
building software with ease

Writing Easyblocks: The Basics

Kenneth Hoste
kenneth.hoste@ugent.be

EasyBuild hackathon - Basel, 20150211



1/6

What is an easyblock?

• Python module that implements a software build procedure

• ‘plugin’ for the EasyBuild framework

• can be generic (using standard tools) or software-specific

• lives (somewhere) in the easybuild.easyblocks namespace

• own easyblocks can live next to installed easyblocks

• overview of available easyblocks via eb --list-easyblocks

• names of software-specific easyblocks always start with ‘EB ’

• EasyBuild v1.16.1 includes:
• 141 software-specific easyblocks
• 20 generic easyblocks



2/6

Easyblocks vs easyconfigs

• thin line between ‘fat’ easyconfigs and an easyblock

• easyblocks are “do once and forget”

• central solution for build peculiarities

• can significantly simplify easyconfigs

• implemented in Python on top of framework API: very flexible

• reasons to consider an easyblock alongside a simply easyconfig:
• ‘critical’ values for easyconfig parameters
• configure/build/install options that are toolchain-dependent
• custom (configure) options for included dependencies
• hackish usage of parameters for existing (generic) easyblocks



3/6

Implementing easyblocks
quick overview

• each easyblock (eventually) derives from EasyBlock base class

• defines/extends/replaces one or more ‘step’ methods

• the configure/build/install steps must be defined
• API documentation:

https://jenkins1.ugent.be/view/EasyBuild/job/

easybuild-framework_unit-test_hpcugent_master/Documentation/

Example

from easybuild.framework.easyblock import EasyBlock

from easybuild.tools.filetools import run_cmd

class EB_Foo(EasyBlock ):

def configure_step(self):

run_cmd("PREFIX =%s ./ configure.sh" % self.installdir)

def build_step(self):

run_cmd("build.sh %s" % self.cfg[’buildopts ’])

def install_step(self):

run_cmd("install.sh")

https://jenkins1.ugent.be/view/EasyBuild/job/easybuild-framework_unit-test_hpcugent_master/Documentation/
https://jenkins1.ugent.be/view/EasyBuild/job/easybuild-framework_unit-test_hpcugent_master/Documentation/


4/6

Derive from existing easyblocks
avoid duplicate code

• easyblocks can be defined hierarchically through inheritance

• (generic) easyblock can serve as a basis for others

• step methods of ‘parent’ can be inherited/extended/redefined

• maximizes code reuse across easyblocks

Example

class EB_Score_minus_P(ConfigureMake ):

def configure_step(self):

"""

Custom configure step for Score -P:

set configure options and run configure script.

"""

comp_opt = "--with -nocross -compiler -suite=intel"

self.cfg.update("configopts", compt_opt)

super(EB_Score_minus_P , self). configure_step () # parent



5/6

Minimal easyconfigs
easyblock takes care of the hard work

• if an easyblock is available, easyconfigs should be kept minimal

• easyblock should take care of configure/build/install options:
• that depend on toolchain being used
• for listed dependencies
• that are common across builds

• sanity check paths/commands should be defined via easyblock

• easyblock can define extra custom easyconfig parameters

• easyconfig file can:
• specify additional configure/build/instal options
• override sanity check paths defined by easyblock



6/6

Detailed documentation

https://github.com/hpcugent/easybuild/wiki/Writing-easyblocks

• different aspects of writing easyblocks to be documented

• including examples and references to existing easyblocks

• work in progress

Fully worked out example easyblock/easyconfig for WRF:

https://github.com/hpcugent/easybuild/wiki/Tutorial:

-building-WRF-after-adding-support-for-it

https://github.com/hpcugent/easybuild/wiki/Writing-easyblocks
https://github.com/hpcugent/easybuild/wiki/Tutorial:-building-WRF-after-adding-support-for-it
https://github.com/hpcugent/easybuild/wiki/Tutorial:-building-WRF-after-adding-support-for-it


building software with ease

Writing Easyblocks: The Basics

Kenneth Hoste
kenneth.hoste@ugent.be

EasyBuild hackathon - Basel, 20150211


