AN EXPONENTIAL TRUNCATION BOUND FOR ANALYTIC FOURIER SERIES

Luc Knockaert and Daniel De Zutter

Abstract

It is shown that analytic Fourier series admit a uniform exponential truncation bound. As a consequence, an explicit expression is obtained for the number of principal harmonics consistent with a preassigned admissible uniform error level.

1 INTRODUCTION

The problem of the truncation of infinite sums and series, and in particular Fourier series, is a critical issue which is frequently overlooked, since from a purely mathematical point of view the main point is often the mere convergence of the series, and not the asymptotical rate of convergence. From a practical computational point of view however, the rate of convergence is of utmost importance, since it can frequently be translated into useful truncation and stopping rules.

For a general Fourier series it is a priori difficult to know how or when to truncate, i.e. to estimate the number of principal harmonics, without making use of statistical information theoretic criteria such as MDL [1] or MAPME [2]. On the other hand, in important electrical engineering areas such as frequency modulation [3] and electromagnetic scattering theory [4] one often deals with analytic Fourier series, i.e. Fourier series associated with periodic analytic functions. In this correspondence we show that all analytic Fourier series exhibit a uniform exponential truncation bound. In terms of uniform approximation this means that for a given admissible uniform error, an explicit expression for the truncation threshold can be obtained.

1EDICS 3.1.1–3.8.1
2Dept. of Information Technology INTEC, St. Pietersnieuwstraat 41, B-9000 Gent, Belgium. Tel: +32 9 264 33 16, Fax: +32 9 264 42 99, e-mail: knokaert@intec.rug.ac.be
2 PROBLEM STATEMENT AND MAIN RESULT

Let \(f(x) \) be a complex analytic periodic function with period \(2\pi \) defined over the real axis. Then \(f(x) \) admits the Fourier series

\[
f(x) = \sum_{n=-\infty}^{\infty} a_n e^{-inx}
\]

which converges absolutely and uniformly. By the principle of analytic continuation [5] p. 306, the series (1) can be continued in the complex plane to yield absolute and uniform convergence within a strip \(|\Im(z)| < t \). The above Fourier series can be written as \(f_N(x) + S_N(x) \), where

\[
f_N(x) = \sum_{n=-N}^{N} a_n e^{-inx}
\]

is the truncated series and

\[
S_N(x) = \sum_{n=N+1}^{\infty} \left(a_n e^{-inx} + a_{-n} e^{inx} \right)
\]

is the residual. Clearly, on the real axis we have

\[
|S_N(x)| \leq R_N = \sum_{n=N+1}^{\infty} (|a_n| + |a_{-n}|).
\]

Although we know that \(\lim_{N \to \infty} R_N = 0 \), it is important to have more explicit information concerning the convergence rate. This is the purpose of the following theorem.

Theorem:

\[
R_N \leq 4eM(\delta) \frac{2+\delta}{\delta^2} \sqrt{N\delta} e^{-N\delta} \quad \text{for} \quad \frac{1}{N} \leq \delta < t,
\]

where

\[
M(\delta) = \max_{|\Im(z)| \leq \delta} |f(z)| = \max_{x} \max(|f(x + i\delta)|, |f(x - i\delta)|).
\]

Proof: Since

\[
a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx} dx
\]

it is easily proved by successive partial integrations that

\[
|a_n||n|^m \leq \mu_m = \max_{x} |f^{(m)}(x)| \quad n \neq 0 \quad m \geq 0.
\]

Hence

\[
R_N \leq 2\mu_m \sum_{n=N+1}^{\infty} n^{-m} \leq 2\mu_m \int_{N}^{\infty} x^{-m} dx = 2\frac{\mu_m}{m-1} N^{-m+1} \quad m \geq 2.
\]
Let C be the sausage-like curve consisting of the two line-segments $y = \pm \delta$, $-\pi \leq x \leq \pi$ and the two closing semi-circles of radius δ centered on π and $-\pi$. The curve C has the interesting property that the minimum distance from any point of C to the real line-segment $[-\pi, \pi]$ is equal to δ. Application of Cauchy’s theorem leads to

$$|f^{(m)}(x)| \leq \frac{m!}{2\pi} \int_C \frac{|f(z)|}{|z-x|^{m+1}} ds.$$ \hfill (10)

Since the length of the curve C is given by $4\pi + 2\pi\delta$ we obtain the following upper bound for μ_m:

$$\mu_m \leq \frac{m!}{\delta^{m+1}}(\delta + 2) \max_{z \in C} |f(z)|.$$ \hfill (11)

By the periodicity of $f(z)$ and the maximum principle, the maximum on C coincides with the maximum on the boundary of the strip $|y| \leq \delta$. Hence R_N is bounded by

$$R_N \leq 2N^{-m+1} \frac{\delta + 2}{m-1} \frac{m!}{\delta^{m+1}} M(\delta) \quad 0 < \delta < t \quad m \geq 2.$$ \hfill (12)

Since $m/(m-1) \leq 2$ for $m \geq 2$, formula (12) can be slightly coarsened to yield

$$R_N \leq 4M(\delta) \frac{\delta + 2}{\delta^2} \frac{m!}{(N\delta)^m} \quad 0 < \delta < t \quad m \geq 1.$$ \hfill (13)

The above formula contains the free parameter m, and hence we can minimize the r.h.s. of (13) with respect to m. Following [6] p. 167 this minimum is attained for $m = \lfloor N\delta \rfloor$, where $\lfloor x \rfloor$ stands for the greatest integer $\leq x$. Consideration of the following easily proved bound variant of Stirling’s formula

$$x! \leq (x/e)^{x} e^{1-x} \quad x \geq 1,$$ \hfill (14)

implies that the proof is complete.

Corollary: Let $\epsilon > 0$ and N be such that

$$N \geq \min_{0 < \delta < t} \Lambda(\delta)$$ \hfill (15)

where

$$\Lambda(\delta) = \frac{1}{\delta} \phi \left(\frac{4\epsilon(2+\delta)M(\delta)}{e\delta^2} \right)$$ \hfill (16)

and $\phi(x)$ is defined as

$$\phi(x) = \begin{cases} 1 & \text{for } x \leq \epsilon \\ \ln x + \ln \ln x & \text{for } x \geq \epsilon. \end{cases}$$ \hfill (17)
Then $R_N \leq \epsilon$.

Proof: From the premises of the theorem we infer that what we need is an inversion of the inequality
\[\sqrt{x} e^{-x} \leq e^{-a} \quad x \geq 1, \]
(18)
where
\[e^a = \frac{4e(2 + \delta)M(\delta)}{e\delta^2} \]
(19)
and $x = N\delta$. For $a \leq 1$ we can clearly take $x = 1$. When $a > 1$ we need to find a small enough $x \geq 1$ such that (18) is satisfied. Since $\sqrt{x} e^{-x}$ is a decreasing function from $x = \frac{1}{2}$ on, we ought to find the solution of
\[\frac{1}{2} \ln x - x = -a. \]
(20)
This transcendental equation has no solution in terms of 'simple' functions. Therefore we set our sights lower and put forward a solution of the form $x = a + \gamma \ln a$. It is easy to show that the lowest possible positive value of γ such that
\[a + \gamma \ln a - \frac{1}{2} \ln(a + \gamma \ln a) \geq a \quad \text{for} \quad a \geq 1 \]
(21)
is $\gamma = 1$, whence the corollary follows.

3 EXAMPLES

- As a first example we consider the basic entire periodic function e^{imz}, where m is an integer. The maximum modulus on the strip is $M(\delta) = e^{|m|\delta}$ and the strip width is clearly $t = \infty$. It is not too hard to show that $\Lambda(\delta)$ is decreasing. Hence
\[N \geq \lim_{\delta \to \infty} \Lambda(\delta) = |m|. \]
(22)
Of course, this had to be the answer. We would surely have expected a flaw in the theorem had it been otherwise, since e^{imz} cannot possibly be expressed as a sum of lower order harmonics.
- As a second example we consider the entire periodic function $e^{i\beta \sin z}$, with β real, which is frequently encountered in electromagnetic scattering problems in cylindrical coordinates [4] and frequency modulation theory [3]. The relevant Fourier series is [7] p. 7
\[e^{i\beta \sin z} = \sum_{n=-\infty}^{\infty} e^{inz} J_n(\beta), \]
(23)
where \(J_n(\beta) \) is the Bessel function of order \(n \). In the context of frequency modulation the classical truncation criterion, based on the location of the zeros of the Bessel functions, is Carson’s rule [3] which states that \(N > |\beta| \) for \(|\beta| \) sufficiently large. We shall now show that Carson’s rule is asymptotically correct. If we take \(\beta > 0 \) then the maximum modulus on the strip is simply \(M(\delta) = e^{|\beta|\sinh \delta} \). For \(\beta \sim \infty \) we have for \(\Lambda(\delta; \beta, \epsilon) \), omitting the \(\ln \ln \) part:

\[
\Lambda(\delta; \beta, \epsilon) \sim \frac{1}{\delta} \ln \left(\frac{4e(2 + \delta)}{e\delta^2} \right) + \frac{\beta \sinh \delta}{\delta}.
\]

Expression (24) diverges to \(\infty \) for \(\delta \to 0 \) and \(\delta \to \infty \) and hence a minimum exists. An approximate choice for the abscissa of the minimum is \(\delta = 1 \) leading to

\[
\Lambda(1; \beta, \epsilon) \sim \ln \left(\frac{12e}{\epsilon} \right) + \sinh(1) + \beta \sinh(1) + \ln \beta.
\]

Asymptotically this represents a straight line i.e.

\[
\lim_{\beta \to \infty} \frac{1}{\beta} \Lambda(1; \beta, \epsilon) = \sinh(1) = 1.1752.
\]

The minimum of expression (24) is obtained when

\[
\beta = \frac{\ln(4e/\epsilon) + 2 + \ln(2 + \delta) - 2 \ln \delta - \delta/(2 + \delta)}{\delta \cosh \delta - \sinh \delta}.
\]

For \(\beta \to \infty \) we have \(\delta \to 0 \). Hence for \(\delta \sim 0 \) we have as a first approximation

\[
\beta = -6\delta^{-3} \ln(\delta/\delta_0) \quad \delta < \delta_0.
\]

where \(\delta_0 = \sqrt{8e^3/\epsilon} \). Following [8] p. 25 this equation can be asymptotically inversed yielding

\[
\delta(\beta) = \left\{ 2 \ln \left(\beta \delta_0^3/2 \right) / \beta \right\}^{\frac{1}{3}} \beta > 2e\delta_0^{-3}.
\]

Utilizing this function it is not too hard to prove that Carsons rule is asymptotically correct i.e.

\[
\lim_{\beta \to \infty} \frac{1}{\beta} \Lambda(\delta(\beta); \beta, \epsilon) = 1.
\]

In Fig. 1 we plotted \(\Lambda(1; \beta, \epsilon) \) and \(\Lambda(\delta(\beta); \beta, \epsilon) \) as a function of \(\beta \) for \(\epsilon = 0.01 \). It is seen that both curves very closely resemble straight lines.
4 CONCLUSION

We have proposed a highly pertinent truncation bound for analytic Fourier series based on the maximum modulus of an analytic function inside a strip. This resulted in an asymptotic proof of Carson’s rule in frequency modulation theory. Since the truncation bound and the effective bandwidth are related by $BW = 4\pi N$, the results obtained make it possible to calculate the effective bandwidth of virtually every periodic analytic function by performing a maximization over a strip in the complex plane, followed by a minimization over the positive real axis.

References

