
Introduction to EasyBuild
Getting Scientific Software Installed With Ease

Kenneth Hoste
HPC-UGent, Ghent University, Belgium

kenneth.hoste@ugent.be
http://users.ugent.be/~kehoste/EasyBuild_HPCAC_intro_20160323.pdf

March 23rd 2016 – HPC Advisory Council conference – Lugano

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://users.ugent.be/~kehoste/EasyBuild_HPCAC_intro_20160323.pdf
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

1/32

whoami

• PhD in Computer Science from Ghent University (Belgium)

• joined HPC-UGent team in October 2010

• main tasks: user support & training, software installations

• inherited maintenance of EasyBuild in 2011

• slowly also became lead developer & release manager

• e-mail: kenneth.hoste@ugent.be

• Twitter: @kehoste

• GitHub: https://github.com/boegel

• IRC (Freenode): boegel

• Google+: kenneth.hoste@gmail.com

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

https://github.com/boegel
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

2/32

HPC-UGent in a nutshell

http://www.ugent.be/hpc – http://www.vscentrum.be

• HPC team at central IT dept. of Ghent University (Belgium)

• 9+1 team members: 1 manager, ∼3 user support, ∼6 sysadmin

• 4+1 Tier2 clusters + one Tier1 cluster (8.5k cores)

• ∼1.8k user accounts, across all scientific domains

• tasks: hardware, system administration, user support/training, . . .

• member of Flemish Supercomputer Centre (VSC)
virtual centre, collaboration between Flemish university associations

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://www.ugent.be/hpc
http://www.vscentrum.be
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

3/32

Tasks for HPC user support teams

• resolving problems that occur when using the HPC system(s)

– ”I lost my private key/password, and now I can’t log in. Help?”

– ”My job crashed, and I have no idea why. What happened?”

– ”My stuff doesn’t work anymore, and I didn’t change a thing!”

• answering questions, from simple to very technical

• installing (scientific) software tools/libraries/applications

• helping users improve their workflow (not necessarily by request)

• training: Linux basics, OpenMP, MPI, Python, etc.

• performance analysis and optimisation of large scientific applications

• consultancy services w.r.t. developing scientific software

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

4/32

Installing scientific software for users

Typical way in which scientific software is installed for users:

• by user request: new software, version upgrades, more variants, . . .

• on a (shared NFS) filesystem available on every workernode

• specifically targetted to the HPC cluster it will be used on

– built from source (if possible)

– separate installation per cluster

– highly optimized for system architecture

- linked with heavily tuned libraries (MPI, BLAS, LAPACK, . . .)

- built with (equivalent of) -march=native/-xHost

• rebuild when updates for compilers/libraries become available

• installations remain available during lifetime of system

• accompanying module file is provided for easy access

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

5/32

Environment modules
• canonical way of giving users access to installed (scientific) software

• used on most HPC systems (> 80%1), since mid 90’s

• module file specifies changes to user environment (in Tcl/Lua subset)

• modules tool applies those changes to the current session (!)

• easy interface for users:

– available software: ‘module avail [name]’

– prepare environment: ‘module load <name>/<version>’

– show loaded modules: ‘module list’

– rollback changes to environment: ‘module unload <name>’

– start afresh: ‘module purge’

• Tcl-based environment modules system is most prevalent (for now)

• Lmod: Lua-based modules tool, vastly improves user experience

(1) http://hpcugent.github.io/easybuild/files/SC15_BoF_Getting_Scientific_Software_Installed.pdf

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild/files/SC15_BoF_Getting_Scientific_Software_Installed.pdf
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

6/32

“Please install <software> on the HPC?”

The most common type of support request
from users is to install (scientific) software;
this covers over 25% of support tickets
at HPC-UGent.

Installing (lots of) scientific software is:

• error-prone, trial-and-error

• tedious, hard to get right

• repetitive & boring (well. . .)

• time-consuming (hours, days, even weeks)

• frustrating (e.g., dependency hell)

• sometimes simply not worth the effort. . .

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

7/32

Common issues with scientific software
Researchers focus on the science behind the software they implement,
and care little about tools, build procedure, portability, . . .

Scientists are not software developers or sysadmins (nor should they be).

“If we would know what we are doing, it wouldn’t be called ‘research’.”

This results in:

• ‘incorrect’ use of build tools

• use of non-standard build tools (or broken ones)

• incomplete build procedure, e.g., no configure or install step

• interactive installation scripts

• hardcoded parameters (compilers, libraries, paths, . . .)

• poor/outdated/missing/incorrect documentation

• dependency (version) hell

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

8/32

Prime example I: WRF
Weather Research and Forecasting Model (http://www.wrf-model.org)

(one of the top 5 applications on Blue Waters)

• dozen dependencies: netCDF (C, Fortran), HDF5, tcsh, JasPer, . . .

• known issues in last release are (only) documented on website

no patch file provided, infrequent bugfix releases

• interactive ‘configure’ script :(

• resulting configure.wrf needs work:

fix hardcoded settings (compilers, libraries, . . .), tweaking of options

• custom ‘compile’ script (wraps around ‘make’)

building in parallel is broken without fixing the Makefile

• no actual installation step

Wouldn’t it be nice to build & install WRF with a single command?
http://easybuild.readthedocs.org/en/latest/Typical_workflow_example_with_WRF.html

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://www.wrf-model.org
http://easybuild.readthedocs.org/en/latest/Typical_workflow_example_with_WRF.html
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

9/32

Prime example II: QIIME
QIIME: Quantitative Insights Into Microbial Ecology (http://qiime.org/)

clearcut

ictce

Java

SourceTracker

Cytoscape

GHC

BLAT

libpng

FastTree

libreadline

ncurses M4

microbiomeutil

Perl

BLAST cdbfasta

biom-format

Python

pyqi

tax2tree

PyCogent

R

Infernal MAFFT

Xmlm

OCaml

findlib

bzip2 Autoconf

ifort

imkl

icc impi

Mothur

gzip zlib

PyNAST

UCLUST

RDP-Classifier

ea-utils

GSL

BWA

USEARCH

SQLite

Tcl

CamlZIP batteries csv

AmpliconNoise

freetype

RAxML

gdata matplotlib

pplacer

GSL-OCaml SQLite3-OCamlMCL

qcli Emperor

QIIME

MUSCLE ParsInsert

SeqPrep

CD-HITrtax

• scientific research domain: bioinformatics . . .

• 59 dependencies in total (without compiler toolchain), some optional
– depends on Haskell (GHC), Java, Python, R, Perl, OCaml, . . .
– several deps use a non-standard build procedure (in various degrees)

• very picky about dependency versions (e.g., must be Python v2.7.3)

• took us several weeks to get it installed (using Intel compilers!). . .

• . . . now we can (re)build/install it all with a single command!

(disclaimer: support for QIIME not included yet in latest EasyBuild release)

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://qiime.org/
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

10/32

Houston, we have a problem

Installation of scientific software is a tremendous
problem for HPC sites all around the world.

• huge burden on HPC user support teams

• researchers lose lots of time (waiting)

• sites typically resort to in-house scripting

• very little collaboration among HPC sites :(

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

11/32

What about existing tools?

Existing tools are not well suited to scientific software and HPC systems.

• package managers: yum (RPMs), apt-get (.deb), . . .

• Homebrew (Mac OS X), http://brew.sh/

• Linuxbrew, http://brew.sh/linuxbrew/

• Portage (Gentoo), http://wiki.gentoo.org/wiki/Project:Portage

• pkgsrc (NetBSD & (a lot) more), http://pkgsrc.org/

• Nix, http://nixos.org/nix

• GNU Guix, https://www.gnu.org/s/guix

Common problems:

• usually poor support for multiple versions/builds side-by-side

• not flexible enough to deal with idiosyncrasies of scientific software

• little support for scientific software, other compilers (not GCC), MPI

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://brew.sh/
http://brew.sh/linuxbrew/
http://wiki.gentoo.org/wiki/Project:Portage
http://pkgsrc.org/
http://nixos.org/nix
https://www.gnu.org/s/guix
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

12/32

EasyBuild: building software with ease

http://hpcugent.github.io/easybuild/

• framework for installing (scientific) software on HPC systems

• collection of Python packages and modules

• in-house since 2009, open-source (GPLv2) since 2012

• now: thriving community; actively contributing, driving development

• new release every 6–8 weeks (latest: EasyBuild v2.7.0, Mar 20th 2016)

• supports over 850 different software packages

including CP2K, GAMESS-US, GROMACS, NAMD, NWChem,
OpenFOAM, PETSc, QuantumESPRESSO, WRF, WPS, . . .

• well documented: http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild/
http://easybuild.readthedocs.org
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

13/32

EasyBuild: feature highlights

• fully autonomously building and installing (scientific) software

– automatic dependency resolution
– automatic generation of module files (Tcl or Lua syntax)

• thorough logging of executed build/install procedure

• archiving of build specifications (‘easyconfig files‘)

• highly configurable, via config files/environment/command line

• dynamically extendable with additional easyblocks, toolchains, etc.

• support for custom module naming schemes (incl. hierarchical)

• comprehensively tested: lots of unit tests, regression testing, . . .

• actively developed, collaboration between various HPC sites

• worldwide community

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

14/32

EasyBuild terminology
• EasyBuild framework

– core of EasyBuild: Python modules & packages
– provides supporting functionality for building and installing software

• easyblock

– a Python module, ‘plugin’ for the EasyBuild framework
– implements a (generic) software build/install procedure

• easyconfig file (*.eb)

– build specification: software name/version, compiler toolchain, etc.

• compiler toolchain

– compilers with accompanying libraries (MPI, BLAS/LAPACK, . . .)

Putting it all together

The EasyBuild framework leverages easyblocks to automatically build
and install (scientific) software using a particular compiler toolchain, as
specified by one or more easyconfig files.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

15/32

EasyBuild: system requirements

• Linux x86 64 HPC systems is main target platform (for now

– Red Hat-based systems (Scientific Linux, CentOS, RHEL, . . .)

– also other Linux distros: Debian, Ubuntu, OpenSUSE, SLES, . . .

– kind of works on OS X, but not really a target platform

– no Windows support (and none planned)

– stable support for Cray systems since EasyBuild v2.7.0

– support for Linux@POWER systems is being looked into (by TAMU)

• Python v2.6.x or more recent v2.x (not Python 3 compatible (yet))

• a modules tool:

– latest release of Tcl/C environment modules (version 3.2.10);
– or one of the Tcl-only versions of environment modules;
– or a recent version of Lmod (5.6.3 or more recent) (recommended!)

• (a system C/C++ compiler, to get started)

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

16/32

‘Quick’ demo for the impatient

eb HPL-2.1-foss-2016a.eb --robot

• downloads all required sources (best effort)

• builds/installs foss toolchain (be patient) + HPL on top of it

foss: GCC, OpenMPI, LAPACK, OpenBLAS, FFTW, ScaLAPACK

note: requires libibverbs to be available

• generates module file for each installed software package

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

17/32

Example ‘eb’ output
$ eb GCC-4.9.3.eb
== temporary log file in case of crash /tmp/eb-GyvPHx/easybuild-U1TkEI.log
== processing EasyBuild easyconfig GCC-4.9.3.eb
== building and installing GCC/4.9.3...
== fetching files...
== creating build dir, resetting environment...
== unpacking...
== patching...
== preparing...
== configuring...
== building...
== testing...
== installing...
== taking care of extensions...
== postprocessing...
== sanity checking...
== cleaning up...
== creating module...
== permissions...
== packaging...
== COMPLETED: Installation ended successfully
== Results of the build can be found in the log file /opt/easybuild/software/GCC/4...
== Build succeeded for 1 out of 1
== Temporary log file(s) /tmp/eb-GyvPHx/easybuild-U1TkEI.log* have been removed.
== Temporary directory /tmp/eb-GyvPHx has been removed.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

18/32

Step-wise install procedure
build and install procedure as implemented by EasyBuild

IV: unpack sources

V: apply patches

VI: prepare

VII: configure

VIII: build

IX: test

X: install

XI: extensions

XII: sanity check

XIII: cleanup

XIV: env. module

III: check readiness XV: permissions

II: fetch sources XVI: packaging

I: parse easyconfig XVII: test cases

most of these steps can be customised if required,
via easyconfig parameters or a custom easyblock

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

19/32

What EasyBuild is (not)
EasyBuild is not:

• YABT (Yet Another Build Tool)

• a replacement for your favorite package manager

• a magic solution to all your (installation) problems

EasyBuild can be (and maybe already is) a:

• proper way of installing scientific software

• uniform interface that wraps around software build procedures

• huge time-saver, by automating tedious/boring/repetitive tasks

• way to provide a consistent software stack to your users

• expert system for software installation on HPC systems

• platform for collaboration with HPC sites world-wide

• tool to empower users to manage their own software stack

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

20/32

EasyBuild: statistics
EasyBuild v2.7.0 (Mar’16)

• ∼ 25, 000 LoC in framework (17 Python packages, 160 Python modules)

+ ∼ 5, 000 LoC in vsc-base (option parsing/logging)
+ ∼ 12, 500 LoC more in unit tests
=⇒ ∼ 42, 500 LoC in total

• 194 easyblocks in total (∼ 18, 000 Loc)

165 software-specific easyblocks
29 generic easyblocks

• 909 different software packages supported
(incl. toolchains & bundles)

bio: 203, tools: 123, vis: 99, devel: 78, lib: 77, math: 54,
data: 53, toolchain: 38, chem: 38, lang: 32, numlib: 25,
perf: 22, system: 21, cae: 16, compiler: 14, mpi: 11, phys: 6

• 5, 580 easyconfig files: different versions/variants, toolchains, . . .

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

21/32

EasyBuild community

• Ghent University & partners in Flemish Supercomputing Centre

• Jülich Supercomputing Centre (JSC) – Germany

• Swiss National Supercomputing Centre (CSCS) – Switzerland

• (small) sites across Europe: Luxembourg, Cyprus, Switzerland, UK, . . .

• US sites: Stanford University, University of Colorado Boulder, . . .

• . . . and all across the world: New Zealand, Australia, Cuba, . . .

• and also commercial companies: Bayer (Germany), *****, . . .

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

22/32

EasyBuild community by numbers

• 6 ‘Getting Scientific Software Installed ’ BoF sessions at ISC/SC

• 10 two/three-day EasyBuild hackathons + 1 user meeting

• ∼20-25 ‘active’ souls on the #easybuild IRC channel

• a couple of dozen of HPC sites using it around the world

• 47 EasyBuild conference calls

• 168 subscribers to the EasyBuild mailing list

• framework: 966 merged PRs (50 open)

• easyblocks: 634 merged PRs (51 open)

• easyconfigs: 1, 937 merged PRs (325 open)

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

23/32

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

Feb+12" Aug+12" Mar+13" Oct+13" Apr+14" Nov+14" May+15" Dec+15"

#"
su
bs
cr
ib
er
s"

date"

EasyBuild"mailing"list"

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

24/32

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

11,Feb,12" 29,Aug,12" 17,Mar,13" 03,Oct,13" 21,Apr,14" 07,Nov,14" 26,May,15" 12,Dec,15"

#"
un

iq
ue

"c
on

tr
ib
ut
or
s"

EasyBuild"contributors"
framework" easyblocks" easyconfigs"

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

25/32

Recent projects similar to EasyBuild

• Spack (LLNL) - http://scalability-llnl.github.io/spack/

• Maali (Pawsey) - https://github.com/chrisbpawsey/maali/

• Smithy (NICS, ORNL) - http://anthonydigirolamo.github.io/smithy/

Major differences with EasyBuild:

• slightly different approach

• smaller community

• fewer supported software packages

• missing features

• less flexibility

• not so powerful (except Spack?)

All have expressed interest in cross-community collaboration.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://scalability-llnl.github.io/spack/
https://github.com/chrisbpawsey/maali/
http://anthonydigirolamo.github.io/smithy/
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

26/32

HUST’14 paper

Modern Scientific Software Management Using EasyBuild and Lmod

Markus Geimer (JSC)

Kenneth Hoste (HPC-UGent)

Robert McLay (TACC)

http://hpcugent.github.io/easybuild/files/hust14_paper.pdf

• paper at HPC User Support Tools workshop (HUST’14 @ SC14)

• explains basics of module tools, EasyBuild and Lmod

• highlights issues with current approaches in software installation

• advocates use of a hierarchical module naming scheme

• presents EasyBuild and Lmod as adequate tools for
(automated) software/module management on HPC systems

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild/files/hust14_paper.pdf
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

27/32

EasyBuild: future work

• support more (scientific) software (never-ending story?)

• further extend documentation: generic easyblocks, easyblocks API

• support for more Lmod-specific features

– module families
– module properties & sticky modules

• stable support for ‘subtoolchain’-aware dependency resolution

• (even) better integration with GitHub

• support for RPATH-style linking of libraries

• ‘fat’ easyconfig format (YAML-based?)

• join forces with Spack (LLNL)?

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

28/32

Do you want to know more?

• EasyBuild website: http://hpcugent.github.io/easybuild

• EasyBuild documentation: http://easybuild.readthedocs.org

• stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

EasyBuild framework: http://pypi.python.org/pypi/easybuild-framework

easyblocks: http://pypi.python.org/pypi/easybuild-easyblocks

easyconfigs http://pypi.python.org/pypi/easybuild-easyconfigs

• source repositories on GitHub

EasyBuild meta package + docs: https://github.com/hpcugent/easybuild

EasyBuild framework: https://github.com/hpcugent/easybuild-framework

easyblocks: https://github.com/hpcugent/easybuild-easyblocks

easyconfigs: https://github.com/hpcugent/easybuild-easyconfigs

• EasyBuild mailing list: easybuild@lists.ugent.be

https://lists.ugent.be/wws/subscribe/easybuild

• Twitter: @easy build

• IRC: #easybuild on chat.freenode.net

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org
http://pypi.python.org/pypi/easybuild
http://pypi.python.org/pypi/easybuild-framework
http://pypi.python.org/pypi/easybuild-easyblocks
http://pypi.python.org/pypi/easybuild-easyconfigs
https://github.com/hpcugent/easybuild
https://github.com/hpcugent/easybuild-framework
https://github.com/hpcugent/easybuild-easyblocks
https://github.com/hpcugent/easybuild-easyconfigs
mailto:easybuild@lists.ugent.be
https://lists.ugent.be/wws/subscribe/easybuild
http://twitter.com/easy_build
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

28/32

Why I like Lmod and why you should too!

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

29/32

How we learned about Lmod

• EasyBuild makes it very easy to install lots of software/modules
quickly

• we started wondering how we could organise our modules tree better

• Lmod and the module hierarchy idea allow to deal with this

And then we discovered a whole bunch of other interesting features...

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

30/32

Lmod: a modern modules tool

https://tacc.utexas.edu/research-development/tacc-projects/lmod

• developed by Dr. Robert McLay (TACC, UT Austin)

• created to properly support module hierarchies

• available since Oct’08, actively developed, frequent stable releases

• well documented: http://lmod.readthedocs.org

• drop-in alternative for Tcl-based module tools (a few edge cases)

• written in Lua, consumes module files in both Tcl and Lua syntax

• (vastly) improves user experience, without hindering experts

• highly community-driven development

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

https://tacc.utexas.edu/research-development/tacc-projects/lmod
http://lmod.readthedocs.org
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

31/32

Lmod: feature highlights
• module hierarchy-aware design and functionality

– searching across entire module tree with ‘module spider’
– automatic reloading of dependent modules on ‘module swap’
– marking missing dependent modules as inactive after ‘module swap’

• caching of module files, for responsive subcommands (e.g., avail)

• site-customizable behavior via provided hooks

• ml command (‘ml’ is ‘module list’, ‘ml GCC’ is ‘module load GCC’, . . .)

• load/unload shortcuts via + and -

• various other useful/advanced features, including:

– case-insensitive ‘avail’ subcommand
– can send subcommand output to stdout (rather than to stderr)
– defining module families (e.g., ‘compiler’, ‘mpi’)
– assigning properties to modules (e.g., ‘Phi-aware’)
– stack-based definition of environment variables (using pushenv)
– user-definable collections of modules (module save)
– and a lot more . . .

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

32/32

Example
Behold: the power of the Lmod command line using ‘ml’ command:

• see which modules are loaded (‘module list’)

• change to different part of module hierarchy by swapping compilers

• recheck which modules are loaded

$ ml

Currently loaded modules:

1) GCC/4.8.2 2) MPICH/3.1.1 3) FFTW/3.3.2

$ ml -GCC Clang

The following have been reloaded:

1) FFTW/3.3.2 2) MPICH/3.1.1

$ ml

Currently loaded modules:

1) Clang/3.4 2) MPICH/3.1.1 3) FFTW/3.3.2

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

