
Lmod: What’s New with TACC’s Environment
Module System

Robert McLay

The Texas Advanced Computing Center

January, 22, 2018

Introduction

• What is Lmod?

• Can Lmod help manage your site?

• Advanced Topics

• Where to go for help.

2/1

Lmod’s Big Ideas

• A modern replacement for a tried and true concept.

• The guiding principal: “Make life easier w/o getting in the
way.”

• Reads both TCL and Lua modulefiles including Cray
Modulefiles.

3/1

Fundamental Issues

• Software Packages are created and updated all the time.

• Some Users need new versions for new features and bug fixes.

• Other Users need older versions for stability and continuity.

• No system can support all versions of all packages.

• User programs using pre-built C++ & Fortran libraries must
link with the same compiler.

• Similarly, MPI Applications must build and link with same
MPI/Compiler pairing when using pre-built MPI libraries.

4/1

Example of Lmod: Environment Modules
(I)

$ module list

Currently Loaded Modules:

1) StdEnv 2) gcc/4.5 3) mpich2/1.4 4) petsc/3.1

$ module unload gcc

Inactive Modules:

1) mpich2 2) petsc

$ module list

Currently Loaded Modules:

1) StdEnv

Inactive Modules:

1) mpich2 2) petsc

$ module load intel

Activating Modules:

1) mpich2 2) petsc

$ module swap intel gcc

Due to MODULEPATH changes the follow modules have been reloaded:

1) mpich2 2) petsc

$ module load gcc

Due to MODULEPATH changes the follow modules have been reloaded:

1) mpich2 2) petsc

5/1

Example of Lmod: Environment Modules
(II)

$ module avail

------------------ /opt/apps/modulefiles/MPI/intel/12.0/mpich2/1.4 ------------------

petsc/3.1 (D) petsc/3.1-debug pmetis/4.0 tau/2.20.3

------------------- /opt/apps/modulefiles/Compiler/intel/12.0 -----------------------

boost/1.45.0 gotoblas2/1.13 openmpi/1.4.3

boost/1.46.0 mpich2/1.3.2 openmpi/1.5.1

boost/1.46.1 (D) mpich2/1.4 (D) openmpi/1.5.3 (D)

-------------------------- /opt/apps/modulefiles/Core -------------------------------

StdEnv intel/11.1 papi/4.1.4

admin/admin-1.0 intel/12.0 (D) scite/2.28

ddt/ddt lmod/lmod tex/2010

dmalloc/dmalloc local/local (D) unix/unix (D)

fdepend/1.2 mkl/mkl visit/visit

gcc/4.4 noweb/2.11b

gcc/4.5 (D)

6/1

Why does Lmod work at all?

• The environment is inherited from the parent process

• Changes in a child process DOES NOT affect the parent’s
environment

• So how could Lmod work at all?

7/1

The trick is:

• The lmod program generates text.

• The module command eval’s that text.

• module() {eval $($LMOD CMD bash "$@";)}
• stdout is evaluated

• stderr passes through

8/1

Why You Might Want To Use Lmod

• Same module command as in Tmod

• Active Development; Frequent Releases; Bug fixes.

• Vibrant Community

• It is used from Norway to Isreal to New Zealand from
Stanford to MIT to NASA

• Enjoy many capabilities w/o changing a single module file

• Debian and Fedora packages available

• Many more advantages when you’re ready

• It is what we use every day!

9/1

Features

• Reads for TCL and Lua modulefiles

• One name rule.

• Support Software Hierarchy (single parent only!)

• Spider Cache: fast $ module avail

• Properties (gpu, mic)

• Semantic Versioning: 5.6 is older than 5.10

• family(“compiler”) family(“mpi”) support

• Optional Tracking: What modules are used?

• Many other features: ml, collections, hooks, Env Vars, ...

10/1

History of Support for Module Names

• Originally only name/version (N/V): gcc/4.8.1

• Lmod 5+ cat/name/version (C/N/V): compiler/gcc/4.8.1

• Lmod 7+ name/version/version (N/V/V):
intel/impi/64/18.0.1

11/1

New with Lmod 7: N/V/V

• Support for name/v1/v2: fftw/64/3.3.4

• MODULERC Support:

– Set Defaults under Site and/or User
– Hide any installed module

• Major refactoring of Lmod

– support N/V/V
– Code Cleanup
– Better Spider Cache handling

12/1

Setting Defaults

• System MODULERC file: /path/to/lmod/etc/rc

• $MODULERC points to a file.

• User ~/.modulerc

• Can set defaults User, System, Files

• Examples: account for web services

13/1

Hiding Modules

• System MODULERC file: /path/to/lmod/etc/rc

• User ~/.modulerc

• hide-version foo/1.2.3

• Hidden from avail, spider and keyword

• Hidden modules can be loaded

• Sites: deprecation, experimental

• show hidden: module --show-hidden avail

14/1

Recent Improvements

• New module function: depends on()

• Reference counting on PATH like variables

• French, German, Spanish translations for Lmod messages.

• Admin list (AKA Nag List) supports Lua Regex for matching

• Improved Settarg (more on this later?)

15/1

depends on()

• Modules X and Y depends on Module A

• ml purge; ml X; ml unload X; ⇒ unload A

• ml purge; ml X Y; ml unload X; ⇒ keep A

• ml purge; ml X Y; ml unload X Y ; ⇒ unload A

• ml purge; ml A X Y; ml unload X Y ; ⇒ keep A

16/1

Reference Counting for PATH like variables

• AKA: the /usr/local/bin problem

• Old:

– Default path has /usr/local/bin
– Module A also has /usr/local/bin
– Unloading module A removes /usr/local/bin from path

• New: With Ref. Count the problem is fixed.

17/1

MODULEPATH ref counting

• A user has requested the MODULEPATH have ref-counting

• ml unuse /path/to/modules would always remove
directory from MODULEPATH

• This is now implemented.

18/1

Future Work (I): Module Export

• Module Collections are for individuals.

• They are not meant to be shared between users

• To share I plan to add “module export”

19/1

Module Export

$ module export <collection> > export.txt

$ cat export.txt

module purge

clearMT

export MODULEPATH=/path1:/path2

module collection_load X Y Z

module --ref_count 2 depend_on A

20/1

Lmod Doc usage

21/1

Can tools like Lmod improve the user
experience?

• Sites provide packages: applications and libraries

• Users can pick which packages and version to suit their needs

• But what we are really after is to cut down on tickets!

• Or simply make your resources easier for your users

22/1

Lmod examples

• Lmod was first released in 2009

• It is the only module system used at TACC since 2010

• The following are some examples of how Lmod can help

23/1

Can Lmod help with the /usr/local/bin
problem?

• Suppose your startup files put /usr/local/bin in PATH

• And suppose module BAR also adds /usr/local/bin to PATH

• Currently Loading then unloading BAR will remove
/usr/local/bin from PATH.

• Site can configure Lmod to support duplicate paths

• Lmod now supports reference counting!

24/1

Can Lmod prevent users from mixing
modules they shouldn’t?

• Same Name modules:

– Things can get confusing when users load two gcc modules
– Normally, Lmod will unload old gcc, then load new gcc
– Optionally, sites can auto-conflict with themselves.

• Loading two compilers or MPI Stack:

– It is a rare user who needs to load two different compilers or
two MPI stacks

– GCC and Intel are a special case
– Sites can add family(”compiler”) to compiler modules
– This will autoswap one compiler for another!
– Similarly for MPI modules.

25/1

How to manage software: New or Old

• How can you test new/experimental software?

• Suppose your site keeps SW for the life of machine?

• How do you encourage usage of newer SW w/o breaking old
job scripts?

• Lmod now supports hiding regular modules from avail and
spider.

• Hidden modules can still be loaded.

• Modules can be explicitly marked as hidden

• Or you can use the isVisible hook

• Both sites and users can hide modules

26/1

Can Lmod help with deprecating packages?

• Suppose your site keeps a limited number of versions (say 3 or
less)

• How to you decide which package to keep or remove?

• Lmod support optional tracking of what packages are loaded
by whom.

• You can send targeted email to those users about deprecation
based on tracking.

• Independent of tracking: nag messaging

• Do not need to change modulefile!

• Users get a message when they load a deprecated module.

27/1

Can Lmod help a site that does not want
default modules?

• Suppose your site produces weather forecasts or processes
satellite images.

• No one set of compilers etc will satify your needs.

• Site can set LMOD EXACT MATCH=yes ⇒ There are no
defaults

• Users MUST specify name and version!

28/1

Can users have their own default list of
modules?

• It is common to provide a default list of modules

• However some users will want their own modules at startup

• Users can add module commands to ˜/.bashrc etc

• But this is tricky to get right.

• Lmod supports default module collections

• In fact, users can have as many named collections as they like.

29/1

Can Lmod deal with shared home
filesystem?

• Suppose your site shares the home filesystem across two or
more clusters

• These clusters have different modules.

• Site can set $LMOD SYSTEM NAME uniquely on each
cluster

• This way user’s collection (and personal caches) will be unique

30/1

Can users easily grep the output from
Lmod?

• Lmod sends messages to stderr by default

• Lmod can redirect the output to stdout by setting
$LMOD REDIRECT=yes

• This works for bash, zsh

• It doesn’t work for csh/tcsh due to the way eval works there

• Setting $LMOD REDIRECT=yes means you lose the pager

• I do this instead: $ module –raw –redirect show impi — grep
tmi

31/1

Can Lmod work with Localization and Site
Messages?

• Starting Lmod 7.1+ Lmod provides the possibility of
Language Translations: ES, FR, DE, and ZH

• Sites can also provide tailored message to suit their needs

32/1

Can Lmod help with software web pages?

• Many sites want to provide web pages that list the SW they
provide.

• Lmod provides a tool to generate a JSON or XML list of all
system modules.

• You’ll have to write something to ingest the JSON or XML

33/1

Can Lmod help with compiler and/or
MPI/compiler dependent modules?
• Sites can chose a Flat or Hierarchical Naming Scheme

• PETSc: A parallel iterative solver package:

– Compilers: GCC 6.3, Intel 17.0
– MPI Implementations: MVAPICH2 2.1, IMPI 17.0
– MPI Solver package: PETSc 4.1
– 4 versions of PETSc: 2 Compilers × 2 MPI

• Flat layout for PETSc

1. PETSc/4.1-mvapich2-2.1-gcc-6.3

2. PETSc/4.1-mvapich2-2.1-intel-17.0

3. PETSc/4.1-impi-17.0-gcc-6.3

4. PETSc/4.1-impi-17.0-intel-17.0

34/1

Problems w/ Flat naming scheme

• Users have to load modules:

– “intel/17.0”
– “mvapich2/2.1-intel-17.0”
– “PETSc/4.1-mvapich2-2.1-intel-17.0”
– Changing compilers means unloading all three modules
– Reloading new compiler, MPI, PETSc modules.
– Not loading correct modules ⇒ Mysterious Failures!
– Onus of package compatibility on users!
– Or extremely complicated modulefiles!
– Tools like EasyBuild or Spack can help here.

35/1

Hierarchical Naming Schemes

• Store modules under one tree: /opt/apps/modulefiles

• One strategy is to use sub-directories:

– Core: Regular packages: apps, compilers, git
– Compiler: Packages that depend on compiler: boost, MPI
– MPI: Packages that depend on MPI/Compiler: PETSc,

FFTW3

36/1

Loading the correct module

• User loads “intel/17.0” module

• Can only see/load compiler dependent packages that are built
with intel 17.0 compiler.

• Can not see/load package built with other versions or other
compilers.

• Similar loading “mvapich2/2.1” module.

• Users can only load package that are built w/ intel 17.0 and
mvapich2 2.1 and no others.

37/1

Lmod works with both flat or hierarchy
layouts

• Sites can chose either kind of layout.

• Lmod offers many advantages with either layout

• An Lmod site sys-admin transitioned his users by leaving the
old system active

• A new hierarchy was available where all new SW was installed.

• Users can transition if/when they like.

38/1

Bash Issues

• Bash Startup is typically “broken” for non-login interactive
shells

• Redhat, Centos, MacOS typically don’t source /etc/bashrc on
interactive shells

• MPI jobs start an interactive shell.

39/1

Bash Issues (II)

• Want module command to work in all shells.

• Want stacksize unlimited for MPI jobs

• We patched bash to force it to source /etc/tacc/bashrc

40/1

Bash Repair Choices

• Switch users to Z shell?

• patch bash (see Lmod docs)

• Expect all users to source /etc/bashrc in ˜/.bashrc

• Expect all users to start jobs with #!/bin/bash -l

41/1

Debugging Lmod

• module --config : reports Lmod configuration

• module -D load foo > load.log

42/1

Tracing Lmod

• A new feature of Lmod 7.4.4+

• module -T ...

• export LMOD TRACING=yes

• Can trace loads and how restores work.

43/1

Conclusions: Lmod 7+

• Latest version: https://github.com:TACC/Lmod.git

• Stable version: http://lmod.sf.net

• Documentation: http://lmod.readthedocs.org

44/1

