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ABSTRACT

We expand our previous analytical and numerical studies of the family of Sérsic models, which are routinely used to describe early-
type galaxies and the bulges of spiral galaxies. In particular, we focus on the total energy budget, an important dynamical property
that has not been discussed in detail in previous works. We use two different methods to calculate the total energy for the Sérsic
model family that result in two independent expressions that can be used along the entire sequence of Sérsic models. We use these
expressions to investigate whether the Spitzer concentration index is a reliable measure for the intrinsic 3D concentration of galaxies,
and we conclude that it is not a very useful measure for the central concentration. The popular Third Galaxy Concentration index, on
the other hand, is shown to be a reliable measure for the intrinsic 3D concentration, even though it is based on the surface brightness

distribution and not on the intrinsic 3D density.
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1. Introduction

Over the past decades, the Sérsic model has become the pre-
ferred model to describe the surface brightness profiles of early-
type galaxies and spiral galaxies bulges (e.g. Davies et al. 1988;
Caon et al. 1993; Mollenhoff & Heidt 2001; Graham & Guzman
2003; Allen et al. 2006; Gadotti 2009; Bruce et al. 2012; Kelvin
et al. 2012; van der Wel et al. 2012; Salo et al. 2015; Lange et al.
2016). The model is the prime component of all modern galaxy
profile fitting codes (Peng et al. 2002, 2010; Mosenkov 2014;
Erwin 2015; Robotham et al. 2017). It is hence not surprising
that the properties of the Sérsic model have been examined in
great detail in the past three decades.

As the model is defined by means of the surface brightness
profile, many of the projected, that is, on-sky, properties can be
expressed analytically (Ciotti 1991; hereafter Paper I; Ciotti &
Bertin 1999; Trujillo et al. 2001). A compendium of the most
important photometric properties has been presented by Graham
& Driver (2005), and the gravitational lensing characteristics are
discussed by Cardone (2004) and Eliasdéttir & Mdéller (2007).

A disadvantage of the Sérsic model is that the standard Abel
deprojection of the surface brightness profile does not yield a
closed expression for the density in terms of elementary functions
or even in terms of standard special functions. Several authors pro-
posed approximations for the spatial density of the Sérsic model
(Prugniel & Simien 1997; Lima Neto et al. 1999; Trujillo et al.
2002a). It was found that closed expressions for the density and
related properties can be derived using Mellin integral transforms.
The resulting expressions are written in terms of the Fox H func-
tion, or the Meijer G function for integer and half-integer values
of m (Mazure & Capelato 2002; Baes & Gentile 2011; Baes & Van
Hese 2011).

The dynamical properties of the Sérsic model were first inves-
tigated in the first two papers of this series (Paper I; Ciotti &
Lanzoni 1997; hereafter Paper II). These papers focused on rela-
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tively large Sérsic indices (m > 2). These studies were extended
by Baes & Ciotti (2019); hereafter Paper III, where we consid-
ered the entire range of Sérsic indices, and particularly focused
on small values of m, appropriate for low-mass and dwarf ellipti-
cals. An important result of these studies is that all Sérsic models
with m > % can be supported by an isotropic velocity dispersion
tensor, and that these isotropic models are stable to both radial and
non-radial perturbations. Sérsic models with smaller values of m,
however, cannot be supported by an isotropic velocity dispersion
tensor.

A dynamical property of the Sérsic models that has not been
discussed analytically is their total energy. For example, the total
energy budget of an equilibrium dynamical model is relevant for
numerical studies, as it sets the preferred length scale for Monte
Carlo or N-body simulations. The need for a consistent set of
standard units for cluster simulations has been advocated since
the 1970s, and the most popular system that has emerged is the
system of so-called standard N-body units (Hénon 1971; Cohn
1979; Heggie & Mathieu 1986)'. This unit system is defined by
the requirements G = M = 1, Eyy = —}—P or equivalently, uses
the virial radius as the length unit.

Moreover, from the theoretical point of view, the total energy
budget is one of the ingredients required to calculate the con-
centration parameter introduced by Spitzer (1969). Contrary to
other concentration indices (e.g. Trujillo et al. 2001; Graham et al.
2001a; Aswathy & Ravikumar 2018), it is based on the intrinsic
3D density distribution, rather than on the light distribution on
the plane of the sky. In the past few years, the interest in the cen-
tral light (or mass) concentration of galaxies has only increased,
thanks to a number of scaling relations between the central

' The use of this unit system has been strongly advocated by Heggie

& Mathieu (1986), and as a result, these standard units have sometimes
been called Heggie units. In 2014, Douglas Heggie proposed the name
Hénon units to commemorate the original proposer.
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concentration and other galactic parameters, including velocity
dispersion, supermassive black hole mass, optical-to-X-ray flux
ratio and nuclear radio emission (e.g. Graham et al. 2001a,b;
Povi¢ et al. 2009; Aswathy & Ravikumar 2018). If physical pro-
cesses in the evolution of a galaxy affect the mass or light con-
centration in a galaxy, we would primarily expect correlations
that involve concentration indices based on the intrinsic density.
It does therefore make sense to investigate the relation between
intrinsic and projected concentration indices for the Sérsic model,
in particular for the low-m regime where the intrinsic density
distribution shows interesting characteristics (Paper III).

The goal of our study is twofold. Firstly, we wish to extend
the body of analytical studies on the Sérsic model by providing
a closed expression for the total energy. Secondly, we use these
expressions to compare the intrinsic Spitzer concentration index
to the commonly used the Third Galaxy Concentration (TGC)
light concentration index (Trujillo et al. 2001) to find out how we
can best parameterise the intrinsic 3D concentration. In Sect. 2
we summarise some general properties of the family of Sérsic
models. In Sect. 3 we compute the total energy of the family of
Sérsic models using two different approaches: the strip bright-
ness approach, and the Mellin integral transform framework. In
Sect. 4 we use these results to compare 2D and 3D concentration
indices for the Sérsic model, and we compare the Sérsic model
with other popular families of spherical dynamical models. Our
results are summarised in Sect. 5.

2. Sérsic model
The Sérsic model is defined by the surface brightness profile

1/m
I(R) = Iy exp l—b(Rﬁ) ]

€

ey

It is a three-parameter family with I, the central surface bright-
ness, R. the effective radius, and m the so-called Sérsic index.
The parameter b = b(m) is not a free parameter in the model, but
a dimensionless parameter that is set such that R. corresponds
to the isophote that contains half of the emitted luminosity. For
a given m, the corresponding value of b can be found by solv-
ing a non-algebraic equation, and various interpolation formulae
have been presented in the literature (Capaccioli 1989; Prugniel
& Simien 1997; MacArthur et al. 2003; Paper I; Paper III). In
particular, we recall the exact asymptotic formulae for large and
small values of m (Ciotti & Bertin 1999, Paper III).

Instead of the central surface brightness Iy , we can also
use the total luminosity L as a free parameter. The connection
between both quantities is

b2 L

" 2xmr(2m) RZ @

Iy
For more formulae related to the Sérsic model, and for figures
illustrating how the most important properties vary as a function
of m, we refer to Paper I, Paper III, and Graham & Driver (2005).

3. Total energy of the Sérsic model

For a spherically symmetric system characterised by a mass den-
sity p(r) and a gravitational potential @(r), the expression for the
total energy E\y is given by

Ei = % Uit = ﬂf p(r) O(r) 2 dr. ?3)
0

In this expression, Uy represents the total potential energy of
the system, and the equality Ey = % Uit 1S a manifestation of
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the virial theorem (e.g. Binney & Tremaine 2008). An alternative
expression for Eyy is based on the cumulative mass density M(r)
instead of the gravitational potential,
Ew=-21G f p(r) M(r) rdr. @)
0

Considering that the spatial density of the Sérsic model, obtained
from an Abel inversion of Eq. (1), is not an elementary function
(which means that this is even less true for the derived quanti-
ties such as the potential and the cumulative mass), and that the
two integrals above involve products of these functions, it seems
natural that the only approach to their evaluation is numerical
integration. Starting from the surface brightness profile, Expres-
sions (3) and (4) are five-dimensional and four-dimensional inte-
grals, respectively. In the following we show that it is possible
to obtain two different expressions for the total energy using
the strip brightness quantity introduced by Schwarzschild (1954)
and by direct integration using advanced special functions.

3.1. Calculation using the strip brightness
A first method for calculating the total energy uses the strip
brightness S(z), a quantity defined so that S(z)dz is the total
luminosity in a strip of width dz on the plane of the sky that
passes a distance z from the centre of the system. For a spher-
ically symmetric system, the strip brightness can be written as
(Schwarzschild 1954)
Sz) = 27rf v(r) rdr, @)
Z
where v(r) is the luminosity density. An equivalent expression
for S(z) is

< I(R)RdR
z VR2 - Z2
The equivalence of these two expression can easily be demon-
strated by inserting the projection equation

I(R)zszM
R

R2 — 2

into Expression (6) and changing the order of the resulting dou-

ble integral (see also Binney & Tremaine 2008, Problem 1.3).
Schwarzschild (1954) demonstrated that E, can be calcu-

lated from the strip brightness using

S@) =2 (©)

(N

Eq=-GT? f S*(2)dz, (8)
0

with Y the mass-to-light ratio of the system. We now elaborate
on the previous identity, following a path apparently unnoticed
in Schwarzschild (1954). We first obtain a generic 2D integral
expression for Ey in terms of the surface brightness profile, and
in the special case of the Sérsic profile we then show that the
integral can be reduced to a 1D integral. We proceed as follows.
Inserting Eq. (6) into (8), we find a triple integral

E[ot=_4GT2f dzf (x) xdx Wydy
0 : Nx2-22J: -2

Changing the order of integrations, we find after some calcula-
tion

Et0t=—8GT2f I(x)dxf I(y)K(z)dy,
0 0 X

/4
=-8GY? fo K(tan ¢) f(¢) sin ¢ dgp,

©))

(10)
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with K(k) the complete elliptic integral of the first kind, and with
the definition

() = f I(R cos ¢) I(R sin ¢) R* dR- (11)

0

Up to now, we have used generic formulae and have not yet
used the specific form of the Sérsic surface brightness profile.
This expression shows that when the strip brightness function
introduced by Schwarzschild (1954) and repeated exchanges in
the integration order are used, the total energy of any generic
spherical model defined by a surface brightness density I(R)
can always be reduced to a 2D integral. Interestingly, for the
Sérsic model, one of the two integrals can be evaluated analyti-
cally. Indeed, with Expression (1), f(¢) becomes

0o R 1/m
f@ =1 f exp —b(—) Q
0 Re

with the quantity Q defined as Q = cos'/” ¢ + sin'/™ ¢. Inserting
this expression into Eq. (10) reduces the expression for the total
energy to a relatively single expression that involves just a sin-
gle integration. Setting k = tan ¢, and using Expression (2), we
obtain

Ié R3mT(3m)

2 —
R°dR = p3m Q3m

12)

Eo = -

m 2 1
2TCGm)b™ GM f K(k) kdk (13)

2mI22m) Re Jo (1+kimysm’

with M = T L the total mass of the system. Many different inte-
grals of the complete elliptic integral of the first kind can be eval-
uated exactly (e.g. Glasser 1976; Cvijovic & Klinowski 1999;
Gradshteyn et al. 2007). Unfortunately, the integral in Expres-
sion (13) is not found among these lists. It is easily evaluated
numerically, however, as the integrand is well behaved over the
entire integration domain.

3.2. Calculation using advanced special functions

A second method for calculating Ey for the Sérsic model is
using the analytical expressions for the density and related prop-
erties derived by Baes & Gentile (2011) and Baes & Van Hese
(2011) in terms of the Fox H function. The general expression
for the density is (Paper I1I)

(0, 1)

3m
PO = T om) R3 [(0 2m), (

2], (14)

where we have used the dimensionless spherlcal radius

by

u= g (15)
The corresponding mass profile is
2M 0,1),(0,1)
M(r) = 2 2,1 2|, 16
") Var@m) ' 3 0.2m),(5.1). (-1, 1| " (16)

When we substitute Expressions (14) and (16) in definition (3),
we find the total energy

b" GM?

Eg=- ————— ——
T 2aT2(2m) R.

o ©0.1,0.1)
Xfo 251 0,2m). (-1, }
0,1
a2 0 e "

This integral can be evaluated using the standard integration for-
mula for a product of two Fox H functions (Mathai et al. 2009),
and after some simplifications, we obtain

b GM?
Eo=-s—=77 75"
2rT2(2m) R.
22| (1

X H3j

—3m,2m), (0, 1), (0, 1) 1}, (18)

(0’ Zm)’ (_%’ 1)’ (_l’ 1)

For integer and half-integer values of m, the Fox H function
in Expression (18) can be reduced to Meijer G functions. This
reduction is based on the integral representations of the Meijer
G and Fox H function, and Gauss’ multiplication theorem. The
result reads

(2m)3m—1 b GM2

E =—
T Qmym r2(2m> R.
mm _m+2 _3m-1 0
X Gy 2"1 22 e 2 H (19)
2m’2m"" 2m > 2

3.3. Numerical values

In Table 1 we tabulate the value of the total energy and the grav-
itational radius rg, defined through the relation
_GM?

UlOt s
G

2Eo = (20)
for a number of values between m = 0 and m = 10. These values
were calculated through both Expressions (13) and (19) with 15
significant digits, and are found to be in perfect agreement. We
also find perfect agreement with the analytical results for the few
special cases for which E can be calculated analytically, that
is, form = 0, % and 1 (Appendix A). We therefore conclude
that both the expressions are equivalent, or that the integral in
Eq. (13) can be evaluated exactly as

f' K(kdk  am 5, (1—3m,2m),(0,1),(0,1)‘1
o (1+klUmym = 4T(3m) 0,2m), (=3, D, (=5, D) ||’
1)

The values for Ey for 2 < m < 10 are in good agreement with
those listed in Paper 1. We obtained them there through numeri-
cal integration.

4. Discussion
4.1. Central concentration of the Sérsic models

The calculation of the total energy of the family of Sérsic mod-
els is primarily important in the discussion on the central con-
centration of galaxies. The degree to which light or mass is
centrally concentrated is an important diagnostic for galaxies.
The importance is obvious when the many physical galaxy prop-
erties are considered that correlate with (different measures of)
the galaxy light concentration, including total luminosity (Caon
et al. 1993; Graham et al. 2001a), velocity dispersion (Graham
et al. 2001a), Mg/Fe abundance ratio (Vazdekis et al. 2004),
central supermassive black hole mass (Graham et al. 2001b;
Aswathy & Ravikumar 2018), cluster local density (Trujillo et al.
2002b), and emission at radio and X-ray wavelengths (Povi¢ et al.
2009; Aswathy & Ravikumar 2018). This has inspired several
teams to propose galaxy concentration as an important parame-
ter in automated galaxy classification schemes (Doi et al. 1993;
Abraham et al. 1994; Bershady et al. 2000; Conselice 2003).
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Table 1. Numerical values for the total energy Ey, the gravitational radius rg, the half-mass radius r,, the Spitzer concentration index Cs, the
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TGC concentration index, and the 3D version of the TGC (TGCsp) as a function of m.

Ei G Th
GMYR. R. R. Cs TGC TGCsp

0.0 —-0.19105306 2.6170741 1.2936816  0.49432364 0.11111111  0.024772219

0.5 -0.16607062 3.0107674 1.3064032 0.43391038 0.14825058  0.066299036

1.0 —0.15734503  3.1777299  1.3248257 0.41690949 0.21747529  0.15312211

1.5 —0.15452645 3.2356921 1.3337332 0.41219411 0.27914764  0.22956694

2.0 —0.15453561 3.2355003 1.3389685 0.41383663 0.33033179  0.29121676

2.5 —0.15628600  3.1992630 1.3424141 0.41960105 0.37280793  0.34111712

3.0 —0.15928070 3.1391122  1.3448539 0.42841854 0.40850538  0.38222620

3.5 —-0.16325932  3.0626122 1.3466723 0.43971363 0.43893749  0.41671952

4.0 —-0.16807502 2.9748621 1.3480801 0.45315716 0.46522882  (0.44613983

4.5 —0.17364254  2.8794787 1.3492021 0.46855775 0.48821266  0.47158994

5.0 -0.17991325 2.7791172 1.3501174 0.48580801 0.50851353  0.49387312

6.0 —0.19447936  2.5709669  1.3515209 0.52568584  0.54285984  0.53118369

7.0 —0.21173840 2.3614045 1.3525465 0.57277206 0.57094111  0.56135261

8.0 —-0.23180415 2.1569933  1.3533288 0.62741447 0.59444205  0.58638759

9.0 —0.25488801 1.9616458 1.3539452 0.69020878  0.61447913  0.60759027

10.0 -0.28127786 1.7776017 1.3544433 0.76194984 0.63182362  0.62584461

There are many different ways in which the central concen- 0.8

tration of galaxies can be estimated or parameterised. A num-
ber of concentration indices, such as the widely used C3; index, g
are defined as the ratio of radii that contain certain fractions of 5 0.6
the total galaxy luminosity (de Vaucouleurs 1977; Kent 1985; £
Bershady et al. 2000). Other concentration indices are based on E 04
the ratio of the luminous flux enclosed by two different apertures °
(Okamura et al. 1984; Doi et al. 1993). Possibly the most com- g
monly used measure for the central light concentration of galaxies 202 & e Soi
today is the TGC index, introduced by Trujillo et al. (2001) as the S e o Tg'ézer
ratio between the flux within the isophote at a radius a@R., with « 0.0 o oo TGCsp
anumber between 0 and 1, and the flux within the isophote at R., ' 5 5 N 5 % 75

S (aR.)
S(Re)

For the family of Sérsic models, the TGC index can be calculated
analytically (Trujillo et al. 2001; Graham & Driver 2005),

y(2m, ba'l/m)
y(2m, b)

where y(s, x) is the lower incomplete gamma function. Expres-
sion (23) only depends on @ and the Sérsic index m; there is
no dependency on effective radius, luminosity, or central sur-
face brightness. In the remainder of this paper, we always use
a = %, the value that is generally adopted (e.g. Trujillo et al.
2001; Graham et al. 2001b; Pasquato & Bertin 2010). We have,
however, repeated the entire analysis for different values of «,
and have found that our results and conclusions are not sensitive
to the particular choice of a.

As has been shown by Trujillo et al. (2001) and Graham et al.
(2001a), the TGC index is a monotonically increasing function
of m. In the limit of m — 0, the surface brightness profile is
a uniform disc on the sky (Paper III), and it is easy to see that
TGC — %. In Fig. 1 the green line shows the TGC index as a
function of the Sérsic index m.

A potential caveat of concentration indices such as the Cs;
or TGC indices is that they are based on the observed, projected
distribution of light on the plane of the sky. A physical charac-
terisation of the central concentration of light (or mass) should
in principle be based on the intrinsic 3D density distribution. A
characterisation that satisfies this requirement is the Spitzer con-
centration index (Spitzer 1969), defined almost half a centuary

TGC =

R
with S(R) =2x f IR)R dR'. (22)
0

TGC = 23)

A113, page 4 of 8

Sersic index m

Fig. 1. Dependence of the Spitzer concentration index (Eq. (24)), the
TGC index (Eq. (23)), and the 3D TGC index (Eq. (25)) on the Sérsic
index m.

ago as the ratio between the half-mass radius and the gravita-
tional radius,

T'h

e

Cs = (24)
The half-mass radius ry is obviously the radius of the spherical
volume that contains half of the total mass, and the gravitational
radius is defined through Eq. (20).

Table 2 of Paper I lists numerical approximations for the
Spitzer concentration index for a number of Sérsic models with
m > 2. It was noted that Cs is an monotonically increasing func-
tion of m, as expected. This behaviour does not extend over the
entire range of Sérsic indices, however. The yellow line in Fig. 1
shows how Cs varies with m between 0 and 10, and numerical
values are listed in the fifth column of Table 1. In contrast to
the TGC index, Spitzer concentration index is not a monotoni-
cally increasing function of m. For m > 1.6 it does increase with
increasing m, in agreement with the observation in Paper I. For
values of m < 1.6, Cs increases again for decreasing m with a
rate that is quite steep due to the strong variation of the total
energy. At m = 0, a limiting value Cs ~ 0.4943 is reached,
which would imply that the constant intensity model would be
more centrally concentrated than a de Vaucouleurs model.

A logical consequence is that the TGC and Spitzer concen-
tration indices are not correlated for the family of Sérsic models.
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Fig. 2. Location of the Sérsic model family, as well as most other popular spherical toy models, in the (TGC, Cs) and the (TGC, TGC3p) planes.
The models form banana-shaped trails in the former plane, whereas they are located on an almost perfect one-to-one relation in the latter plane.
This shows that the Spitzer concentration index is a poor indicator of the intrinsic 3D concentration, whereas the TGC is a very accurate indicator.

In the left panel of Fig. 2 we show the position of the family
of Sérsic models in the plane formed by these two indices. The
sequence of models forms a banana-shaped trail in this diagram.
This diagram suggests that the Spitzer index is a poor metric to
indicate the central mass or light concentration in galaxies.

4.2. Comparison to other models

In order to further investigate the usefulness of the Spitzer index
as an indicator for the central concentration, we have also cal-
culated the TGC and Cs indices for a number of other popular
families of toy models that are often used to represent galaxies.
These families are also shown in the left panel of Fig. 2. Except for
the sequence that corresponds to the Sérsic models, this plot also
contains the y- or Dehnen models (Dehnen 1993; Tremaine et al.
1994), the S-models (Zhao 1996), the Veltmann or hypervirial
models (Veltmann 1979; Evans & An 2005), the Einasto models
(Einasto 1965; Cardone et al. 2005), and the cored Nuker or Zhao
(%,B, 0) models (Zhao 1996). Some well-known specific models
are also indicated: the Plummer model (Plummer 1911; Dejonghe
1987), Hénon’s isochrone sphere (Henon 1959), the Hernquist
model (Hernquist 1990), the Jaffe model (Jaffe 1983), the perfect
sphere (de Zeeuw 1985), the Gaussian model (Appendix A.2), the
constant density sphere (Binney & Tremaine 2008), and the con-
stant intensity sphere (Paper III). Most of these models belong
to one or more of the families mentioned above. In particular,
the Hernquist model lies at the intersection of the Veltmann,
- and Dehnen models, the Plummer sphere belongs to the Velt-
mann and cored Nuker families, and the Gaussian model is com-
mon between the Sérsic and Einasto sequences. For all of these
models, the total energy budget can be calculated analytically
(Appendix B).

It is quite interesting to see that all of these different models
occupy a relatively narrow region in the (TGC, Cs) plane. This
is remarkable, given the large variety in central density slopes
between these models, ranging from models with a constant cen-
tral density to models with a strong density cusp. Furthermore,
it is clear that the banana-shaped trail of the Sérsic models is
not unique to this specific family of models. On the contrary,

it seems to be a general feature: the Veltmann, Einasto, § and
cored Nuker models show the same behaviour. Among the mod-
els with the lowest Cs values are the perfect sphere and Hénon’s
isochrone sphere, two models with a central density core and
a relatively shallow r~* fall-off at large radii. It does not make
sense that these models, according to this concentration index,
would be characterised as less centrally concentrated than the
constant intensity sphere, in which the density does increase with
increasing radius (Paper III). In conclusion, the Spitzer index is
not a very useful measure for the central concentration of dynam-
ical models.

4.3. Intrinsic 3D concentration

If the Spitzer concentration index is not a useful measure for the
intrinsic 3D concentration, which index should be used? Based
on the monotonic dependence of the TGC index on m for the
family of Sérsic models, it might be thought that the TGC index,
while defined to measure the concentration of the surface bright-
ness distribution on the sky, is also a suitable measure for the
intrinsic 3D concentration. Similarly, for the family of Dehnen
models, the TGC index increases monotonically with the central
slope ¥, which is a natural measure for the central concentration
for this family.

To test whether the TGC index is a reliable measure for the
intrinsic 3D density concentration, we define a general 3D ver-
sion of the TGC index as the ratio between the mass contained
within a sphere with radius ar, and the mass contained within
the half-mass radius ry,,

= (rz) with  M(r) = 4 fo oA, (25)

Again we assume @ = % The blue line in Fig. 1 shows that the
TGC;p index varies monotonically as function of m in a way that
is very similar to the TGC index.

The right panel of Fig. 2 shows the correlation between the
TGC and TGCj3p indices, not only for the Sérsic family, but for
all the models also shown in the left panel. There is an almost
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perfect one-to-one correlation between both indices over the dif-
ferent classes of models. For models with a small central concen-
tration, such as the Sérsic models with small m, the TGCsp index
is systematically lower than the TGC index. As the models are
more and more centrally concentrated, the difference between
the two indices becomes smaller, and for very centrally concen-
trated systems, both indices converge to one. This shows that the
TGC index is a reliable measure for the intrinsic 3D concentra-
tion, and no separate index such as the TGCsp index needs to
be invoked to distinguish between 2D and 3D concentration of
galaxies. It therefore makes perfect sense to use the TGC index
in statistical studies between global galaxy parameters.

5. Summary

We have expanded our previous analytical and numerical studies
of the family of Sérsic models, and concentrated on the total
energy budget. The main results of this dedicated study are the
following.

Firstly, we explored the Schwarzschild (1954) formalism of
the strip brightness to calculate the total energy budget for the
Sérsic family. This resulted in a relatively simple expression that
involves just a single integration. In a completely independent
way, we obtained a closed expression for the total energy in
terms of the Fox H function, thanks to the closed expressions
for density and related properties derived in our previous work
(Baes & Gentile 2011; Baes & Van Hese 2011). In turn, this
means that we have a closed-form solution for the 1D integral
obtained in the previous approach. We were not able to find this
expression in all the standard tables of special functions, and the
well-known computer algebra systems were also unable to com-
pute the resulting integral. The two expressions are shown to be
in agreement by performing numerical integration. We present a
table with values for the total energy budget covering the entire
range of Sérsic parameters.

Subsequently, we used our calculations to investigate
whether the Spitzer concentration index (Spitzer 1969) is a reli-
able measure for the intrinsic 3D concentration of galaxies. We
find that this is not the case: the index does not correlate with
the Sérsic parameter in the low-m range. More generally, we
compared the Spitzer concentration index to the popular TGC
index (Trujillo et al. 2001) for a wide range of spherical galaxy
models, and find that these two indices do not correlate over the
entire possible parameter space. We conclude that the Spitzer
concentration index is not a very useful measure for the cen-
tral concentration of dynamical models. On the other hand, we
defined a 3D version of the TGC index, and found an almost
perfect correlation between the 2D and 3D versions over a wide
range of dynamical models. This implies that the TGC index is a
reliable measure for the intrinsic 3D concentration, even though
it is based on the surface brightness distribution and not on the
intrinsic 3D density.

While this study is primarily a theoretical study, it also has
a practical use for numerical studies of equilibrium dynamical
models because the total energy sets the preferred length scale
in the standard or Hénon unit system (Hénon 1971; Heggie &
Mathieu 1986).
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Appendix A: Special cases

There are a number of special Sérsic models for which the total
energy can be calculated analytically using elementary and/or
simple special functions. We describe them below.

A.1. Exponential model m = 1

For the special case m = 1, the Sérsic model has a simple expo-
nential surface brightness profile,

I(R) = Iy e PR/R:. (A.1)

The spatial mass density p(r) corresponding to this surface
brightness profile, with r the spherical radius, can be written as

M
2 R_g Ko(w),
with u = br/R., and K, (x) the modified Bessel function of the
second kind of order n. After some calculation, the correspond-
ing potential can be written as

GMb ([ 2
R [(3— u+ Lz(u)) Ki(u) + L (w) Kz(u)} , (A.3)
o Vg

o(r) = (A.2)

() = -

with L,(x) the modified Struve function of order n. When we
substitute the density (A.2) and the potential (A.3) into Eq. (3),
the resulting integral can be evaluated exactly as

3b GM?
32 R
On the other hand, when we set m = 1 in Eq. (19), we obtain

b GM? 22| —1,0
Eo=—-——G ’
tot 2 R. 22 %,_%

E = - (A-4)

1} . (A.5)

All Meijer G functions of the form G%% can be written in terms
of hypergeometric functions, and in this specific case, we find

1.0
Giﬁ[ 1 (A.6)

22 2

3% 1 13
| = — —LF|=,=:;3;1-2].
Z] 32 V2 ‘(2 2 Z)
Combining this with Expression (A.5), we recover the simple
result (A.4). Finally, when we set m = 1 in Expression (13), we
obtain the expression

_ 4 GM* [ K(k)kdk
T R Jo (1+kP

Unfortunately, neither Maple nor Mathematica can evaluate this
integral symbolically, nor could this integral be evaluated using
available lists of definite integrals involving the complete elliptic
integral (Glasser 1976; Cvijovic & Klinowski 1999). It is obvi-
ously easy to check this result numerically.

(A7)

A.2. Gaussian model m = 3

The Sérsic model corresponding to m = % has a Gaussian surface
brightness profile,

I(R) = Iy e "F/R: (A.8)

Applying the standard deprojection formula, we also find a
Gaussian density distribution,

b3/2

M brir:, (A.9)

When we set u = Vb r/R., the potential can be written as

Al
R u (A.10)

When we substitute Expressions (A.9) and (A.10) in Eq. (3), we
obtain

b GM?
Ewo = — Vb . (A.11)
2V2r Re
On the other hand, when we set m = % in the general for-
mula (19), we obtain
Vb GM? [ 0
E = o R Gljl[_% 1}. (A.12)
Because
0 Ps
Gl izl = [—— A13
1’1[—% z(1+2) (A-13)

we recover the same result (A.11). Finally, substituting m = %
into Eq. (13) yields

b 2vVb GM? ' K(k)kdk A4
tot — = 7T3/2 Re ) (1 T k2)3/2' ( . )
This result is equivalent to the previous expressions if
1
K(k) kdk
Wkdk _ 7 (A.15)

o +IP2 " 4ya

Neither Maple or Mathematica returns a symbolic evaluation of
this integral, but it is easy to verify it numerically.

A.3. Constant intensity sphere m — 0

In Paper III we have discussed the structure of the family of
Sérsic models with a focus on the small Sérsic indices, and also
considered the special case of m — 0. This limiting model is
characterised by a finite extent and a uniform surface brightness
distribution,

Iy if R < V2R,

A.16
0 ifR> V2R.. (A.16)

I(R) = {

This simple surface brightness distribution translates into a
ball in which the density increases from the centre to an
outer, infinite-density skin. Substituting Egs. (22) and (27) from
Paper III for the density and mass profile in Eq. (4), we obtain
the simple result

8 GM?
3\/571'2 Re
The same result can be found by taking the limit m — 0 in

Eq. (13), when we take into account that lim,,0b" = 1/ V2
(Paper III). Because

T'(3m) 1 4

Eg = - (A.17)

| =2 A.18
mod mT22m) (1+ k/mypm 3 (A-18)
for all 0 < k < 1, we find immediately that
8 GM* (! 8 GM?
Eo = — f Kk) kdk = — , (A.19)
3\57‘!’2 Re 0 3\/§7T2 Re

where the last transition follows from the fact that the integral is
simply equal to unity (Glasser 1976).
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Appendix B: Total energy for the most common

models

In Table B.1 we list the total energy for some of the most com-
monly used spherical models. The upper half of the table, above

A&A 630, A113 (2019)

families of spherical models. The bottom half, below the hori-
zontal line, lists a number of well-known specific models. Each
model is completely defined by either the spatial density pro-
file or the surface brightness, and contains the total mass and
a length scale (both of which were set to one here) as free

the horizontal line, contains a number of popular one-parameter —parameters.
Table B.1. Total energy for the most commonly used spherical models.
Model p(r) or I(R) Eo
Dehnen or (r) = 3y ! !
4 P = e A+ T4(5-2y) 2
_B-2)B-3) 1 (B=-3)
B p(r) = -
4r r(1+r)l4 4(2[3 5)( )
1+4 2 vaa+n Tl

Veltmann p(r) = 4 (1 + rhy2+n T 32/ 2 F(% + %)
. 1 Ir'(2n) I'(5n)

Einast = ————exp(-r'" - Fi(2n,5m;2n + 1; -1
Hnasto P 47r112 TGn) P (=) 2TGn)  anT2am) e S an )
.. b" (1 -3m,2m),(0,1),(0,1)

S IR)= ———— —bR'™ ——— H>? 1
érsic B = T PR~ ma B | 0, 2my (- 1), (-1 1)

3 1 3n

Plummer p(r) = 471_ m —a

Hénon’s isochrone ( 1 A L7

1 pr)=— - — =
4 (1 + r12)3/2(1]+ V1+r2)2 3 18

H ist =— — -
ermnquis p(r) 2 r(1+r)3 112

Jaff =— = ——

e p) 4r r? (11+ r)? 411
Perfect sphere p(r) = = m —?
Constant density p(r)=— (<l -

4 10

Exponential I(R) = b—z e Pk —%
P T 2n 3\/2_

b b

Gaussian I(R) = —e % -

1 2\2/3%

Constant intensity IR)=— (R< \/5) -

Notes. The upper half of the table, above the horizontal line, contains a number of popular one-parameter families of spherical models. The bottom
half, below the horizontal line, lists a number of well-known specific models. The first column is the name of the model (or one-parameter family
of models), the second column corresponds to either the density p(r) or the surface brightness /(R), depending on the most natural way to define
the model. The third column is the total energy E.y. Everything is expressed in normalised units, i.e., the gravitational constant, total mass, the

mass-to-light ratio, and the scale length are set to one.
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