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Abstract

We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra
sh(2|2), known as the Heisenberg-Weyl superalgebra or “the algebra of supersymmetric quantum
mechanics”, and its Fock representation. The model offers some freedom in the choice of a
position and a momentum operator, leading to a free model parameter γ. Using the technique
of Jacobi matrices, we determine the spectrum of the position operator, and show that its
wavefunctions are related to Charlier polynomials Cn with parameter γ2. Some properties of
these wavefunctions are discussed, as well as some other properties of the current oscillator
model.

1 Introduction

The relation between (one-dimensional) quantum oscillator models and orthogonal polynomials
(of a single variable) is very deep. For the canonical quantum oscillator, it can be found in any
textbook that the position wavefunction is given in terms of Hermite polynomials. Among the first
alternative oscillator model is the paraboson oscillator [32, 13], where the position wavefunctions
are given in terms of Laguerre polynomials [27, 15]. Depending on the oscillator model under
consideration, the spectrum of the position operator can be continuous or discrete (with finite or
infinite support), and so the wavefunction can correspond to a continuous or discrete orthogonal
polynomial. Another example of an oscillator model with a continuous position spectrum is the
su(1, 1) oscillator studied by Klimyk [22], where the wavefunctions are given in terms of Meixner-
Pollaczek polynomials, or its deformation the su(1, 1)γ oscillator [18] with wavefunctions given in
terms of continuous dual Hahn polynomials. Note that for all of the examples mentioned there
is an algebra underlying the model, namely the Heisenberg-Weyl algebra, the paraboson algebra
osp(1|2), the Lie algebra su(1, 1) and its deformation su(1, 1)γ , respectively.

In recent years there was also more interest in so-called finite or discrete oscillator models, in-
spired by applications in quantum optics or signal analysis [4]. The seminal paper in this area is [3],
where an oscillator model based on the Lie algebra su(2) was given, with position wavefunctions
expressed in terms of symmetric Krawtchouk polynomials. This model was extended by an extra
parameter in [16, 17], with an underlying deformed su(2) algebra, and position wavefunctions given
by means of Hahn polynomials.

Lately, also Lie superalgebras came into the picture as algebras underlying oscillator models.
In [19], the Lie superalgebra sl(2|1) and its finite-dimensional representations were used to give

1Permanent address: Institute of Physics, Azerbaijan National Academy of Sciences, Javid av. 33, AZ-1143 Baku,

Azerbaijan

1



an oscillator model with general Krawtchouk polynomials as wavefunctions (so with a discrete
and finite position spectrum). Following this, infinite-dimensional discrete series representations of
sl(2|1) were constructed in [20], and this gave rise to an oscillator model with Meixner polynomials
as wavefunctions (with a discrete and infinite position spectrum). The sl(2|1) oscillator model with
discrete series representations is of particular physical relevance, since it contains – as special cases
(i.e. for special values of the parameters) – the paraboson oscillator and thus also the canonical
quantum oscillator. In this sense, this Lie superalgebraic oscillator model forms a natural extension
of the known oscillators.

After completing [20], we realized that an even simpler Lie superalgebraic oscillator model
could be proposed. This is the subject of the current paper. The algebraic context is provided
by the Heisenberg-Weyl superalgebra sh(2|2), an algebra generated by one boson and one fermion
pair. This algebra is usually cited in the framework of supersymmetric quantum mechanics. We
manage to construct a simple oscillator model based on this Lie superalgebra, for which the position
wavefunctions correspond to Charlier polynomials. Although the direct physical relevance of this
model may be less obvious than the sl(2|1) model, we believe it is worth publishing because of
its mathematical beauty and simplicity. Quantum oscillator models are the fundamental tools in
many branches of physics, so also the sl(2|1) “toy model” presented here deserves attention.

In the following section, we shall introduce the superalgebra sh(2|2), and more precisely a
subalgebra S of its universal enveloping algebra. All (anti)commutation relations of this algebra
are given, together with the action of its basis elements on the Fock space representation V of
sh(2|2). With the purpose of describing an oscillator model, we study the spectrum and the formal
eigenvectors of a general self-adjoint odd element q̂ of S in section 3. This is done in a broader
context, since there has been some interest in the general construction of so-called superalgebra
eigenstates [2]. The spectral analysis of this operator q̂ leads to a Jacobi matrix, and yields the
infinite discrete spectrum S = {. . . ,−

√
3,−

√
2,−1, 0, 1,

√
2,
√
3, . . .} for q̂, with eigenvectors given

in terms of Charlier polynomials. In section 4 we turn to the sh(2|2) oscillator model: this is an
algebraic model for which the Hamiltonian, the position and the momentum operators are elements
of sh(2|2) (or S). The position operator is just the operator q̂ studied in section 3. So we do
indeed come up with an oscillator model for which the position wavefunctions are given by Charlier
polynomials. In that section, we also present some properties of plots of these wavefunctions,
and discuss a limit relation to another oscillator model. Since the momentum eigenvectors are
also easy to give for the sh(2|2) model, it is a simple task to construct the corresponding sh(2|2)
Fourier transform kernel explicitly. The section ends with the computation of some other physical
quantities of the model, such as uncertainty relations. In the final section, we give a differential
operator realization of the superalgebra S, and end with some conclusions.

It should be noted that Charlier polynomials have been related before to the Weyl algebra (and
thus – in a certain sense – to the ordinary oscillator), e.g. in [12, 31]. In particular, they appear as
overlap coefficients between eigenvectors of a number operator and a “shifted” number operator [31].
In the current paper their appearance is very different, and they are, to our knowledge, for the first
time related to position wavefunctions of a (non-canonical) oscillator.

Finally, in this introduction we have spent some emphasis on the relation between algebraic
oscillator models and related orthogonal polynomials appearing as wavefunctions. We should of
course mention that also in the context of q-deformations of oscillator models and q-orthogonal
polynomials, a large amount of work has been performed, see [21] and references therein.
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2 The Lie superalgebra S of the supersymmetric oscillator and its

Fock representation

The supersymmetric version of the one-dimensional harmonic oscillator has been studied by many
authors, mainly in the context of supersymmetric quantum mechanics [33, 34, 10, 11, 6]. In [6, 7],
the emphasis is on determining superalgebras of symmetries and supersymmetries, and relations to
known Lie superalgebras have been studied. Let us reconsider here the case of a one-dimensional
supersymmetric oscillator, the simplest example of N = 2 supersymmetric quantum mechanics.
Such an oscillator is realized in terms of a bosonic creation and annihilation operator b± with
commutation relation

[b−, b+] = 1, (1)

and a fermionic creation and annihilation operator a± with anticommutation relations

{a−, a−} = {a+, a+} = 0, {a−, a+} = 1. (2)

Furthermore, the two sets of operators commute with each other:

[bξ, aη] = 0, ξ, η ∈ {+,−}. (3)

The Lie superalgebra generated by the even elements 1, b+, b− and the odd elements a+, a− is
known as the Heisenberg-Weyl superalgebra sh(2|2). The algebra of symmetries or the invariance
superalgebra of the supersymmetric oscillator is usually identified as a subalgebra of the enveloping
algebra U(sh(2|2)). Let us consider here the Lie superalgebra S ⊂ U(sh(2|2)) with four odd basis
elements

F+ = a+, F− = a−, Q+ = b+a−, Q− = b−a+, (4)

and even basis elements

E+ = b+, E− = b−, H = b+b− + a+a− and 1. (5)

As a supersymmetric quantum system, H is the Hamiltonian and Q± are the supercharges com-
muting with H and satisfying {Q+, Q−} = H.

It is important to note that the Lie superalgebra S closes under the Lie superalgebra bracket
(without the addition of extra quadratic operators to (4) and (5)). Indeed, the complete set of
(anti)commutation relations for the odd elements of S is given by:

{F±, F±} = {Q±, Q±} = 0, {F+, F−} = 1, {Q+, Q−} = H,

{F±, Q∓} = 0, {F+, Q+} = E+, {F−, Q−} = E−. (6)

The even-even commutation relations read

[E−, E+] = 1, [H,E±] = ±E±, (7)

where of course 1 is a central element commuting with all elements. Finally, the even-odd commu-
tation relations are

[E±, F±] = [E±, F∓] = 0, [E±, Q±] = 0, [E±, Q∓] = ∓F±,

[H,F±] = ±F±, [H,Q±] = 0. (8)

The common Fock representation V of sh(2|2), generated by a vacuum vector |0〉 and by the
relations

b−|0〉 = a−|0〉 = 0
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carries also an irreducible representation of the Lie superalgebra S. An orthonormal basis of V is
given by the vectors

(b+)m√
m!

(a+)j |0〉, m ∈ {0, 1, 2, . . .}, j ∈ {0, 1}.

It will be convenient to write these vectors as |n〉, with n = 0, 1, 2, . . ., so V can be identified with
the Hilbert space ℓ2(Z+):

|2m〉 = (b+)m√
m!

|0〉, |2m+ 1〉 = (b+)m√
m!

a+|0〉. (9)

Now it is straightforward to determine the action of the odd elements of S on this basis:

F+|n〉 = 1

2
(1 + (−1)n)|n+ 1〉, F−|n〉 = 1

2
(1− (−1)n)|n− 1〉,

Q+|n〉 = 1

2
(1− (−1)n)

√

n+ 1

2
|n+ 1〉, Q−|n〉 = 1

2
(1 + (−1)n)

√

n

2
|n− 1〉. (10)

Similarly, one finds for the action of the even elements:

E+|n〉 = 1

2

(

(1 + (−1)n)

√

n+ 2

2
+ (1− (−1)n)

√

n+ 1

2

)

|n+ 2〉,

E−|n〉 = 1

2

(

(1 + (−1)n)

√

n

2
+ (1− (−1)n)

√

n− 1

2

)

|n− 2〉,

H|n〉 =
(

n

2
+

1− (−1)n

4

)

|n〉, 1|n〉 = |n〉. (11)

This Fock representation is unitary with respect to the ⋆-structure

(F±)† = F∓, (Q±)† = Q∓, (E±)† = E∓, H† = H, (12)

which follows from the common conjugacy relations for the boson/fermion creation and annihilation
operators b± and a±.

To conclude this section, note that in the following we will not be dealing with a supersymmetric
oscillator directly, but with an algebraic oscillator model related to the Lie superalgebra S. This is
also different from the oscillator based on a deformed Heisenberg algebra [28, 29], which coincides
(from the algebraic point of view) with the paraboson oscillator described by the Lie superalgebra
osp(1|2).

3 Eigenstates of a self-adjoint odd element of S
The algebra eigenstates associated to a real Lie algebra have been introduced by Brif [9]; they can be
considered as generalizations of coherent or squeezed states. In [2], some superalgebra eigenstates
of the Heisenberg-Weyl superalgebra sh(2|2) have been computed, and properties of these states
were investigated. In the current section, we shall determine the eigenstates (and eigenvalues) of a
general self-adjoint odd element of the real Lie superalgebra S. Given the conjugations (12), the
most general self-adjoint odd element, up to an overall factor, is

q̂ = γF+ +Q+ + γF− +Q−, (13)
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where γ is some real number. In the ordered basis {|n〉, n = 0, 1, 2, . . .} of the Fock space V , the
operator q̂ is represented by an infinite symmetric tridiagonal matrix:

q̂ =





























0 γ

γ 0
√
1√

1 0 γ

γ 0
√
2√

2 0 γ

γ 0
√
3

√
3 0

. . .
. . .

. . .





























. (14)

The form of this matrix follows from the actions (10)-(11). For γ > 0, such a matrix is a Jacobi
matrix, and its spectral theory is related to orthogonal polynomials [8, 25, 24]. It will soon be
clear that only γ2 plays a role in the eigenvalues and eigenvectors of q̂, so let us assume for the
moment that γ > 0 (the case γ = 0 is trivial, since the matrix (14) decomposes into irreducible 2×2
blocks). The procedure to deal with such matrices is described in [25, §2]. One should construct
polynomials pn(x) of degree n in x, with p−1(x) = 0, p0(x) = 1, and

xp2n(x) =
√
np2n−1(x) + γp2n+1(x),

xp2n+1(x) = γp2n(x) +
√
n+ 1p2n+2(x), (n = 0, 1, 2, . . .). (15)

Such polynomials are orthogonal for some positive weight function w(x), and the spectrum of q̂ is
the support of this weight function. There is a mathematical condition related to this: the so-called
(Hamburger) moment problem for the Jacobi matrix should be determinate [8, 24]. For a general
tridiagonal Jacobi matrix, a sufficient condition [8, 24] for this is that the (infinite) sum of the
matrix elements above the diagonal should be infinite, which is clearly satisfied for (14). So the
spectrum of q̂ is just the support of the weight function w(x). Furthermore, for a real value x
belonging to this support, the corresponding formal eigenvector of q̂ is given by

v(x) =

∞
∑

n=0

pn(x) |n〉. (16)

The recurrence relations (15) lead to a solution of the polynomials pn(x) in terms of terminating
hypergeometric series; for their notation we follow that of standard books [1, 5, 30]. The polynomials
that will appear here are the Charlier polynomials Cn(x; a), defined by [23, 14, 1]:

Cn(x; a) = 2F0

(−n,−x
− ;−1

a

)

. (17)

These polynomials satisfy a discrete orthogonality relation:

∞
∑

x=0

ax

x!
Cm(x; a)Cn(x; a) = a−nean!δmn (18)

when a > 0. Using the known forward and backward shift operator relations [23]

Cn(x; a)− Cn(x− 1; a) = −n
a
Cn−1(x− 1; a),

Cn(x; a)−
x

a
Cn(x− 1, a) = Cn+1(x; a), (19)

it is easy to see that the following holds:
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Proposition 1 For γ 6= 0, the solution of the recurrence relations (15) is given by

p2n(x) =
(−γ)n√
n!

Cn(x
2; γ2),

p2n+1(x) = −(−γ)n−1

√
n!

xCn(x
2 − 1; γ2). (20)

This result shows, by the way, that the context of Charlier polynomials as overlap coefficients is
of a completely different nature than in [31] (apart from the fact that the overlaps themselves are
already different). In [31], the recurrence for the overlap coefficients coincides with the common
three term recurrence relations for the Charlier polynomials. Here, the recurrence relation splits
in “even and odd parts”, and turns out to coincide with shift operator relations (19) for Charlier
polynomials.

Using the orthogonality relation of Charlier polynomials (18), one can deduce the corresponding
orthogonality relation for the polynomials pn(x). For Charlier polynomials, the support is discrete
and running from 0 to +∞; but due to the relations (20) the support for the pn’s is from −∞ to
+∞ (also discrete).

Proposition 2 The polynomials pn(x) satisfy a discrete orthogonality relation:

∑

x∈S

w(x)pn(x)pm(x) = eγ
2

δmn, (21)

where

S = {±
√
k | k ∈ Z+} = {. . . ,−

√
3,−

√
2,−1, 0, 1,

√
2,
√
3, . . .}, (22)

and where the weight function is given by

w(x) =
1

2

γ2k

k!
for x = ±

√
k (k = 1, 2, 3, . . .) (23)

and by w(x) = 1 for x = 0.

So the spectrum of the operator q̂ is discrete and given by (22).
For further use, it will be convenient to introduce the corresponding orthonormal functions

defined by p̃n(x) = e−γ2/2
√

w(x)pn(x), i.e.

p̃2n(x) = (−1)n
√

1 + δx,0√
2

e−γ2/2 γn+x2

√

n!(x2)!
Cn(x

2; γ2)

p̃2n+1(x) =
(−1)n√

2
e−γ2/2 γ

n+x2−1

√

n!(x2)!
xCn(x

2 − 1; γ2), (24)

satisfying
∑

x∈S

p̃m(x)p̃n(x) = δmn. (25)

Following (16), the normalized eigenvectors of q̂, for an eigenvalue x ∈ S, are given by

ṽ(x) =
∞
∑

n=0

p̃n(x)|n〉. (26)
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4 A discrete oscillator model related to sh(2|2)
In recent years, there has been some interest in the development of new oscillator models, particu-
larly in the context of finite oscillators. Let us briefly repeat the general framework here. For these
models, one requires the same dynamics as for the classical or quantum oscillator, but the operators
corresponding to position, momentum and Hamiltonian can be elements of some algebra different
from the traditional Heisenberg (or oscillator) Lie algebra. In the one-dimensional case, there are
three (essentially self-adjoint) operators involved: the position operator q̂, its corresponding mo-
mentum operator p̂ and the Hamiltonian Ĥ which is the generator of time evolution. The main
requirement is that these operators should satisfy the Hamilton-Lie equations (or the compatibility
of Hamilton’s equations with the Heisenberg equations):

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, (27)

in units with mass and frequency both equal to 1, and ~ = 1. Contrary to the canonical case, the
commutator [q̂, p̂] = i is not required. Apart from (27) and the self-adjointness, it is then common
to require the following conditions [3]:

• all operators q̂, p̂, Ĥ belong to some Lie algebra or Lie superalgebra A;

• the spectrum of Ĥ in (unitary) representations of A is equidistant.

It is within this framework that the oscillator models mentioned in the Introduction fit. In the
current section, we shall examine the oscillator model related to sh(2|2) and describe some of its
properties.

4.1 The sh(2|2) oscillator model and its position and momentum wavefunctions

Clearly, it is possible to construct a new oscillator model using the superalgebra sh(2|2) (or, more
precisely, S) and its representation V . For the Hamiltonian Ĥ, one can in fact choose a diagonal
operator with the same spectrum as the canonical oscillator. For this purpose, one extends the
superalgebra sh(2|2) by a parity or reflection operator R, with action

R|n〉 = (−1)n|n〉.

Taking then as Hamiltonian

Ĥ = 2H +
1

2
R (28)

one finds indeed the spectrum

Ĥ|n〉 = (n+
1

2
)|n〉.

As in [20], the position operator q̂ is (up to an overall factor) the most general self-adjoint odd
element of S. In other words, this is the operator (13) q̂ = γF+ +Q+ + γF− +Q− investigated in
the previous section. Then the momentum operator must take the form

p̂ = iγF+ + iQ+ − iγF− − iQ−, (29)

and (27) is satisfied.
In the previous section, we have determined the spectrum S of the position operator q̂ and its

formal eigenvectors v(x) for x ∈ S. The Jacobi matrix corresponding to p̂ is very similar, and one
obtains the following result:
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Proposition 3 The spectrum of the momentum operator p̂ is also given by S. For an eigenvalue

y ∈ S, the normalized eigenvector ũ(y) is given by

ũ(y) =
∞
∑

n=0

inp̃n(y)|n〉, (30)

where the expressions p̃n are the same as before, given by (24).

We can now continue to investigate some properties of the sh(2|2) oscillator model. First of
all, the position (resp. momentum) wavefunctions of this oscillator are the overlaps between the
(normalized) q̂-eigenvectors (26) (resp. p̂-eigenvectors (30)) and the Ĥ-eigenvectors. Clearly, it is

sufficient to consider only the position wavefunctions, denoted by ϕ
(γ)
n (x) and given by

ϕ(γ)
n (x) = p̃n(x), (31)

where x belongs to S. The dependence of the wavefunctions on the model parameter γ is made
apparent in the notation. So we are dealing with a discrete position wavefunction (but with infinite
support). Wavefunctions of this type have appeared also for the (infinite discrete) sl(2|1) oscillator
model [20]. In the current case, the shape of these discrete position wavefunctions is similar. We

have plotted some examples of ϕ
(γ)
n (x) in Figure 1, for certain values of γ. Note that the shapes

look indeed like discrete versions of the common oscillator wavefunctions in terms of normalized
Hermite polynomials.

As far as the plots in Figure 1 are concerned, keep in mind that we are dealing with discrete
wavefunctions with infinite support S. So only the dots in Figure 1 are part of the wavefunctions,
not the curves connecting these dots (these curves have been drawn just to emphasize the “shape”
of the discrete wavefunctions). Note also that we have plotted only a finite part of the infinite
support (namely only the dots corresponding to the support [−

√
k,+

√
k] with k = 10).

4.2 A limit related to the position wavefunction

It is not straightforward to consider direct limits of the sh(2|2) position wavefunctions ϕ
(γ)
n (x),

e.g. when the model parameter γ varies. Instead, we need to look for another oscillator model of
which the current model itself is a limit. This is provided by the finite oscillator model related
to the Lie superalgebra sl(2|1) [19]. Recall that this sl(2|1) oscillator model has two parameters:
a representation parameter j (which is a nonnegative integer) and a model parameter p (with
0 < p < 1). The representations in [19] are finite-dimensional (with dimension 2j + 1). The
support of the sl(2|1) position wavefunctions is given by ±

√
k (where k = 0, 1, . . . , j). The actual

sl(2|1) wavefunctions are given by [19, (44)-(48)]:

φ
(p,j)
2n (x) = (−1)n

√

1 + δx,0
2

K̃n(x
2; p, j), (n = 0, 1, . . . , j),

x = ±
√
k, k = 0, 1, . . . j;

φ
(p,j)
2n+1(x) = ±(−1)n

√

1− δx,0
2

K̃n(x
2 − 1; p, j − 1), (n = 0, 1, . . . , j − 1),

x = ±
√
k, k = 0, 1, . . . j.

Herein, K̃n(x; p,N) is the normalized Krawtchouk polynomial [19, (24)], i.e. the Krawtchouk poly-
nomial Kn(x; p,N) [23, 9.11] multiplied by the square root of its weight function and the inverse
of its norm.
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In general, the representation parameter j and the parameter p are independent in the sl(2|1)
oscillator model. Let us, however, consider the following dependence:

p = γ2/j, (32)

where γ is a nonzero constant. Then the classical limit from Krawtchouk polynomials to Charlier
polynomials [23, 9.14] implies:

lim
j→∞

φ(γ
2/j,j)

n (x) = ϕ(γ)
n (x). (33)

In other words, for large values of j the position wavefunctions of the sl(2|1) finite oscillator model
tends to those of the sh(2|2) oscillator model, provided the parameter p is represented as γ2/j in
the limit.

The behaviour of these wavefunctions for large values of j is also confirmed in plots. In Figure 2,
we have plotted the ground state (n = 0) and first excited state (n = 1) of the sl(2|1) oscillator for
increasing values of j, namely j = 5, 10, 20, 30 (note that from j = 20 onwards, not the complete
finite wavefunction is plotted, since we plot the support only in the interval [−4, 4]). For these
plots, we have taken γ = 1 as an example. In the bottom line of Figure 2, we have plotted the
corresponding wavefunctions of the sh(2|2) oscillator, again for the value γ = 1 (and again in the
interval [−4, 4]). From these plots, the limit relation is clearly illustrated.

Recall from [19] that for large j-values the behaviour of the sl(2|1) wavefunctions φ
(p,j)
n (x) is

the same as the behaviour of paraboson wavefunctions Ψ
(2pα−1)
n (x) for large values of α. In the

process just described, however, p is a fixed constant. This explains why it is not possible to give a
direct limit from the sl(2|1) wavefunctions to a known family of continuous wavefunctions like the
paraboson wavefunctions or the canonical oscillator wavefunctions.

4.3 An expression of the sh(2|2) Fourier transform

In canonical quantum mechanics, the momentum wavefunction (in L2(R)) is given by the Fourier
transform of the position wavefunction (and vice versa), with kernel K(x, y):

ψ(y) =

∫

K(x, y)φ(x)dx, K(x, y) =
1√
2π

e−ixy.

This means that K(x, y) is also the overlap of the (formal) position eigenvector for the eigenvalue
x with the momentum eigenvector for the eigenvalue y. In the current case, the kernel for the
corresponding sh(2|2) Fourier transform is

K(γ)(x, y) = 〈ṽ(x), ũ(y)〉 =
∞
∑

n=0

(−i)nϕ(γ)
n (x)ϕ(γ)

n (y), (34)

where ϕ
(γ)
n (x) = p̃n(x) is given by (24).

It is easy to compute this kernel explicitly. Splitting the sum over even and odd n-values,
using (24), and using the known bilinear generating function for Charlier polynomials [26],

∞
∑

m=0

tm

m!
Cm(x; a)Cm(y; a) = et(1− t/a)x+y

2F0

(−x,−y
− ;

t

(a− t)2

)

, (35)

one finds

K(γ)(x, y) =
e−2γ2

(2γ)x
2+y2

2
√

(x2)!(y2)!

[

√

(1 + δx,0)(1 + δy,0) 2F0

(−x2,−y2
− ;− 1

4γ2

)

−i
xy

4γ2
2F0

(

1− x2, 1− y2

− ;− 1

4γ2

)]

. (36)
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Herein, x and y are elements of S, i.e. they are of the form x = ±
√
k, y = ±

√
l with k and l

nonnegative integers.

4.4 Some other physical quantities of the sh(2|2) oscillator

As we are speaking of an oscillator model, let us compute here some other quantities that play a
role in physics (all under the assumption m = ω = ~ = 1). Taking into account the expression for
the position operator q̂ (13) and the momentum operator p̂ (29), one finds

[q̂, p̂] = −2i(γ2[F+, F−] + [Q+, Q−]).

Using the actions (10) in the Fock space, this leads to (n = 0, 1, 2, . . .)

[q̂, p̂] |n〉 = 2i

[

(−1)n
(

γ2 − 1

2
n

)

+
1− (−1)n

4

]

|n〉 ,

or for even and odd states separately:

[q̂, p̂]|2k〉 = 2i(γ2 − k)|2k〉,
[q̂, p̂]|2k − 1〉 = −2i(γ2 − k)|2k − 1〉. (37)

These relations are similar to the ones for the paraboson oscillator [15, (16)], apart from the k-
dependence.

Another quantity that can easily be computed is the standard deviation for q̂ and p̂ when the
system is in the stationary state |n〉. Using

(∆q̂)n =
√

〈n|q̂2|n〉 − 〈n|q̂|n〉2

and the explicit action of q̂ = γF+ +Q+ + γF− +Q−, one finds

(∆q̂)n =

√

γ2 +
1

2
n+

1

4
(1− (−1)n).

The computation for (∆p̂)n is the same, so one finds as “uncertainty relation” quantity

(∆q̂)n(∆p̂)n = γ2 +
1

2
n+

1

4
(1− (−1)n).

Although this depends on the state number, note that its value is the same for two consecutive
states:

(∆q̂)2k−1 (∆p̂)2k−1 = (∆q̂)2k (∆p̂)2k = γ2 + k.

Also the operator p̂2

2 + q̂2

2 is worth considering. On the algebraic level, one finds

p̂2

2
+
q̂2

2
= γ2 +H,

following from the explicit expressions of p̂, q̂ and (6). For the action in the Fock space, this implies

(
p̂2

2
+
q̂2

2
)|n〉 = (γ2 +

n

2
+

1− (−1)n

4
)|n〉.

Observe that all these quantities yield minor deviations from the corresponding ones for the
canonical oscillator or for the paraboson oscillator.
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5 Some concluding remarks

Before coming to some conclusions, let us mention a differential operator realization of the operators
studied here. It is well known that the Heisenberg-Weyl superalgebra and its Fock representation
can be realized in terms of an ordinary variable z and a Grassmann variable θ (with θ2 = 0). The
Fock representation states are then given by

|2n〉 = zn√
n!
, |2n+ 1〉 = zn√

n!
θ. (38)

The Lie superalgebra basis elements take the form

F+ = θ, F− = ∂θ, Q
+ = z∂θ, Q

− = θ∂z,

E+ = z, E− = ∂z, H = z∂z + θ∂θ. (39)

In this realization, the position operator corresponds to the differential operator

q̂ = θ(γ + ∂z) + ∂θ(γ + z). (40)

It is worthwhile to give the eigenfunctions of this operator explicitly. This can be done using the
normalized eigenfunctions (26) of q̂ and by using the generating function for Charlier polynomi-
als [23]

∞
∑

n=0

Cn(x; a)
tn

n!
= et(1− t

a
)x.

One finds:

ṽ(x) =
1√
2

e−γ2/2−γz

√
k!

(γ + z)k−1(γ + z ±
√
kθ)

for x = ±
√
k, k = 1, 2, 3, . . . (41)

and ṽ(0) = e−γ2/2−γz. In this realization, it is easy to verify that q̂ṽ(x) = xṽ(x), for x ∈ S.
To summarize, we have worked out a new model for a quantum oscillator based on the Lie

superalgebra sh(2|2) and its Fock representation. This is the second algebraic oscillator model (in
the sense of the introduction of section 4) based on a Lie superalgebra (the other one being based on
sl(2|1)). The Hamiltonian Ĥ, the position q̂ and the momentum p̂ of the model are three self-adjoint
elements of the enveloping algebra of sh(2|2) satisfying the Hamilton-Lie equations (27). The model
allows a free parameter γ which appears in the expression of q̂. The spectrum of the energy operator
Ĥ coincides with that of the canonical quantum oscillator. Apart from the presentation of the new
sh(2|2) oscillator model, our main result is the determination of the spectrum of the position
operator and its wavefunctions. The spectrum of the position operator q̂ is infinite discrete and
given by S = {. . . ,−

√
3,−

√
2,−1, 0, 1,

√
2,
√
3, . . .}. The most interesting fact is that the position

wavefunctions ϕ
(γ)
n (x) correspond to “symmetrized” Charlier polynomials (i.e. even wavefunctions

are Charlier polynomials in x2, and odd wavefunctions are x times Charlier polynomials in x2).

Some plots of the position wavefunctions ϕ
(γ)
n (x) reveal interesting properties. In particular, the

wavefunctions can be seen as limits of finite discrete wavefunctions appearing in an sl(2|1) oscillator
model.

The model presented here is elegant and simple from a mathematical point of view. Its relevance
does not come directly from a problem in physics. On the other hand, harmonic oscillators are
fundamental in many branches of physics, so we believe that all oscillator models wich are minor
deviations from the canonical oscillator deserve attention. The current model is sufficiently simple,
and could perhaps be extended to more dimensions, e.g. using the supersymmetric Heisenberg-Weyl
algebra sh(2|d). Whether such an extension gives rise to interesting results related to orthogonal
polynomials, is a question that will be studied in the future.
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Figure 1: Plots of (part of) the wavefunctions ϕ
(γ)
n (x) for n = 0, 1, 2, 3 and for some values of γ,

where x ∈ S.
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Figure 2: Plots of the sl(2|1) wavefunctions φ(p,j)n (x) for n = 0, 1 with p = γ2/j and for some values

of j (with γ = 1), and their comparison with ϕ
(γ)
n (x) (bottom figure).
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