
ffiffiffiffiffiffiffiffiffiffiffi
a 1 b
p E

ffiffiffiffiffiffiffiffiffiffiffi
2b

a 1 b

r !
; ðA12Þ

where E(k) is the complete elliptic integral of the second kind.

Fig. A1 shows the Henyey–Greenstein ARF at the V band for a few

values of the initial direction m0.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A1. The V-band Henyey–Greenstein ARF C(m,m0) as a function of

the new direction m. It is shown for various values of the initial direction m0,

ranging between 0 and 1, with intermediate step 0.25. For negative values of

m0 the ARF is obtained by the symmetry relation Cðm;2m0Þ ¼ Cð2m;m0Þ.
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