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a b s t r a c t

TheMonte Carlomethod is themost popular technique to perform radiative transfer simulations in a gen-
eral 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer
are discussed extensively in the literature, and many different Monte Carlo codes are publicly available.
On the contrary, the design of a suite of components that can be used for the distribution of sources and
sinks in radiative transfer codes has received very little attention. The availability of such models, with
different degrees of complexity, has many benefits. For example, they can serve as toymodels to test new
physical ingredients, or as parameterisedmodels for inverse radiative transfer fitting. For 3DMonte Carlo
codes, this requires algorithms to efficiently generate random positions from 3D density distributions.

We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code
SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy
models or numerical models defined on grids or a set of particles) and the extensive use of decorators that
combine and alter these building blocks tomore complex structures. For a number of decorators, e.g. those
that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be
used to generate randompositions. Advantages of this decorator-based design include code transparency,
the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators
can be chained without problems, very complex models can easily be constructed out of simple building
blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised
random position generators is superior to a simpler design based on a generic black-box random position
generator.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Radiative transfer, the process that describes radiation propa-
gating through and interacting with matter, is a general problem
that is encountered in all areas of astronomy (and far beyond). Due
to its high dimensionality and nonlocal and nonlinear behaviour, it
is generally considered as one of the most challenging problems in
numerical astrophysics.

Recent years have seen an impressive advancement of three-
dimensional (3D) radiative transfer studies, thanks to the increase
in computational power, the availability of a wealth of new ob-
servational constraints and the development of new algorithms.
Among the different approaches available to solve the radiative
transfer problem, the Monte Carlo method is generally the most
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popular one. The first Monte Carlo radiative transfer codes were
developed more than four decades ago (e.g., Mattila, 1970; Roark
et al., 1974;Witt, 1977), and since then themethod has steadily in-
creased its market share in all fields where 3D radiative transfer is
important. Many powerful Monte Carlo codes are available in var-
ious fields of computational astrophysics, including dust radiative
transfer (Steinacker et al., 2013, and references therein), Lyα line
transfer (Verhamme et al., 2006; Dijkstra et al., 2006; Laursen et al.,
2009), ionising radiation transport (Ciardi et al., 2001;Maselli et al.,
2003; Wood et al., 2004), neutron transport (Romano and Forget,
2013) and neutrino radiation transport (Abdikamalov et al., 2012).
These and many other papers and monographs discuss at length
themain algorithms behindMonte Carlo radiative transfer and the
various proposed improvements and acceleration techniques.

A very different aspect of Monte Carlo radiative transfer codes
that has received very little attention in the literature, is the setup
of a suite of components that describe the distribution of the
sources and sinks in the radiative transfer code (i.e., the objects
that add radiation to or remove radiation from the radiation field).

http://dx.doi.org/10.1016/j.ascom.2015.05.006
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This is an aspect outside the real core of Monte Carlo radiative
transfer problem. Virtually all of the available codes require the
user to hard-code themodel makeup for each distinct problem (al-
though the results of hydrodynamical simulations can generally be
processed out of the box, given the appropriate import module).
We argue, however, that it is very useful for a radiative transfer
code to provide a suite of input models, or geometries, as built-
in components. Such toy models can provide a low-threshold in-
troduction to new users. They also have a crucial role in a more
scientific way: toy input models are used to benchmark different
codes (Ivezić et al., 1997; Pascucci et al., 2004; Pinte et al., 2009),
to investigate the effects of dust attenuation on the apparent struc-
tural parameters of galaxies (Möllenhoff et al., 2006; Gadotti et al.,
2010; Pastrav et al., 2013a,b), or to investigate the physical impact
of e.g. clumpiness or spiral arms (Witt and Gordon, 1996; Bianchi
et al., 2000; Misiriotis et al., 2000; Semionov et al., 2006). Finally,
they are essential for so-called inverse radiative transfer, i.e. when
a parameterised radiative transfer model is fitted to observational
data (Xilouris et al., 1999; Bianchi, 2007; Schechtman-Rook et al.,
2012; De Geyter et al., 2013, 2014).

In order to be useful for these goals, the suite of input models
should be diverse enough and contain models with different
degrees of complexity, ranging from the metaphorical spherical
cows to more realistic toy models that consider, for example,
spheroidal and triaxial geometries, including bars, spiral arms and
clumpy distributions. Setting up such a suite is more complex than
it might appear at first sight. While each model is in principle
completely determined by the 3D density distribution ρ(x), the
setup requires more than just an implementation for this density
function.

A crucial aspect of Monte Carlo radiative transfer codes is
the emission of a multitude of simulated photon packets from
random locations sampled from the source density distribution. So
each model in the suite should contain a routine that generates
random numbers according to ρ(x). Moreover, this random
position generation needs to be very efficient, since the random
positions are sampled extremely often. In this aspect, Monte
Carlo radiative transfer simulations differ from other codes where
random positions need to be sampled from arbitrary density
distributions, e.g. to generate the initial conditions for N-body or
hydrodynamical simulations. The efficient generation of random
positions from complex 3D density distribution is not a trivial task.

Another aspect that needs consideration is the organisation of
such a suite of input models. One could provide a parameterised
model that can cover every possible option, but this would
quickly lead to an explosion of options that is hard to overview
and maintain, and would inevitably contain substantial code
duplication.

In this paper, we describe how these issues are dealt with in
the publicly available 3D Monte Carlo dust radiative transfer code
SKIRT1 (Baes et al., 2003, 2011; Camps and Baes, 2015). While
we summarise the relevant information for the discussion here,
an in-depth description of the architecture and overall design of
the SKIRT code can be found in Camps and Baes (2015). It should
also be noted that the presented design issues, while discussed
in the context of SKIRT and thus dust radiative transfer, are fully
applicable to other Monte Carlo transport problems.

This paper is laid out as follows. In Section 2 we review the
general techniques to generate random vectors from multivari-
ate distributions that are available in the specialised numerical
analysis literature, but less so in the astrophysics community.

1 SKIRT documentation: http://www.skirt.ugent.be.
SKIRT code repository: https://github.com/skirt/skirt.
In Section 3 we present the general setup of the suite of mod-
els for the SKIRT code. In Section 4 we describe various build-
ing blocks currently present in the SKIRT code, and in Section 5
we present a number of decorators that can be used to combine
and add complexity to simple building blocks. Some decorators
are analysed in more detail, focusing on the methods used to ef-
ficiently generate random positions. In Section 6 we discuss the
advantages of the decorator-style design of our suite of compo-
nents, and we critically investigate an alternative option in which
randompositions are generated using a generic routine rather than
customised generators. We show that, while such an approach is
simpler to implement and might hence seem an attractive alter-
native, it cannot compete with our approach, in terms of accuracy
and efficiency. Section 7 sums up.

2. Multivariate random number generation techniques

The generation of random numbers from univariate distribu-
tions is a well-known topic in numerical analysis. A number of
standard methods are widely used and clearly described in stan-
dard textbooks (e.g., Press et al., 2007). Additional techniques
that are less known in the (astro)physics community include the
acceptance-complement method (Kronmal and Peterson, 1981,
1984) and the Forsythe–von Neumann method (von Neumann,
1951; Forsythe, 1972). For an extensive overview of random num-
ber generation from univariate distribution, see Devroye (1986).
Unfortunately, the generation of randomvectors frommultivariate
distributions is much more complex. The only multivariate distri-
butions from which random vectors can be generated directly are
those where the density can be written as a product of indepen-
dent univariate density distributions. In general, however, more
advanced techniques are necessary.

2.1. The inversion method

The inversion method, also known as inversion sampling, is
the most popular method for univariate generation problems. The
basis of this method is the following: if y is distributed according
to a density2 g(y), then the variable x defined as the solution of the
equation y = y(x) is distributed according to the density

f (x) = g

y(x)

  dydx (x)
 . (1)

If we nowwant to generate a number from a given density f (x), we
can take a uniform distribution

g(y) =


1 if 0 ≤ y ≤ 1,
0 else, (2)

and set y(x) = F(x) where F is the cumulative distribution
corresponding to the density f (x). The inversionmethod can hence
be used to generate random variates with an arbitrary density,
provided that the inverse function F−1(y) to the cumulative
distribution F(x) is explicitly known. Classical examples include
the exponential distribution, the Cauchy distribution, the Rayleigh
distribution and the logistic distribution.

Formula (1) can directly be expanded tomultiple dimensions: if
y is distributed according to the joint probability distribution g(y),
then the vector x defined as the solution of the vector equation
y = y(x) is distributed according to the joint distribution

f (x) = g

y(x)

  ∂y
∂x

(x)
 (3)

2 Throughout this paper, all densities, univariate or multivariate, are assumed to
be properly normalised.

http://www.skirt.ugent.be
https://github.com/skirt/skirt
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where |∂y/∂x| is the Jacobian determinant. Probably the most
famous application of this formula is the Box–Muller method to
generate random normally distributed deviates (Box and Muller,
1958; Bell, 1968). Another interesting special application is the
case of a linear transformation. In this case, the transformation
y = y(x) can be written as a matrix multiplication y = H x, and
the distribution of x is

f (x) = |H|g(H x) (4)

with |H| the absolute value of the determinant of H. This kind of
transformation is particularly useful for the generation of random
vectors with a given dependence structure, as measured by the
covariance matrix (Scheuer and Stoller, 1962; Barr and Slezak,
1972).

In general, however, it is not straightforward to use this identity
(3) to construct a method that can be used to generate random
positions from an arbitrary multidimensional distribution.

2.2. The rejection method

Apart from the inversion method, the rejection method, also
known as the acceptance–rejection method, is the most popular
method to sample nonuniform random numbers from univariate
distributions (von Neumann, 1951; Devroye, 1986). The basic idea
behind the method is that, if one wants to sample a random num-
ber from a function f (x), one can sample uniformly from the 2D
region under the graph f (x). More concretely, assume that f (x) 6
cfref(x), where fref(x) is another distribution from which random
numbers are easily generated, and c is the so-called rejection con-
stant (it obviously satisfies the condition c > 1). One then gener-
ates a uniformdeviate ξ and a randomnumber x from the reference
distribution fref(x), and calculates the quantity t = ξcfref(x)/f (x).
This procedure is repeated until t 6 1, inwhich case x is the desired
random number.

One of the advantages of the rejectionmethod is that it does not
require that the cumulative distribution function be analytically
known, let alone be invertible. However, its effectiveness depends
on how accurate f is approximated from above by cfref. Less
accurate approximation leads to a greater chance of rejection; on
average c iterations of the loop are required before one successful
randomnumber is generated. Moreover, the reference distribution
should be such that random numbers can be easily generated
from it and that the computation of cfref(x)/f (x) is simple. For a
range of standard distributions, such as the gamma distribution
and the Poisson distribution, efficient reference functions can be
constructed.

The rejection method is by no means limited to univariate dis-
tributions, and can immediately be applied to multivariate gen-
eration problems. However, the rejection rate typically increases
rapidlywhen going fromone tomore dimensions, which decreases
the efficiency of themethod.Moreover, the design of a suitable ref-
erence distribution becomes much more complicated.

2.3. The composition method

The composition method or probability mixing method is
another important technique in both univariate and multivariate
random number generation (Marsaglia and Bray, 1964; Hörmann
et al., 2004). Rather than a method on itself to generate non-
uniform randomnumbers, it is a principle to facilitate and speed up
other randomnumber generatingmethods. The simple idea behind
composition is to decompose the distribution f (x) as a weighted
sum,

f (x) =

K
i=1

wifi(x) (5)
with all fi normalised densities, and the weights wi a probability
vector (i.e., all wi > 0 and


i wi = 1). To generate a random

x from the distribution f (x), we first generate a random integer
number k from the discrete probability vectorwi, and subsequently
generate a random x from the density fk(x). A prerequisite for this
method to work is that, obviously, the decomposition can be done
efficiently, and that the complexity of the problem is reduced by
the decomposition.

2.4. The conditional distribution method

Finally, a powerful technique that applies only to multivariate
random number generation is the so-called conditional distribu-
tion method (Devroye, 1986; Hörmann et al., 2004). It is based on
the Bayesian identity

f (x1, x2) = f1(x1) f2(x2 | x1) (6)

which expresses that a joint distribution of two variables can be
calculated as the product of themarginal distribution of the former
variable and the conditional distribution of the latter. Expanding it
to multiple dimensions,

f (x) = f1(x1) f2(x2 | x1) · · · fN(xN | x1, . . . , xN−1). (7)

The beauty of this technique is that it reduces the multidimen-
sional generation problem to a sequence of independent univariate
generation problems. Themain drawback is that it can only be used
when much detailed information is known about the distribution
f (x). In particular, it is by far not always the case that marginal
and conditional distributions are easily calculated in closed form.
The standard textbook example of this technique is the multivari-
ate Cauchy distribution.

3. General setup of the SKIRT Geometry suite

SKIRT is amulti-purpose 3DMonte Carlo dust radiative transfer
code that is mainly used to simulate dusty galaxies and active
galactic nuclei (e.g., Baes and Dejonghe, 2002; Baes et al., 2010;
Stalevski et al., 2012; De Looze et al., 2012, 2014). The code
was designed as a highly modular software, with a particular
consideration for the development of a flexible and easy user
interface and the use of proven software design principles as
described by Camps and Baes (2015).

The SKIRT code offers a wealth of configurable features that
are ready to use without any programming. In particular, the
SKIRT code is equipped with a suite of input model components,
the so-called Geometry classes, that can be used to represent
distributions of either sources or sinks. Essentially, the suite
consists of a number of classes that all inherit from an abstract
Geometry class, for which the C++ class interface looks like

class Geometry {
public:

Geometry();
virtual ~Geometry();
virtual double density(Position x) const = 0;
virtual Position generatePosition() const = 0;

}

Both the density and generatePosition functions are pure
virtual functions, which means that each model in the suite
should provide a routine that implements the (normalised)
density ρ(x), and a routine that generates random positions
according to this density. For example, the interface of a concrete
ConcreteGeometry class that contains only a single parameter
p would look as follows:
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class ConcreteGeometry : public Geometry {
public:

ConcreteGeometry(double p) {_p=p}
double density(Position x) const;
Position generatePosition() const;

private:
double _p;

}

For the design of this suite of inputmodels, a naive optionwould be
to provide a set of parameterised models that contain free param-
eters to control every possible option. A typical standard compo-
nent of such a suite would be a very generalised Plummer model,
with free parameters setting the location of the centre, the orienta-
tion with respect to the coordinate system, the scales, the flatten-
ing describing potential triaxiality, possible degrees of clumpiness,
etc. This approach has a number of strong disadvantages. Clearly,
it would quickly lead to an explosion of different options that is
hard to overview. It would inevitably lead to substantial code du-
plication (nearly all the code would need to be copied if we would
consider a Hernquist profile instead of a Plummer profile) and code
that is virtually impossible to maintain (the code for all models
would need to be updated if a new feature is added or altered).
Also concerning efficiency, such a design would not be optimal. In-
deed, a random position generating routine for such a generalised
Plummer model is hard to construct and is certainly much less ef-
ficient than the simple routine that is possible for a plain spherical
Plummer model (using the inversion method).

To overcome these problems, we adopted a completely differ-
ent approach that is much simpler but still provides the flexibil-
ity and functionality needed to set up complex models. This is
achieved using a combination of simple base models on the one
hand, and so-called decorator geometries on the other hand. Dec-
orator geometries are not real models on their own, but they apply
modifications uponothermodels in interestingways, following the
Decorator design pattern. In object-oriented programming, a deco-
rator attaches additional responsibilities to an object dynamically
and provides a flexible and powerful alternative to subclassing for
extending functionality (Gamma et al., 1994).

In our present context, a decorator geometry is a special
kind of geometrical model (i.e., it is also a C++ class in the
generalGeometry suite) that takes one ormore other components
and adds a layer of complexity upon them. Simple examples of
decorators that can easily be implemented are the relocation of the
centre of a given component, or the rotation of a given model with
respect to the coordinate system.More complex decorators deform
a sphericalmodel to a triaxial one, or add a spiral perturbation to an
axially symmetricmodel. The advantage of the decorator approach
is clear: each decorator needs to be implemented only once, and
can then be applied to any possible model.

In the following two sections we describe the building blocks in
the SKIRT Geometry suite, and a number of decorator geometries
that can alter these building blocks to more complex structures.

4. The SKIRT Geometry building blocks

The SKIRT Geometry suite contains a limited number of
elementary input models, which can be used either as elementary
toymodels, or as building blocks formore complex geometries. For
each of them, the density can be expressed as a simple analytical
function, and the generation of random positions reduces to three
independent univariate generation problems.

Apart from these analytical components, SKIRT also offers the
possibility to set up components in which the geometry of sources
and/or sinks is defined bymeans of particles or on a grid. In particu-
lar, SKIRT can import a snapshot from a (magneto)hydrodynamical
simulation. One obvious goal would be to post-process a hydro-
dynamical simulation in order to calculate the observable multi-
wavelength properties of the simulated objects (e.g., Jonsson et al.,
2010; Schartmann et al., 2014). In this case, it would be sufficient
to just read in the geometry of the snapshot as it is, and start the ra-
diative transfer simulation. More generally, however, it would be
useful if these numerical components would be at a similar level
as the analytical components. This would open up the possibility
to decorate them and combine them with other analytical and/or
numerical components to more complex models.

4.1. Analytical components

A first group consists of spherically symmetricmodels. In spher-
ical symmetry, the generation of a random position from the 3D
density ρ(x) = ρ(r) simplifies to the generation of a random az-
imuth from a uniform distribution, a random polar angle from a
sine distribution, and a random radius from the univariate density
f (r) = 4πr2ρ(r). The SKIRT suite includes the most popular mod-
els used to represent shells, star clusters, early-type galaxies, or
galaxy bulges, such as a power-law shell model (Ivezić et al., 1997),
the Plummer model (Plummer, 1911), the γ -model (Dehnen,
1993; Tremaine et al., 1994), the Sérsic model (Sérsic, 1963;
Ciotti and Bertin, 1999; Baes and Gentile, 2011), and the Einasto
model (Einasto, 1965; Retana-Montenegro et al., 2012). Within
this family of models, many other famous profiles are con-
tained, including the Hernquist model (Hernquist, 1990), the Jaffe
model (Jaffe, 1983) and the R1/4-model (de Vaucouleurs, 1948).

A second group of elementary input models consists of axisym-
metric models in which the density is a separable function. The
standard example with a density distribution separable in cylin-
drical coordinates is the double-exponential disc that is the de
facto standard to represent disc galaxies in radiative transfer stud-
ies (Xilouris et al., 1997; Baes et al., 2003; Bianchi, 2007). How ran-
dom positions can be drawn from this distribution is discussed
in Appendix A of Baes et al. (2003). An example of an axisym-
metric model where the density is separable in spherical coordi-
nates is the torus model that is often used to represent the dusty
tori around stars or active galactic nuclei (Collison and Fix, 1991;
Granato and Danese, 1994; Stalevski et al., 2012).

4.2. Components based on smoothed particles

The first group of numerical components in SKIRT are defined as
a set of smoothed particles. This is mainly useful when we want to
use the output of a smoothed particle hydrodynamics (Lucy, 1977;
Monaghan, 1992; Springel, 2010b) simulation. In spite of claims
that the technique suffers from fundamental problems (Agertz
et al., 2007; Bauer and Springel, 2012), it is still the most popular
hydrodynamics technique, especially for cosmological simulations
of galaxy formation (e.g., Guedes et al., 2011; Feldmann andMayer,
2015; Schaye et al., 2015). The output of an SPH snapshot consists
of a set of ‘‘particles’’ (or rather anchor points in a co-moving grid),
each characterised by a large suite of physical quantities.

As far as SKIRT is concerned, most of these physical quantities
are irrelevant. AnSPHGeometry component in SKIRT is essentially
defined by a list of N smoothed particles and the assumed smooth-
ing kernel W (r, h), with each smoothed particle characterised by
a position xj, a fractional mass mj and a smoothing length hj. The
total density at an arbitrary position x is then given by

ρ(x) =

N
j=1

mjW (|x − xj|, hj). (8)

In practice, the kernels used in SPH simulations almost always have
a finite support (e.g., Monaghan and Lattanzio, 1985; Desbrun and
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Gascuel, 1996;Müller et al., 2003), and in this case only a relatively
small number of terms in the sum have a non-zero contribution.

The SPHGeometry class in SKIRT employs smoothing kernel
implementations optimised for each specific task. The geometry’s
density at a given location is calculated according to Eq. (8) using
a finite-support cubic spline kernel, so that the operation can
be limited to particles that potentially overlap the location of
interest. To facilitate this process, the setup phase of the simulation
places a rough grid over the spatial domain and constructs a
list of overlapping particles for each grid cell. As described in
section 3.3 of Camps and Baes (2015), a further optimisation is
provided to calculate the mass within a given box (a cuboid lined
up with the coordinate axes), as an alternative to sampling the
density in various locations across the volume of the box. In this
case, the calculation uses the analytical properties of a scaled and
clipped Gaussian kernel, designed to approximate the cubic spline
kernel, to directly determine themass in the box. This optimisation
accelerates the density calculation for typical cartesian grids by an
order of magnitude.

On the other hand, the generation of random positions sampled
from the geometry’s density distribution is rather straightforward,
thanks to the composition method. The first step is the choice
of a random smoothed particle, based on a discrete distribution
where each particle is weighted by its relative mass contribution.
The second step is generating a random position according to the
distribution of the chosen particle. The current implementation
samples a random number from a Gaussian smoothing kernel with
infinite support using the inversion method.

In the future we may provide a suite of smoothing kernels,
allowing the user to select the kernel that best fits the SPH snapshot
being imported. The methods used for calculating the density and
generating a random radius would obviously depend on the actual
shape of the kernel.

In addition to what is described above, SKIRT has facilities to
associate a spectral energy distribution with each SPH star particle
based on properties such as age and metallicity, or to associate a
dust mass with each SPH gas particle based on properties such as
temperature and metallicity. In the former case, the geometry will
weigh the particles by luminosity, for each wavelength separately,
and in the latter case, the geometrywill weigh the particles by dust
mass. A detailed description of these features is beyond the scope
of this paper.

4.3. Components based on hierarchical grids

Apart from smoothed particle hydrodynamics, the main other
technique that is used to perform hydrodynamics simulations is
Eulerian mesh-based hydrodynamics (Stone and Norman, 1992;
Fryxell et al., 2000). A fundamental ingredient of this technique
is the use of grids with adaptive mesh refinement. Eulerian
AMR simulations are used in virtually all fields of astrophysics,
and Monte Carlo codes have been adapted to work directly on
these hierarchical grids (Kurosawa and Hillier, 2001; Niccolini and
Alcolea, 2006; Saftly et al., 2013, 2014).

The HierarchicalGridGeometry in SKIRT reads in snap-
shots defined by density fields discretised on hierarchical cartesian
grids and converts them to the format of the other components in
the SKIRT Geometry suite. Calculating the density at an arbitrary
position comes down to identifying the cell that contains this posi-
tion and returning the density associated with that cell. As hierar-
chical grids have the structure of a tree, isolating the correct cell is a
straightforward and computationally cheap operation. Generating
random positions from such a component is similar to the case of
the smoothed particles, and is based on the composition method.
We first generate a random cell from a discrete distribution where
each cell is weighted by its relative mass. Secondly, we determine
a random position within the chosen cell; as the cells in a hierar-
chical cartesian grids are cuboids, this is a trivial task.

4.4. Components based on Voronoi grids

Recently, a new Lagrangian technique that solves the hydrody-
namics equations on a moving, unstructured Voronoi grid is gain-
ing popularity. It is claimed to avoid some of the difficulties of
smoothed particle hydrodynamics on the one hand and Eulerian
grid-based hydrodynamics on the other hand. This technique has
been used for many years in the computational fluid dynamics
community (Mavriplis, 1997), and a number of novel codes based
on this principle have recently been developed in the astrophysics
community (Springel, 2010a; Duffell and MacFadyen, 2011). Mov-
ingmesh hydrodynamics ismainly applied to simulations of galaxy
formation and evolution (e.g., Marinacci et al., 2014; Vogelsberger
et al., 2014).

SKIRT contains a VoronoiGridGeometry class that converts
a snapshot from a Voronoi hydrodynamical simulation (or any
other density field defined on a Voronoi grid) to a regular SKIRT
Geometry component. Due to the nature of a Voronoi grid, the
only necessary input is the list of all the generating sites and
the associated densities; it is hence not necessary to store all the
vertices and sides of each of the cells. Based on the generating sites,
SKIRT constructs the corresponding unique Voronoi grid using the
public Voro++ library (Rycroft, 2009).

The density routine essentially works in the same way as for
the case of the hierarchical grids: it comes down to identify the
cell that contains the given position and returning the density
associated to this cell. In the case of a Voronoi grid, however, the
cell identification is not as simple as in a hierarchical tree structure
of cartesian grid cells. Due to the nature of Voronoi grids, this is
essentially a nearest neighbour search. Rather than looping over
all possible sites, SKIRT implements an approach using cuboidal
blocks, as explained in detail in Camps et al. (2013). This task
could be optimised even further using more advanced techniques
based on space partitioning structures such as k-d trees or R-
trees (Friedman et al., 1977; Guttman, 1984; Liaw et al., 2010).

Also the generation of random positions works essentially in
the same way as for hierarchical grids. The first step is identical:
we generate a random cell from a discrete distribution where
each cell is weighted by its relative mass contribution. The second
step, generating a random position from within the chosen cell,
is significantly more complex than in the case of a cuboidal cell.
To the best of our knowledge, there are no dedicated techniques
to generate a random point from a Voronoi cell. There are two
possible options.

The first option is to partition the cell into a set of tetrahedra,
subsequently select a random tetrahedron from a discrete distri-
butionwhere every tetrahedron is weighted by its relative volume,
and finally generate a random position from the selected tetrahe-
dron. Specific algorithms are available for both the tetrahedrisation
of convex polyhedra (Edelsbrunner et al., 1990;Max, 2002) and the
generation of random positions from a tetrahedron (Rocchini and
Cignoni, 2000).

The second option, which is more simple and which we have
adopted in SKIRT, is to use the rejection technique. As the reference
distribution we use a uniform density in a cuboidal volume,
defined as the 3D bounding box of the cell. As Voronoi cells are
convex polyhedra, this bounding box is directly obtained when
the vortices of the cell are known (these are calculated using the
Voronoi grid setup). Extensive testing has shown that, depending
on the distribution of the generating Voronoi sites, the average
ratio of the volume of the bounding box of a Voronoi cell over the
actual cell volume is about 3–4. This ratio immediately represents
the average rejection rate for the random position generation.
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Table 1
An overview of the geometry decorators currently implemented in SKIRT, referencing the section in which they are presented. Geometry decorators can be applied to basic
geometry building blocks, and can be chained and combined to create complex structures.

5.1 Offset applies an arbitrary offset to any geometry
5.2 Rotate applies an arbitrary rotation to any geometry
5.3 SpheCavity carves out a spherical cavity from any geometry

Crop crops any geometry to a given box; a variation on the Cavity decorator
5.4 Combine combines two geometries into a single geometry
5.5 Triaxial transforms any spherical geometry to a triaxial form

Spheroidal transforms any spherical geometry to a spheroidal form; a special case of the Triaxial decorator
5.6 Spiral applies spiral arm structure to any axisymmetric geometry
5.7 Clumpy replaces a portion of the mass in any geometry by randomly placed clumps
6.2 Foam replaces the model-specific random position generator by a generic routine based on the Foam library
5. The SKIRT Geometry decorators

In this section we describe a number of decorator geometries
that can be applied on the building blocks described in the previous
section in order to convert them to more complex structures; see
Table 1 for an overview. The implementation of the density of
a decorator geometry is usually not a major problem; the main
challenge is to implement the routine that generates random
positions from a decorator geometry, so this is what we focus on.

5.1. Offsets

The OffsetGeometryDecorator decorator in SKIRT applies
an arbitrary offset a to any density distribution. If the original
density is ρs(y), the new density is simply ρ(x) = ρs(x − a).
Generating random positions is equally simple: we generate a
random y from the original density distribution and return x =

y + a. The C++ implementation of the class in SKIRT looks like:

class OffsetGeometryDecorator : public Geometry {
public:

OffsetGeometryDecorator(Geometry* g, Position a)
{_g = g; _a = a;}

double density(Position x) const
{return _g->density(x-a);}

Position generatePosition() const
{return _g->generatePosition()+a;}

private:
Geometry* _g;
Position _a;

}

5.2. Rotation

Similarly, the RotateGeometryDecorator decorator rotates
any density distribution. If the rotation is characterised by the
orthonormal matrix H, the new density is ρ(x) = ρs(H x). To
generate a random position from this new density, we generate a
random y from the original density and rotate it over the inverse
rotation matrix, i.e. x = HTy.

5.3. Cavities

A third simple decorator, the CavityGeometryDecorator,
carves out a cavity from another density ρs(y). In formula form,
we have

ρ(x) =

0 x in cavity
ρs(x)
1 − χ

else (9)

withχ the fraction of themass of the original density located in the
cavity. This decorator is useful to represent density distributions
of dust close to a star or active galactic nucleus, where the dust
has been cleared due to sublimation. To generate randompositions
from this new density distribution, we just generate a random
position from the original density distribution and reject it when it
is located in the cavity. This is, in fact, an almost trivial application
of the rejection technique, where the original density assumes the
role of the reference function, and the rejection constant is c =

1/(1 − χ).

5.4. Composition

The CombineGeometryDecorator combines two density
distributions into a single distribution according to

ρ(x) =
w1 ρ1(x) + w2 ρ2(x)

w1 + w2
(10)

with ρ1, ρ2 the original distributions and w1, w2 their respective
weights in the composite distribution. Generating random posi-
tions for this new density distribution is a trivial application of the
composition method.

5.5. Triaxial geometries

As a first more complex decorator, we consider the case of a tri-
axial decorator geometry, which converts a spherically symmet-
ric density distribution into one that is stratified on concentric and
confocal ellipsoids. More concretely, assume that we have a spher-
ically symmetric density distribution ρs(y) = ρs(y), we then con-
sider its triaxial counterpart

ρ(x) =
1
pq

ρs


x21 +

x22
p2

+
x23
q2

 . (11)

Such triaxialmodels are discussed and used extensively to describe
the stellar distribution of elliptical galaxies and galactic nuclei and
the shape of galactic haloes (e.g., Stark, 1977; Merritt and Fridman,
1996; Trujillo et al., 2002; van den Bosch et al., 2008). Oblate and
prolate spheroidal distributions are just a special case of these tri-
axial models in which p = 1.

It is clear that the density (11) cannot be written as a product
of independent univariate density distributions. We can use the
conditional distribution method. In order to develop a general
recipe for generating random positions, we start by rewriting the
probability distribution according to (11) in spherical coordinates,

f (r, θ, φ)

=
r2 sin θ

pq
ρs

r


sin2θ (sin2φ + p2 cos2φ)

p2
+

cos2θ
q2

 . (12)

According to formula (7), we now rewrite this expression as

f (r, θ, φ) = f (φ) f (θ | φ) f (r | θ, φ). (13)
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After some calculation, one finds for the marginal distribution for
φ the simple expression

f (φ) =
1
2π

p
sin2φ + p2 cos2φ

. (14)

Note that this marginal distribution is independent of the specific
shape of the density profile and only depends on the flattening
parameter p (and for p = 1, it reduces to a simple uniform
distribution, as expected for a spheroidal distribution). Generating
a randomazimuth from this density can be doneusing the standard
inversion method; the corresponding cumulative distribution is

F(φ) =
1
2π

arctan

tanφ

p


(15)

and is readily inverted. Once this random φ has been determined,
we can generate a random polar angle θ from the conditional
distribution

f (θ | φ) =
sin θ

2s


sin2θ

s2
+ cos2θ

−3/2

(16)

where we have set s2 = q2(sin2φ + p2 cos2φ)/p2. Also this
distribution is independent of the specific shape of the density
profile and only depends on the flattening parameters p and q
(and the already randomlydetermined azimuth). Again, generating
a random polar angle from this distribution can be done using
the standard inversion method: the corresponding cumulative
distribution is

F(θ | φ) =
1
2


1 −

1
√
1 + s2 tan2θ


(17)

and is again readily inverted. Finally, we consider the conditional
distribution for r ,

f (r | θ, φ) =
4πr2

q3


sin2θ

s2
+ cos2θ

3/2

× ρs

 r
q


sin2θ

s2
+ cos2θ

 . (18)

If we apply a linear transformation from r to

y =
r
q


sin2θ

s2
+ cos2θ (19)

the corresponding density form is simply

f (y | θ, φ) = 4πy2ρs(y) (20)
which is nothing but the distribution for a random radius from
the original density ρs(y). The last step in the generation of a
random position is to generate a random position y from the
original spherical density distribution ρs(y), and transform the
radius y = |y| of this position to a new radius r using the linear
transformation (19), in which we use the previously determined
values for θ and φ.

While this method based on conditional probabilities has a
certain beauty, there is, actually, a simpler and more efficient
method that is based on the inversion method. Indeed, consider
the simple transformation

(y1, y2, y3) = (x1, x2/p, x3/q) (21)

or in matrix format

y = H x H =


1 0 0

0
1
p

0

0 0
1
q

 . (22)
According to the lawof linear transformations (4), if y is distributed
according to the spherical density ρs(y), x will be distributed
exactly according to the triaxial density (11). An easy way
to generate random positions from a triaxial counterpart of a
spherical symmetric density is thus simply generating a random
position y from the spherical density distribution, from which the
desired position can easily be calculated as x = HTy.

5.6. Spiral arm structure

As a second complex decorator, we consider a logarithmic spiral
arm perturbation that can be applied to any axisymmetric density
distribution,

ρ(x) = ρs(R, z) [(1 − w) + w ξ(R, φ)] (23a)

where (R, φ, z) are the usual cylindrical coordinates, and the
function ξ(R, φ) is defined as

ξ(R, φ) = CN sin2N

n
2


ln(R/R0)

tan p
− φ


+

π

4


. (23b)

The factor CN is a normalisation constant that guarantees that the
density is normalised, and is given by

CN =
1
2π

 2π

0
sin2Nφ dφ =

√
π Γ (N + 1)
Γ (N +

1
2 )

. (24)

This general spiral arm perturbation is a generalisation of the
models used by Misiriotis et al. (2000) and Schechtman-Rook
et al. (2012), and allows for an arbitrary number of arms n, pitch
angle p, spiral perturbation weight w, and arm–interarm size ratio
(controlled by the parameter N). For N = 1 the density reduces to
a more simple perturbation with equal arm–interarm size ratio,

ρ(x) = ρs(R, z)

1 + w sin


n


ln(R/R0)

tan p
− φ


. (25)

For the general 3D density distribution (23), we can again use the
conditional distribution method, and write

f (R, φ, z) = f (R, z) f (φ | R, z). (26)

Since the spiral perturbation is such that it averages out along every
single circle around the z-axis, i.e., 2π

0
ξ(R, φ) dφ = 1 (27)

we trivially find

f (R, z) = 2πR ρs(R, z). (28)

This is exactly the 2D probability density distribution that corre-
sponds to the density of the axisymmetric density distribution.We
hence simply generate a random position x from our original den-
sity distribution and save the radius R and the height z. In order to
generate a random azimuth φ, we consider the conditional distri-
bution f (φ | R, z), for which we find directly

f (φ | R, z) =
(1 − w) + w ξ(R, φ)

2π
. (29)

This univariate density is independent of the shape of the original
axisymmetric density profile; it only depends on the parameters
of the spiral perturbation and randomly determined radius R. For
the general expression (23b), the standard inversion technique is
not easily applicable; the cumulative distribution corresponding to
the density (29) can be calculated analytically, but the resulting
expression cannot be inverted analytically. One could resort to a
numerical inversion, but a better approach is to use the rejection
technique. We can use a simple uniform density as the reference
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Fig. 1. Two examples of the chained application of decorators. The left panel is a simulated image of a two-component model consisting of a triaxial bulge, and a flattened
disc model on which a three-armed logarithmic spiral perturbation and a clumping decorator were applied. For both the bulge and the disc component, the starting model
was a simple spherical γ model. The model to the right is a triaxial Plummer model, with four recursive applications of the ClumpyGeometryDecorator decorator. The
result is amodel with a fractal structure. In bothmodels 109 photon packageswere released to create the images, and the noise in the images is negligible (i.e., all the features
in the image are real).
distribution, fref(φ) = 1/2π . The rejection constant c should
ideally be chosen as the smallest value for which f (φ | R, z) 6
cfref(φ) for all values of φ. Since the maximum value of the
perturbation function ξ(R, φ) is CN , we find

c = 1 + (CN − 1) w. (30)

Actually, as an alternative to the conditional probability technique,
we could also simply have used the rejection technique from the
beginning. The 3D density ρ(x) satisfies the condition ρ(x) 6
cρs(x), so if we simply use the original density ρs(x) as our
reference distribution, we have essentially the same algorithm
with the same rejection constant. The difference between this 3D
rejection technique and the previous version, where we used the
rejection technique only for the conditional distribution for the
azimuth, is a matter of efficiency. In the former version only one
random position needs to be generated from the original density,
and the rejection is only to determine the azimuth. In the latter
version, an entirely new position is generated for every rejection,
which is less efficient.

5.7. Clumpy models

As a last example, we consider the ClumpyGeometryDec-
orator class that turns any density distribution ρs(y) into a
clumpy analogue, i.e., a density distribution in which a fraction
of the mass is distributed ‘‘smoothly’’ as in the original density
distribution, and the remaining fraction is locked up into compact
clumps. The density of this distribution can be written as

ρ(x) = (1 − fcl) ρs(x) +
fcl
N

N
i=1

W (|x − xi|, h) (31)

where fcl is the fraction of the mass in clumps, N is the number
of clumps, and the positions xi are the central positions of the N
clumps, determined randomly according to the original density
function ρs. The function W (r, h) is the smoothing function that
sets the distribution of matter within every single clump, with h
a characteristic length scale. This can in principle be any spherical
3D distribution; in practice we use either a uniform density sphere
or one of the compact support kernels that are used in smoothed
particle hydrodynamics simulations.

It is straightforward to generate random positions from this
distribution. It is a direct application of the composition method,
and the case is very similar to smoothed particle building blocks
discussed in Section 4.2.
6. Discussion

6.1. Advantages of the decorator-style design

As indicated in Section 3, a major advantage of the decorator-
style approach is that each decorator needs to be implemented
only once, and can then be applied to different models. This avoids
the need to implement complex geometries with many different
possible features and heavy code duplication. That alone is already
an argument strong enough to justify its use.

Another strong advantage is the flexibility offered by this
approach. The decorators discussed in Section 5 transform an input
model into amore complexmodel. Such a decoratedmodel is often
still relatively simple: it typically adds one layer of complexity onto
the model that is being decorated (think of a rotated exponential
disc or a triaxial Sérsic model). If we want to generate toy models
that can be used as idealised representations of, for example, a
spiral galaxy, various layers of complexity have to be added. The
decorator-style approach is ideal for this purpose: decorators can
be applied also to models that have already been decorated. In
other words, decorators can easily be chained or nested.

The left-hand panel of Fig. 1 shows a projected image of a
relatively complex toy model, constructed using the Geometry
suite in SKIRT. The model consists of a bulge component and
a clumpy spiral disc. Each of these two components has a very
simple spherical γ -model as their starting point, on which a chain
of decorators was applied. The former was first decorated into a
triaxial model, the latter was turned into an axisymmetric disc by
applying a very strong flattening, then a spiral perturbation was
added, and a fraction of its mass was turned into clumps.

In decoration chains the successive decorators do not neces-
sarily need to be different. It is also possible to chain the same
decorator several times, i.e. to apply them recursively. A pow-
erful example of this nesting is a repeated application of the
ClumpyGeometryDecorator. The right-hand panel of Fig. 1
shows an application of this principle on a simple triaxial Plum-
mer model. In this case, we have applied four nested applications
of the decorator, in which the number of clumps increases in each
level, whereas the smoothing length decreases. This algorithm re-
sults in a fractal density distribution that is self-similar over an or-
der of magnitude in scale (Elmegreen, 1997; Mathis et al., 2002;
Indebetouw et al., 2006).

The possibility to chain decorators, including a repeated
application of the same decorator, facilitates the construction of
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Fig. 2. Results of the timing tests for the test models #1 through #5, using
the model-specific and the generic Foam-based random position generators with
25,000 through 400,000 cells. The horizontal bars show the simulation run-time
in seconds, split into the fraction devoted to the setup of the grid (red) and the
actual time spent on random position generation (green) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

very complex models out of simple building blocks. Analytical
components can easily be combined with numerical components
based on smoothed particles or grids, and decorators can be
applied regardless of the underlying component type. It is, for
example, possible to add a smooth triaxial bulge to an irregular
disc structure defined using SPH particles, or to carve out a cavity
from a complex hydrodynamics system and locate a small nuclear
structure there to simulate the effects of an AGN on the large-scale
structure of a galaxy.

6.2. The use of a generic random position generator

One could argue that the setup that we have chosen is
unnecessarily complex. An alternative approachwould be a design
where we only provide the density for each component in the
suite, and where the generation of random positions is executed
by a generic routine rather than a geometry-specific routine for
each component. Such a suite could still use the decorator design
pattern, but would be simpler to implement. Themain challenge is
the design of a generic routine that can generate random positions
corresponding to an arbitrary 3D density function.

This is in principle possible: there are a few multivariate
black-box randomnumber generation libraries available, including
Foam (Jadach, 2000, 2003) and RanLip (Beliakov, 2005a,b), based
on the so-called composition–rejection method, a combination
of the composition and rejection methods. In a first phase, the
exploration phase, the domain of a distribution is partitioned into
different cells. In the generation phase, the rejection technique is
used on each cell, where typically a constant density function is
used as the reference distribution. The advantages of this approach
are that, in principle, it can be applied for all distributions and
in any dimension, and that only the density of each component
is required. The main disadvantage is the complexity and the
overhead, both in memory and run-time, that are linked to the
exploration phase.

In order to test whether or not our design choice of providing
a customised random position generator for each concrete
Geometry class (and for each decorator, in particular) is justified,
we have set up a comparison between our routines and a generic
black-box routine. We have implemented a new decorator class,
FoamGeometryDecorator, that replaces the model-specific
random position generator by a generic routine based on the Foam
library. Foam is a self-adapting cellular code that uses iterative
binary splitting, using either simplexes or hyper-rectangles, to
subdivide the configuration space.

We set up a simple suite of test models, for which we generate
random positions using both the model-specific generator and the
generic Foam generator. Our suite consists of a sequence of models
with an increasing level of complexity. It essentially follows the
different steps in building the model shown in the left panel of
Fig. 1. The following models are considered

1. a spherical γ =
1
2 model,

2. model #1 flattened to an axisymmetric disc,
3. model #2 with spiral perturbation,
4. model #3 with a fraction turned into clumps,
5. model #4 with a triaxial γ =

1
2 bulge added.

For each model, we generate 108 random positions (we do not use
any photon propagation or detection as would be used in Monte
Carlo radiative transfer simulation in order to isolate the random
position generation process). The timings were done using a single
core and with averages over multiple test runs. One crucial aspect
for the Foam-based generator is the choice of the Foamparameters,
in particular of the number of cells in the grid. A larger number of
cells imply a higher computational cost of the exploration phase on
the onehand, but a better approximation of the density and smaller
rejection rates. The ideal choice of this parameter is impossible to
determine in a general way. We consider 5 different values for the
number of cells in the Foam for every model, ranging from 25,000
to 400,000.

The results are illustrated in Fig. 2, where, for each model,
we give the total run time and the contributions for the setup
of the foam and the actual time spent on generating the random
positions.

A first major conclusion that can be drawn from these results
is the efficiency of the customised random position generation
routines. From a simple spherical model, to a complex model
composed of two components that both have been decorated
multiple times, the computational cost increases only by a factor
two. Moving from a spherical to a triaxial model does not affect
the efficiency of the generation of random positions at all (not a
surprise, as it just implies two simple multiplications, as shown
in Section 5.5). The biggest jump in timing occurs when spiral
structure is added to the model (i.e., from model #2 to #3),
because the random position generation is based on the rejection
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Fig. 3. A comparison of the Monte Carlo generated images for test model #4, based on 108 photon packages. For the top-left panel, we have used the customised random
position generator based on the chain of decorators. For the other panels, we have used the generic Foam-based generator, with the number of cells in each panel indicated
in the top-left corner.
method, which has more overhead compared to the inversion and
compositionmethods. The addition of clumping (frommodel #3 to
#4) hardly implies an increase in computation time. Note that the
addition of a bulge even decreases the computation time. In model
#5 half of the positions are generated according to the density
of the relatively simple triaxial bulge, whereas in model #4 they
all are generated according to the more complex clumpy spiral
structure.

A second major conclusion is that the generic Foam-based
random position generator is significantly less efficient than the
customised generator. For the most simple models (#1 and #2),
the difference in speed is a factor 3–8, depending on the number
of cells used. The increase in total run time for the Foam-based
models with increasing number of cells is mainly due to the time
necessary to set up the foam. The time necessary to generate the
random positions also increases, but not as strongly.

For the more complex models, the efficiency of the Foam-
based generator decreases even more. The biggest jump in timing
now occurs when we add clumping to the model, because the
calculation of the density for the clumpymodels is computationally
very demanding (each density evaluation requires a sum over
a large number of clumps). For models #4 and 5, the Foam-
based generators are at least an order of magnitude slower than
the customised routines. Interestingly, the run time of these
simulations does not increase with the number of cells. For
simulations with few cells, the setup phase is relatively quick, but
the generation phase is very inefficient. The reason is that the cells
are relatively large with a strong variation in density values, and
hence the rejection rates are uncomfortably large. If the number of
cells in the grid increases, the setup time naturally increases, but
the actual position generation becomes more efficient because the
average rejection rates are smaller.

Moreover, the inefficiency of the Foam-based generator is not
the only problem, but also accuracy is an issue, in particular for
complex models with multiple local maxima and strong gradients,
such as models #4 and #5. If the number of cells is limited and
the cells hence rather large, both the total mass and the local
maximumwithin a cell are very hard to guess (they are determined
by random sampling the cell). As a result, both the relative
weights of the different cells and the rejection constants within
the individual cells are poorly determined. This will lead to an
artificial smoothing and wrong results. Fig. 3 shows a sequence of
images corresponding to model #4, created using the customised
randomposition generator (top left) and using the Foam-based one
with different values for the number of cells (remaining panels).
The customised generator generates an image that reveals all the
details that are expected, including the sharp density gradients
and the contrast between arm and interarm regions. The only
limitation in the image is the finite resolution due to the pixel
size and the unavoidable Poisson noise. The Foam images on the
other hand show a clear signature of degradation that gradually
decreases when the number of cells grows. For the grids with
25,000 and 50,000 cells, and even for the one with 100,000 cells,
the effects of the grid are clearly visible, and the individual clumps
and the spiral structure are insufficiently resolved. For the grid
with 400,000 cells, the individual clumps arewell resolved, but the
sharpness of the spiral arms is still under-resolved, especially in the
central regions.

Since both the accuracy and the efficiency of the generic
Foam-based random position generator cannot compete with the
customised versions, we conclude that it is worth investing in the
latter, and that our design choice is justified.

7. Conclusions

We have described the design of a suite of components that can
be used tomodel the distribution of sources and sinks in theMonte
Carlo radiative transfer code SKIRT. Our main conclusions are the
following:

• The availability of a well-designed suite of input models,
with enough variety and different degrees of complexity, in a
publicly available Monte Carlo code has a strong added value.
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Such models can serve as toy models to test new physical
ingredients, or as parameterised models for inverse radiative
transfer fitting. They also provide a low-threshold introduction
to new users, sincemodels with differing degrees of complexity
can be run without any coding at all.

• Each model is in principle completely determined by the
3D density distribution ρ(x). In order to be used in Monte
Carlo radiative transfer, however, each model should contain a
routine that generates random numbers according to this ρ(x).
Finding the most suitable algorithm to implement this is the
most challenging aspect of the design of a suite of inputmodels.

• The design of the SKIRT Geometry suite is based on a
combination of basic building blocks and the extensive use of
decorators. The building blocks can either be simple analytical
components, or they can be numerical components defined as
a set of smoothed particles or on a hierarchical or unstructured
Voronoi grid. The Geometry decorators combine and alter
these building blocks to more complex structures.

• The different multivariate random number generation tech-
niques that exist in the specialised numerical analysis
literature can be used to efficiently implement complex deco-
rators, for example those that add triaxiality, spiral structure or
clumpiness to othermodels. Decorators can be chainedwithout
problems and essentially without limitation. Different layers of
complexity can hence be added one by one. The result is that
very complex models can easily be constructed out of simple
building blocks, without any coding at all.

• From the software design point of view, decorators have many
advantages, including code transparency, the avoidance of
code duplication, and an increase in code maintainability. This
is a clear example that adhering to proven software design
principles pays off, even for small and mid-sized projects.

• Finally, we demonstrate that our design using customised
randomposition generators is superior to a simpler suite design
based on a generic black-box random position generator. Using
a suite of test simulations with increasing complexity we
demonstrate that our customised random number generators
are more accurate and more efficient.
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