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Abstract. For a set of m parafermion operators and n paraboson operators, there are two
nontrivial ways to unify them in a larger algebraic structure. One of these corresponds to the
orthosymplectic Lie superalgebra osp(2m + 1|2n). The other one is no longer a Z2-graded Lie
superalgebra but a Z2 × Z2-graded Lie superalgebra, a rather different algebraic structure,
denoted here by pso(2m + 1|2n). In a recent paper, the Fock spaces Ṽ (p) of order p for
pso(2m+1|2n) were determined. In the current paper, we summarize some of the main properties
of pso(2m+1|2n) and its Fock spaces. In particular, we concentrate on the Fock space for p = 1,
and indicate how it reduces to an ordinary boson-fermion Fock space.

1. Introduction: Z2 × Z2-graded Lie superalgebra
In quantum mechanics or quantum field theory, the creation and annihilation operators
corresponding to classical particles are usually required to satisfy the quadratic relations of
bosons or fermions. That is the reason why algebras with commutation relations and/or anti-
commutation relations, i.e.

[x, y] = xy − yx, {x, y} = xy + yx, (1.1)

are so important in mathematical physics. In (1.1), it is implicitly assumed that x and y are
elements of some associative algebra, such that the right hand side is properly defined. It is
obvious that in an associative algebra there are two ways to rewrite the trivial identity

xy + yx− xy − yx = 0 (1.2)

by means of commutators and anti-commutators:

[x, y] = −[y, x] or {x, y} = {y, x}. (1.3)

These bracket symmetries are the basic parts appearing in the definition of a Lie algebra or
(Z2-graded) Lie superalgebra. For a Lie algebra g with bracket [·, ·] : g × g → g, the bracket
should indeed be a bilinear product satisfying the antisymmetry relation [x, y] = −[y, x] and the
Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (1.4)



For a Lie superalgebra g = g0 ⊕ g1, graded by Z2 = {0, 1}, the bracket J·, ·K : g× g→ g should
preserve the grading, be bilinear, and satisfy the supersymmetry relation and the super Jacobi
identity [1]. The supersymmetry relation reads

Jx, yK = −(−1)deg(x) deg(y)Jy, xK. (1.5)

Herein, x and y are homogeneous elements of g (i.e. belonging to gα with α ∈ {0, 1}), and
deg(x) = α when x ∈ gα. Note that the bracket corresponds to a commutator or anti-
commutator, since it satisfies one of the two symmetries of (1.3). The super Jacobi identity
is given by

(−1)deg(x) deg(z)Jx, Jy, zKK + (−1)deg(y) deg(x)Jy, Jz, xKK + (−1)deg(z) deg(y)Jz, Jx, yKK = 0. (1.6)

Most commonly, Lie algebras or Lie superalgebras are constructed by starting from an
underlying associative algebra, and in that case the brackets are actually just commutators
or anti-commutators as in (1.1). When the bracket is a commutator, the Jacobi identity is
equivalent to the following trivial identity in an associative algebra:

xyz + yzx+ zxy + xzy + zyx+ yxz − xyz − yzx− zxy − xzy − zyx− yxz = 0. (1.7)

Note that (1.7) is the counterpart of (1.2) for three elements: there are six ways to write the
product of three elements x, y and z in an associative algebra, and (1.7) is the corresponding
trivial identity. In how many ways can this identity (1.7) be rewritten purely by means of
embedded commutators and anti-commutators? Up to permuting the elements, there are only
four ways to do this [2], namely

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

[x, {y, z}] + [y, {z, x}] + [z, {x, y}] = 0,

[x, {y, z}] + {y, [z, x]} − {z, [x, y]} = 0,

[x, [y, z]] + {y, {z, x}} − {z, {x, y}} = 0. (1.8)

Clearly, the first of these appears as the ordinary Jacobi identity or as the Jacobi identity for
Lie superalgebras (1.6) with all elements even (or two even and one odd element); the second
one appears as (1.6) with all elements odd; the third one appears as (1.6) with x even and y
and z odd; but the fourth one does not at all appear as one of the forms of (1.6). In fact, the
fourth relation of (1.8) appears as the Jacobi identity of a new structure, a Z2 × Z2 graded
Lie superalgebra, to be defined soon. In other words, to have a complete picture of algebras
for which the bracket is a commutator or anti-commutator, covering all cases of (1.7), one
should go beyond Lie algebras and Lie superalgebras and introduce so-called Z2×Z2 graded Lie
superalgebras.

The original definition of a Z2×Z2-graded Lie superalgebra (LSA) goes back to [3,4], in the
context of so-called color Lie superalgebras. We turn here to the definition as given by Tolstoy [5]:
as a linear space, the Z2 × Z2-graded LSA g is a direct sum of four graded components:

g =
⊕
a

ga = g(0,0) ⊕ g(0,1) ⊕ g(1,0) ⊕ g(1,1) (1.9)

where a = (a1, a2) is an element of Z2 × Z2. Homogeneous elements of ga are denoted by
xa, ya, . . ., and a is called the degree, deg xa, of xa. If g admits a bilinear operation (the
generalized Lie bracket), denoted by J·, ·K, satisfying the identities (grading, symmetry, Jacobi):

Jxa, ybK ∈ ga+b, (1.10)

Jxa, ybK = −(−1)a·bJyb, xaK, (1.11)

Jxa, Jyb, zcKK = JJxa, ybK, zcK + (−1)a·bJyb, Jxa, zcKK, (1.12)



where
a + b = (a1 + b1, a2 + b2) ∈ Z2 × Z2, a · b = a1b1 + a2b2, (1.13)

then g is called a Z2 × Z2-graded Lie superalgebra.
Note that by (1.11), the bracket for homogeneous elements is either a commutator or an anti-

commutator. Furthermore, observe that the fourth relation of (1.8) appears when x ∈ g(1,1),
y ∈ g(1,0) and z ∈ g(0,1).

2. Algebras with parabosons and parafermions
The physical significance of Z2 × Z2-graded algebras is not as strong as that of Lie algebras or
Lie superalgebras. But recently there have been more contributions in which this new algebraic
structure plays a role. In particular, a Z2×Z2-graded algebra appears naturally as a symmetry
algebra of the Lévy-Leblond equation [6], in the study of N = 2 super Schrödinger algebras [7],
or in generalizations of superconformal Galilei algebras [8].

For us, the important result is the observation that certain algebras with parabosons and
parafermions are actually Z2 × Z2-graded Lie superalgebras [2, 5, 9, 10]. We follow here the
presentation of [11] for a description of “parastatistics algebras”.

The parafermion algebra, introduced by Green [12], is generated by a system of m parafermion
creation and annihilation operators f±j (j = 1, . . . ,m) satisfying

[[f ξj , f
η
k ], f εl ] = |ε− η|δklf ξj − |ε− ξ|δjlf

η
k , (2.1)

where j, k, l ∈ {1, 2, . . . ,m} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic
expressions ε−ξ and ε−η). Similarly, the paraboson algebra is generated by a system of n pairs
of parabosons b±j satisfying

[{bξj , b
η
k}, b

ε
l ] = (ε− ξ)δjlbηk + (ε− η)δklb

ξ
j . (2.2)

It is nowadays common knowledge that the parafermionic algebra determined by (2.1) is the
orthogonal Lie algebra so(2m+1) [13,14], and that the parabosonic algebra determined by (2.2)
is the orthosymplectic Lie superalgebra osp(1|2n) [15].

Greenberg and Messiah [16] showed that there are essentially four ways to combine
parafermions and parabosons in one algebra. There are two trivial combinations, and two
non-trivial combinations where the relative commutation relations between parafermions and
parabosons are also expressed by means of triple relations. The first of these non-trivial ones
are the “relative parafermion relations”, determined by:

[[f ξj , f
η
k ], bεl ] = 0, [{bξj , b

η
k}, f

ε
l ] = 0,

[[f ξj , b
η
k], f

ε
l ] = −|ε− ξ|δjlbηk, {[f ξj , b

η
k], b

ε
l} = (ε− η)δklf

ξ
j . (2.3)

The second are the so-called “relative paraboson relations”. In order to distinguish this from the
operators satisfying (2.3), we will denote the parafermion operators by f̃±j and the paraboson

operators by b̃±j . So the operators f̃±j among themselves still satisfy the triple relations (2.1),

the operators b̃±j still satisfy (2.2), but the relative relations are now determined by:

[[f̃ ξj , f̃
η
k ], b̃εl ] = 0, [{b̃ξj , b̃

η
k}, f̃

ε
l ] = 0,

{{f̃ ξj , b̃
η
k}, f̃

ε
l } = |ε− ξ|δjlb̃ηk, [{f̃ ξj , b̃

η
k}, b̃

ε
l ] = (ε− η)δklf̃

ξ
j . (2.4)

The parastatistics algebra with relative parafermion relations, determined by (2.1), (2.2)
and (2.3), was identified by Palev [17] as the Lie superalgebra osp(2m+1|2n). The parastatistics



algebra with relative paraboson relations, determined by (2.1), (2.2) and (2.4), remained
unidentified for a long time, until it was observed to be a certain Z2 × Z2-graded Lie
superalgebra [2, 5, 9, 10].

In [11], this Z2 × Z2-graded Lie superalgebra was denoted by pso(2m + 1|2n) – because of
its resemblance with osp(2m+ 1|2n) – and Fock spaces of pso(2m+ 1|2n) were studied. In the
current paper, we shall summarize some results of [11] and discuss some further examples.

First of all, let us recall the definition of pso(2m+ 1|2n) starting from a matrix algebra [11].
It consists of all block matrices of the form

a b u x x1
c −at v y y1
−vt −ut 0 z z1
−yt1 −xt1 zt1 d e
yt xt −zt f −dt

 , (2.5)

with a an (m×m)-matrix, b and c skew symmetric (m×m)-matrices, u and v (m×1)-matrices,
x, y, x1, y1 (m × n)-matrices, z and z1 (1 × n)-matrices, d an (n × n)-matrix, and e and f
symmetric (n× n)-matrices. The Z2 × Z2 grading for these matrices is fixed by g(0,0) g(1,1) g(0,1)

g(1,1) 0 g(1,0)
g(0,1) g(1,0) g(0,0)

 . (2.6)

The relations (1.10)-(1.12) are satisfied for homogeneous elements of the form (2.5), with the
bracket given in terms of matrix multiplication:

Jxa, ybK = xa · yb − (−1)a·byb · xa. (2.7)

This matrix definition is closely related to that of osp(2m+ 1|2n) [1], but differs from it by sign
changes in the g(0,1) corner of the bottom left (and of course, also differs by the grading). In the
same fashion as for osp(2m+ 1|2n) algebra, one can introduce the following elements:

f̃+j =
√

2(ej,2m+1 − e2m+1,j+m),

f̃−j =
√

2(e2m+1,j − ej+m,2m+1); (j = 1, . . . ,m) (2.8)

b̃+k =
√

2(e2m+1,2m+1+n+k + e2m+1+k,2m+1),

b̃−k =
√

2(e2m+1,2m+1+k − e2m+1+n+k,2m+1); (k = 1, . . . , n), (2.9)

where eij is the matrix with zeros everywhere except a 1 on position (i, j). Then it is an easy
exercise to check that for these elements the triple relations (2.1), (2.2) and (2.4) are satisfied.
In the notation of Tolstoy [5] pso(2m+ 1|2n) is denoted by osp(1, 2m|2n, 0), and he showed:

Theorem 1 (Tolstoy) The Z2 × Z2-graded Lie superalgebra g defined by 2m + 2n generators
f̃±j (j = 1, . . . ,m) and b̃±k (k = 1, . . . , n), where f̃±j ∈ g(1,1) and b̃±k ∈ g(1,0), subject to the

relations (2.1), (2.2) and (2.4), is isomorphic to pso(2m+ 1|2n).

It will be useful to identify some subalgebras of g = pso(2m + 1|2n) which are themselves
ordinary Lie algebras or Lie superalgebras. First, the Z2×Z2-graded subspaces of g are spanned
by:

g(1,1) : f̃+j , f̃−j

g(1,0) : b̃+j , b̃−j

g(0,0) : [f̃ ξj , f̃
η
k ], {b̃ξj , b̃

η
k}

g(0,1) : {f̃ ξj , b̃
η
k},



where the indices run over the appropriate range. Then, with the same convention:

span([f̃ ξj , f̃
η
k ]) = so(2m)

span([f̃ ξj , f̃
η
k ], f̃±j ) = so(2m+ 1)

span({b̃ξj , b̃
η
k}) = sp(2n),

and hence

g(0,0) = so(2m)⊕ sp(2n), g(0,0) ⊕ g(1,1) = so(2m+ 1)⊕ sp(2n). (2.10)

Therefore, the “even subalgebra” of g is the same as the even subalgebra of osp(2m + 1|2n).
Thus the diagonal matrices of so(2m + 1) ⊕ sp(2n) form the Cartan subalgebra h of g.
A basis of h is given by the elements hi = eii − ei+m,i+m (i = 1, . . . ,m) and hm+j =
e2m+1+j,2m+1+j − e2m+1+n+j,2m+1+n+j (j = 1, . . . , n). As for osp(2m + 1|2n), the dual basis
for the dual space h∗ is denoted by εi (i = 1, . . . ,m), δj (j = 1, . . . , n). Then it is easy to see
that g = pso(2m+ 1|2n) has the same root space decomposition as osp(2m+ 1|2n) (but graded
with respect to Z2 × Z2 instead of Z2).

Another important subalgebra is spanned by the following elements:

Ejk =
1

2
[f̃+j , f̃

−
k ] (j, k = 1, . . . ,m), Em+j,m+k =

1

2
{b̃+j , b̃

−
k } (j, k = 1, . . . , n); (2.11)

Ej,m+k =
1

2
{f̃+j , b̃

−
k }, Em+k,j =

1

2
{b̃+k , f̃

−
j } (j = 1, . . . ,m; k = 1, . . . , n). (2.12)

Let us also fix a Z2-grading for these elements, which is 0 for the elements (2.11) and 1 for the
elements (2.12), and which is denoted by “dg” in order not to confuse it with the Z2×Z2-grading
“deg”. The following relations are satisfied:

EijEkl − (−1)dg(Eij) dg(Ekl)EklEij = δjkEil − (−1)dg(Eij) dg(Ekl)δilEkj . (2.13)

These are the defining relations for the Lie superalgebra gl(m|n). So pso(2m + 1|2n) contains
gl(m|n) as a subalgebra, and this will be important to construct its Fock representations.

3. Fock representations Ṽ (p) of pso(2m+ 1|2n)
The parastatistics Fock space of order p (p being a positive integer), for the relative paraboson
relations, is an infinite-dimensional lowest weight representation Ṽ (p) of the algebra pso(2m +
1|2n), and was constructed in [11]. Ṽ (p) is the Hilbert space with vacuum vector |0〉, defined by
means of

〈0|0〉 = 1, f̃−j |0〉 = 0, b̃−j |0〉 = 0, (f̃±j )† = f∓j , (b̃±j )† = b∓j ,

[f̃−j , f̃
+
k ]|0〉 = pδjk |0〉, {b̃−j , b̃

+
k }|0〉 = pδjk |0〉, (3.1)

and by irreducibility under the action of the algebra pso(2m + 1|2n) spanned by the elements
f̃±j , b̃±j .

It is clear that the vacuum vector |0〉 is a lowest weight vector of weight (−p
2 , . . . ,−

p
2 |
p
2 , . . . ,

p
2)

in the ε-δ-basis. So Ṽ (p) can be constructed using a Verma module, the details of which are
given in [11]. A consequence of this construction is that Ṽ (p) has the same structure as the
Fock representation V (p) of osp(2m+ 1|2n) determined in [18], and hence its basis vectors are
labelled by the same Gelfand-Zetlin (GZ) patterns. These basis vectors consist of all possible



GZ-patterns |µ) of gl(m|n) with µ1r ≤ p, where r = m + n, and the pattern is of the following
triangular form [19]:

|p;µ) ≡ |µ) ≡ |µ)r =

∣∣∣∣∣ [µ]r

|µ)r−1

)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ1r · · · µm−1,r µmr µm+1,r · · · µr−1,r µrr
µ1,r−1 · · · µm−1,r−1 µm,r−1 µm+1,r−1 · · · µr−1,r−1
...

...
...

...
... . .

.

µ1,m+1 · · · µm−1,m+1 µm,m+1 µm+1,m+1

µ1m · · · µm−1,m µmm
µ1,m−1 · · · µm−1,m−1
... . .

.

µ11


(3.2)

In order to be valid GZ-patterns, the integers µij ∈ Z+ should satisfy a number of conditions
known as betweenness conditions and θ-conditions, given explicitly by [19, eq. (3.13)]. We shall
speak of row r, row r − 1, . . ., row 1 of the pattern, going from top to bottom.

Before continuing with pso(2m + 1|2n), let us first make a detour to its LSA-counterpart
osp(2m+ 1|2n). The Fock representation V (p) of the ordinary Lie superalgebra osp(2m+ 1|2n)
has exactly the same basis vectors of GZ-patterns. In this case, the generators are the
parafermions f±j and parabosons b±k satisfying the relative parafermion relations (2.3) (apart

from the common triple relations (2.1) and (2.2)) – which is why they are denoted without the
tilde-symbol. The explicit action of the generators f±j (1 ≤ j ≤ m) and b±k (1 ≤ k ≤ n) on

the vectors |µ) of V (p) (for osp(2m+ 1|2n)) was determined in [18]. The form of these actions
is as follows (we describe here only those of the creation operators; those of the annihilation
operators is similar):

f+j |µ) =
∑
µ′

Cm+j,µ,µ′ |µ′), b+k |µ) =
∑
µ′

Ck,µ,µ′ |µ′). (3.3)

In the right hand side, all possible patterns |µ′) appear such that

• µ′ is still a valid GZ-pattern, i.e. µ′1r ≤ p, and all betweenness conditions and θ-conditions
are satisfied for the pattern |µ′);
• for the action of f+j , the pattern of |µ′) is obtained from that of |µ) by adding +1 to one

position s of row i, i.e. µ′s,i = µs,i + 1 for some s (1 ≤ s ≤ i), and this for each row
i = r, r − 1, . . . , j; all other entries of |µ) remain unchanged;

• for the action of b+k , the pattern of |µ′) is similarly obtained from that of |µ) by adding +1
to one position s of row i, i.e. µ′s,i = µs,i + 1 for some s (1 ≤ s ≤ i), and this for each row
i = r, r − 1, . . . ,m+ k; all other entries of |µ) remain unchanged.

The coefficients Cj,µ,µ′ appearing in (3.3) have been computed in [18] and are products of gl(m|n)
Clebsch-Gordan coefficients and certain reduced matrix elements; see also the appendix of [11]
for their explicit forms. So in a way the complete basis of V (p) can be built by starting from
the vacuum vector |0) (which consists of all zeros in GZ-pattern), and by repeatedly acting by
f+j and b+k in all possible ways.

The main result of [11] is that the Fock representation Ṽ (p) of the Z2 × Z2-graded Lie
superalgebra pso(2m + 1|2n), generated by the elements f̃±j and b̃±k satisfying (2.1), (2.2) and

(2.4), is related to the osp(2m+ 1|2n) representation V (p) in the following way:



Theorem 2 Let V (p) be the vector space with orthonormal basis vectors |µ) with µ1r ≤ p, and
let the action of the osp(2m+ 1|2n) generators f±j and b±k be fixed and determined [18] by (3.3).

Then V (p) is also an irreducible pso(2m + 1|2n) module, Ṽ (p) ∼= V (p), where the action of its
generators is given by:

f̃±j |µ) = ±(−1)µ1r+µ2r+···+µrrf±j |µ) (j = 1, . . . ,m);

b̃±k |µ) = b±k |µ) (k = 1, . . . , n). (3.4)

Thus the Fock representations of the Z2 × Z2-graded Lie superalgebra pso(2m + 1|2n) are
completely understood. In the last section of this paper, we shall turn to an example and explain
what happens when p = 1.

4. Examples: V (1) and Ṽ (1)
When the order of statistics p is equal to 1, the parastatistics Fock space V (1) of osp(2m+1|2n)
and Ṽ (1) of pso(2m + 1|2n) should simplify to ordinary boson-fermion Fock spaces. Although
it is a simple special case of our more general result for arbitrary p, it is still instructive to work
through this exercise and finally make the correspondence between the GZ-basis vectors of the
previous section and the more common notation for boson-fermion states.

In order to make this identification, let us write out the betweenness conditions and θ-
conditions of the GZ-patterns (3.2). For p = 1, the basis vectors of the osp(2m+ 1|2n) module
V (1) and the pso(2m+ 1|2n) module Ṽ (1) satisfy the following conditions:

1. µ1,r ∈ {0, 1}, µjr − µj+1,r ∈ Z+, 1 ≤ j ≤ m− 1,
if µmr = 0 then µir = 0, m+ 1 ≤ i ≤ r,
if µmr = 1 then µm+1,r ∈ Z+ and µir = 0, m+ 2 ≤ i ≤ r;

2. µis − µi,s−1 ≡ θi,s−1 ∈ {0, 1}, 1 ≤ i ≤ m; m+ 1 ≤ s ≤ r;
3. if µms = 0, then µis = 0, m+ 1 ≤ s ≤ r, m+ 1 ≤ i ≤ s,

if µms = 1, then µm+1,s ∈ Z+ and µis = 0, m+ 1 ≤ s ≤ r, m+ 2 ≤ i ≤ s;
4. µis − µi+1,s ∈ Z+, 1 ≤ i ≤ m− 1; m+ 1 ≤ s ≤ r − 1;
5. µi,j+1 − µij ∈ Z+ and µi,j − µi+1,j+1 ∈ Z+, 1 ≤ i ≤ j ≤ m− 1;
6. µm+1,s ≤ µm+1,s+1, m+ 1 ≤ s ≤ r − 1.

(4.1)

In particular, all entries µi,j with i ≤ m belong to {0, 1}, the entries µm+1,j belong to Z+, and
the entries µi,j with i > m+ 1 are all zero. Defining

ϕi =
i∑

j=1

µji −
i−1∑
j=1

µj,i−1 (i = 1, 2, . . . , r) (4.2)

then it follows from the above conditions that

ϕi ∈ {0, 1} for i ≤ m, ϕi ∈ Z+ for m+ 1 ≤ i ≤ r. (4.3)

Conversely, for every sequence (ϕ1, . . . , ϕr) satisfying (4.3), i.e. for every element of {0, 1}m×Zn+,
there is a unique GZ-pattern |µ) satisfying (4.1). Indeed, taking already into account that the
µi,j with i > m+ 1 are all zero, the equations (4.2) are equivalent with

µ1i + · · ·+ µii = ϕ1 + · · ·+ ϕi, (i ≤ m) (4.4)

µ1j + · · ·+ µm+1,j = ϕ1 + · · ·+ ϕj . (j > m) (4.5)

If the right hand side of (4.4) is equal to k, then k ≤ i, and the only solution for the entries
of |µ) is µ1i = · · · = µk,i = 1 and µk+1,i = · · · = µii = 0. If the right hand side of (4.5) is



equal to k, there are two cases: (1) if k ≤ m, the only solution for the entries on row j of |µ) is
µ1j = · · · = µk,j = 1 and µk+1,j = · · · = µmj = µm+1,j = 0; (2) if k > m, the only solution is
µ1j = · · · = µm,j = 1 and µm+1,j = k −m. So for p = 1 there is a one-to-one correspondence

between the vectors |µ) = |1;µ) of V (1) (or Ṽ (1)) and the sequences (ϕ1, . . . , ϕr) satisfying (4.3).
Let us therefore denote the vectors of V (1) ∼= Ṽ (1) by |ϕ1, . . . , ϕr〉. In order to have appropriate
signs for the actions, we introduce the following signs in the correspondence:

|ϕ1, . . . , ϕr〉 = (−1)k(k−1)/2|1;µ), for m even; (4.6)

|ϕ1, . . . , ϕr〉 = (−1)µm+1,r(−1)k(k−1)/2|1;µ), for m odd; (4.7)

where k =
m∑
i=1

µi,r−1. (4.8)

Let us now write down the actions (3.3) and (3.4) explicitly in this new notation for the basis.
In order to distinguish this from the general case with arbitrary p, the representatives of f±i , b±j
in V (1) are denoted by F±i , B±j , and the representatives of f̃±i , b̃±j in Ṽ (1) are denoted by F̃±i ,

B̃±j . One finds:

F+
i |ϕ1, . . . , ϕr〉 = (1− ϕi)(−1)

∑i−1
j=1 ϕj | · · · , ϕi−1, ϕi + 1, ϕi+1, · · · 〉;

F−i |ϕ1, . . . , ϕr〉 = ϕi(−1)
∑i−1

j=1 ϕj | · · · , ϕi−1, ϕi − 1, ϕi+1, · · · 〉; (4.9)

B+
i |ϕ1, . . . , ϕr〉 =

√
ϕm+i + 1(−1)

∑m
j=1 ϕj | · · · , ϕm+i−1, ϕm+i + 1, ϕm+i+1, · · · 〉;

B−i |ϕ1, . . . , ϕr〉 =
√
ϕm+i(−1)

∑m
j=1 ϕj | · · · , ϕm+i−1, ϕm+i − 1, ϕm+i+1, · · · 〉;

and

F̃+
i |ϕ1, . . . , ϕr〉 = (1− ϕi)(−1)

∑i−1
j=1 ϕj | · · · , ϕi−1, ϕi + 1, ϕi+1, · · · 〉;

F̃−i |ϕ1, . . . , ϕr〉 = ϕi(−1)
∑i−1

j=1 ϕj | · · · , ϕi−1, ϕi − 1, ϕi+1, · · · 〉; (4.10)

B̃+
i |ϕ1, . . . , ϕr〉 =

√
ϕm+i + 1| · · · , ϕm+i−1, ϕm+i + 1, ϕm+i+1, · · · 〉;

B̃−i |ϕ1, . . . , ϕr〉 =
√
ϕm+i| · · · , ϕm+i−1, ϕm+i − 1, ϕm+i+1, · · · 〉.

From these relations, it is clear that the representatives of f±i , b±j in V (1) satisfy

{F−j , F
−
k } = 0, {F+

j , F
+
k } = 0, {F−j , F

+
k } = δjk, (4.11)

[B−j , B
−
k ] = 0, [B+

j , B
+
k ] = 0, [B−j , B

+
k ] = δjk, (4.12)

{F ηj , B
ζ
k} = 0. (4.13)

They form a set of ordinary fermion and boson operators, mutually anticommuting. Similarly,
the representatives of f̃±i , b̃±j in Ṽ (1) satisfy (4.11), (4.12) and

[F̃ ηj , B̃
ζ
k] = 0. (4.14)

So now they form a set of ordinary fermion and boson operators, mutually commuting. Note
that in both cases the basis vectors of V (1), respectively Ṽ (1), could be identified as follows:

|ϕ1, . . . , ϕm+n〉 =
1√

ϕm+1! · · ·ϕr!
(F+

1 )ϕ1 · · · (F+
m)ϕm(B+

1 )ϕm+1 · · · (B+
n )ϕm+n |0〉, (4.15)

|ϕ1, . . . , ϕm+n〉 =
1√

ϕm+1! · · ·ϕr!
(F̃+

1 )ϕ1 · · · (F̃+
m)ϕm(B̃+

1 )ϕm+1 · · · (B̃+
n )ϕm+n |0〉. (4.16)

It follows that fermion operators and boson operators that mutually anti-commute provide
a particular realization of osp(2m+ 1|2n) [17], whereas fermion operators and boson operators
that mutually commute provide a particular realization of pso(2m+ 1|2n).
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