ld

building software with ease

Writing Easyblocks: The Basics

Kenneth Hoste
kenneth.hoste@ugent.be

EasyBuild hackathon - Basel, 20150211



What is an easyblock?

Python module that implements a software build procedure
‘plugin’ for the EasyBuild framework

can be generic (using standard tools) or software-specific
lives (somewhere) in the easybuild.easyblocks namespace
own easyblocks can live next to installed easyblocks
overview of available easyblocks via eb --list-easyblocks

names of software-specific easyblocks always start with ‘EB_’

EasyBuild v1.16.1 includes:

e 141 software-specific easyblocks
e 20 generic easyblocks



Easyblocks vs easyconfigs

thin line between ‘fat’ easyconfigs and an easyblock
easyblocks are “do once and forget”

central solution for build peculiarities

can significantly simplify easyconfigs

implemented in Python on top of framework API: very flexible

reasons to consider an easyblock alongside a simply easyconfig:
o ‘critical’ values for easyconfig parameters
e configure/build/install options that are toolchain-dependent
e custom (configure) options for included dependencies
e hackish usage of parameters for existing (generic) easyblocks



Implementing easyblocks

quick overview

e each easyblock (eventually) derives from EasyBlock base class
e defines/extends/replaces one or more ‘step’ methods

e the configure/build/install steps must be defined

e APl documentation:
https://jenkinsl.ugent.be/view/EasyBuild/job/
easybuild—framework_unit—test_hpcugent_master/Documentation/

Example

from easybuild.framework.easyblock import EasyBlock
from easybuild.tools.filetools import run_cmd
class EB_Foo(EasyBlock):
def configure_step(self):
run_cmd ("PREFIX=Y%s ./configure.sh" % self.installdir)
def build_step(self):
run_cmd ("build.sh %s" % self.cfgl[’buildopts’])
def install_step(self):
run_cmd ("install.sh")


https://jenkins1.ugent.be/view/EasyBuild/job/easybuild-framework_unit-test_hpcugent_master/Documentation/
https://jenkins1.ugent.be/view/EasyBuild/job/easybuild-framework_unit-test_hpcugent_master/Documentation/

Derive from existing easyblocks

avoid duplicate code

easyblocks can be defined hierarchically through inheritance

(generic) easyblock can serve as a basis for others

step methods of ‘parent’ can be inherited /extended /redefined

e maximizes code reuse across easyblocks

Example

class EB_Score_minus_P(ConfigureMake):
def configure_step(self):
Custom configure step for Score-P:
set configure options and run configure script.
comp_opt = "--with-nocross-compiler-suite=intel"
self.cfg.update("configopts", compt_opt)
super (EB_Score_minus_P, self).configure_step() # parent



Minimal easyconfigs

easyblock takes care of the hard work

if an easyblock is available, easyconfigs should be kept minimal

easyblock should take care of configure/build/install options:

o that depend on toolchain being used
o for listed dependencies
e that are common across builds

sanity check paths/commands should be defined via easyblock

easyblock can define extra custom easyconfig parameters

easyconfig file can:

e specify additional configure/build/instal options
e override sanity check paths defined by easyblock



Detailed documentation

https://github.com/hpcugent/easybuild/wiki/Writing-easyblocks

o different aspects of writing easyblocks to be documented
e including examples and references to existing easyblocks

e work in progress

Fully worked out example easyblock/easyconfig for WRF:

https://github.com/hpcugent/easybuild/wiki/Tutorial:
-building-WRF-after-adding-support-for-it


https://github.com/hpcugent/easybuild/wiki/Writing-easyblocks
https://github.com/hpcugent/easybuild/wiki/Tutorial:-building-WRF-after-adding-support-for-it
https://github.com/hpcugent/easybuild/wiki/Tutorial:-building-WRF-after-adding-support-for-it

ld

building software with ease

Writing Easyblocks: The Basics

Kenneth Hoste
kenneth.hoste@ugent.be

EasyBuild hackathon - Basel, 20150211



