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It is known that the defining relations of the orthosymplectic Lie superalgebra

osp(1|2n) are equivalent to the defining (triple) relations of n pairs of paraboson

operators b±i . In particular, the “parabosons of order p” correspond to a unitary ir-

reducible (infinite-dimensional) lowest weight representation V (p) of osp(1|2n). Re-

cently we constructed these representations V (p) giving the explicit actions of the

osp(1|2n) generators. We apply these results for the n = 2 case in order to obtain

“coherent state” representations of the paraboson operators.
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I. INTRODUCTION

In 1953 Green [1] generalized Fermi-Dirac and Bose-Einstein statistics to parafermi and

parabose statistics. Parafermions and parabosons satisfy certain triple relations and the

generalization of usual fermion and boson Fock spaces is characterized by a parameter p,

the order of the statistics. The parafermion and paraboson Fock spaces of order p can be in

principle constructed by means of the so-called Green ansatz [1]. This approach is related

to finding a proper basis of an irreducible constituent of a p-fold tensor product [2]. The

computational difficulties however are very hard, and did not lead to an explicit solution

of the problem. In [3, 4] it was proved that the triple relations for n pairs of parafermions

give a set of defining relations for the orthogonal Lie algebra so(2n+ 1). In a similar way it

was shown [5] that the triple relations of n pairs of parabosons are defining relations of the

orthosymplectic Lie superalgebra osp(1|2n) [6]. These two important observations imply

that the parafermion Fock space of order p is a unitary irreducible representation (unir-

rep) of so(2n + 1), more precisely the finite-dimensional unirrep W (p) with lowest weight
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unirrep V (p) of osp(1|2n) with lowest weight (p
2
, p

2
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2
). The construction of these rep-

resentations, for n > 1 and arbitrary p, also turned out to be difficult and was established

only quite recently in [7] (for the paraboson Fock spaces) and in [8] (for the parafermion

Fock spaces).

In the present paper we apply the results of [7] for the n = 2 case in order to obtain

“coherent state” representations of two pairs of paraboson operators b±1 , b±2 . In section II,

we describe the paraboson Fock representations V (p) introducing an orthonormal basis and

giving the explicit action of the paraboson operators on the basis vectors following [7].

Section III is devoted to the b−1 -coherent states. Common eigenstates of b−1 and (b−2 )2 are

constructed in section IV. In section V we compute the b−2 -matrix elements thus obtaining

coherent state representations of two pairs of paraboson operators.

II. THE PARABOSON FOCK SPACE AND osp(1|2n) REPRESENTATIONS

Consider a system of n parabosons b±j (j, k, l = 1, 2, . . . , n; η, ǫ, ξ = ±) [1]:

[{bξj , bηk}, bǫl ] = (ǫ− ξ)δjlb
η
k + (ǫ− η)δklb

ξ
j . (2.1)

The paraboson Fock space V (p) is a Hilbert space with a vacuum |0〉, defined by means

of 〈0|0〉 = 1, b−j |0〉 = 0, (b±j )† = b∓j , {b−j , b+k }|0〉 = p δjk |0〉, where p is a parameter,

called the order of the statistics. V (p) was constructed using the relations between n pairs

of parabosons and the defining relations of the Lie superalgebra osp(1|2n) [6], discovered

by Ganchev and Palev [5]. As a basis in the Cartan subalgebra h of osp(1|2n) consider

hj = ejj − en+j,n+j, j = 1, . . . , n. In terms of the dual basis δj of h∗, the root vectors and

the corresponding roots of osp(1|2n) are given by:

e0,k − en+k,0 ↔ −δk, e0,n+k + ek,0 ↔ δk, k = 1, . . . , n, odd,

ej,n+k + ek,n+j ↔ δj + δk, en+j,k + en+k,j ↔ −δj − δk, j ≤ k = 1, . . . , n, even,

ej,k − en+k,n+j ↔ δj − δk, j 6= k = 1, . . . , n, even,

where eij, i, j = 0, 1, · · · , 2n is a matrix with zeros everywhere except a 1 on position (i, j).

If we introduce the following multiples of the odd root vectors b+k =
√

2(e0,n+k + ek,0), b
−
k =

√
2(e0,k − en+k,0), k = 1, . . . , n the following holds [5]
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Theorem 1 As a Lie superalgebra defined by generators and relations, osp(1|2n) is gener-

ated by 2n odd elements b±k subject to the relations (2.1).

Since {b−j , b+j } = 2hj, j = 1, . . . , n we have:

Corollary 2 The paraboson Fock space V (p) is the unitary irreducible representation of

osp(1|2n) with lowest weight (p
2
, p

2
, . . . , p

2
).

Following group theoretical techniques and in particular the chain of subalgebras

osp(1|2n) ⊃ sp(2n) ⊃ u(n) and the known u(n) Gelfand-Zetlin basis (GZ) [9]:

|m) ≡ |m)n ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1

... . . .

m11

















, (2.2)

where the top line of the pattern is any partition λ and all mij satisfy the betweenness

conditions mi,j+1 ≥ mij ≥ mi+1,j+1, 1 ≤ i ≤ j ≤ n− 1, one obtains [7]:

Theorem 3 If p > n− 1 an orthonormal basis for the paraboson Fock space V (p) is given

by all vectors |m), see (2.2); if p ∈ {1, 2, . . . , n − 1} the basis consists of all vectors |m) of

the form (2.2) with mp+1,n = mp+2,n = . . . = mnn = 0. The explicit action of the osp(1|2n)

generators in V (p) is given by

hk|m) =

(

p

2
+

k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1

)

|m); (2.3)

b+j |m) =
n
∑

in=1

n−1
∑

in−1=1

. . .

j
∑

ij=1

S(in, in−1) . . . S(ij+1, ij)

(

∏j−1

k=1
(lk,j−1 − lij ,j − 1)

∏j
k 6=ij=1

(lkj − lij ,j)

)1/2

×
n−j
∏

r=1

(
∏n−r

k 6=in−r=1
(lk,n−r − lin−r+1,n−r+1 − 1)

∏n−r+1

k 6=in−r+1=1
(lk,n−r+1 − lin−r,n−r)

∏n−r+1

k 6=in−r+1=1
(lk,n−r+1 − lin−r+1,n−r+1)

∏n−r
k 6=in−r=1

(lk,n−r − lin−r,n−r − 1)

)1/2

× Fin(m1n,m2n, . . . ,mnn) |m)+in,n;+in−1,n−1;...;+ij ,j; (2.4)
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b−j |m) =
n
∑

in=1

. . .

j
∑

ij=1

S(in, in−1)S(in−1, in−2) . . . S(ij+1, ij)

(

∏j−1

k=1
(lk,j−1 − lij ,j)

∏j
k 6=ij=1

(lkj − lij ,j + 1)

)1/2

×
n−j
∏

r=1

(
∏n−r

k 6=in−r=1
(lk,n−r − lin−r+1,n−r+1)

∏n−r+1

k 6=in−r+1=1
(lk,n−r+1 − lin−r,n−r + 1)

∏n−r+1

k 6=in−r+1=1
(lk,n−r+1 − lin−r+1,n−r+1 + 1)

∏n−r
k 6=in−r=1

(lk,n−r − lin−r,n−r)

)1/2

× Fin(m1n, . . . ,min,n − 1, . . . ,mnn) |m)−in,n;−in−1,n−1;...;−ij ,j; (2.5)

Fk(m1n,m2n, . . . ,mnn) = (−1)mk+1,n+···+mnn(mkn + n+ 1 − k + Emkn
(p− n))1/2

×
n
∏

j 6=k=1

(

mjn −mkn − j + k

mjn −mkn − j + k −Omjn−mkn

)1/2

. (2.6)

Herein lij = mij − i. An index ±ik, k attached as a subscript to |m) indicates a replacement

mik,k → mik,k ± 1. The function S(k, l) is equal to 1 for k ≤ l and −1 for k > l. Finally, E
and O are the even and odd functions defined by Ej = 1 if j is even and 0 otherwise, Oj = 1

if j is odd and 0 otherwise.

Because of the computational difficulties in the construction of the paraboson Fock spaces

the paraboson coherent states (eigenstates of paraboson operators) were constructed only

for one pair of paraboson operators [10]. In the rest of the paper we use the results of [7] for

the n = 2 case in order to obtain “coherent state” representations of two pairs of paraboson

operators b±1 , b±2 .

III. b−1 -COHERENT STATES

First we will construct coherent states of the operator b−1 as eigenstates in V (p)

b−1 ψ = αψ, (3.1)

where α is a complex eigenvalue. Let |ζ〉 ∈ V (p) be a weight vector annihilated by b−1 , i.e.

h1|ζ〉 = ζ1|ζ〉, h2|ζ〉 = ζ2|ζ〉, b−1 |ζ〉 = 0. (3.2)

Lemma 4 Let |ζ〉 ∈ V (p) be a weight vector annihilated by b−1 and let T1 = b−1 b
+
1 ∈

U(osp(1|4)). Then:

• b−1 (b+1 )n|ζ〉 = (n+ On(2ζ1 − 1))(b+1 )n−1|ζ〉 (3.3)

• T1(b
+
1 )n|ζ〉 = (n+ 1 + En(2ζ1 − 1))(b+1 )n|ζ〉 (3.4)



5

For vectors v in V (p) which are T1-eigenvectors with non-zero eigenvalue, i.e. T1v = λv, we

define T−1
1 v = λ−1v. Then:

• T−1
1 (b+1 )n|ζ〉 = (n+ 1 + En(2ζ1 − 1))−1(b+1 )n|ζ〉 (3.5)

• (b+1 T
−1
1 )n|ζ〉 =

n
∏

k=1

(k + Ok(2ζ1 − 1))−1(b+1 )n|ζ〉 (3.6)

Proof. Equation (3.3) can be proved by induction on n. Formula (3.4) follows directly

from (3.3). Because of the diagonal action of T1 on weight vectors (b+1 )n|ζ〉 of V (p) and the

fact that n + 1 + On(2ζ1 − 1) > 0 one concludes that (3.5) holds. Note that T−1
1 is not

an element of the enveloping algebra; nevertheless its action on such vectors of V (p) is well

defined. The proof of (3.6) uses (3.5) and again induction. 2

Formula (3.6) allows us to define a “vertex operator” χ(α):

χ(α) =
∞
∑

n=0

αn(b+1 T
−1
1 )n =

1

1 − αb+1 T
−1
1

(3.7)

on vectors |ζ〉 of the form (3.2). Then we have:

Lemma 5 Let |ζ〉 ∈ V (p) be a weight vector annihilated by b−1 that is normalized (i.e.

〈ζ|ζ〉 = 1), and χ(α) a vertex operator of the form (3.7). Then:

• χ(α)|ζ〉 ∈ V (p)

• The norm of χ(α)|ζ〉 is given by

〈 χ(α)|ζ〉, χ(α)|ζ〉 〉 = 0F1

(−
ζ1

;
( ᾱα

2

)2
)

+
ᾱα

2ζ1
0F1

( −
ζ1 + 1

;
( ᾱα

2

)2
)

, (3.8)

where 0F1

(

−
a
;x
)

is the classical hypergeometric series

0F1

(−
a

;x

)

=
∞
∑

k=0

xk

(a)kk!
, (a)k = a(a+ 1) · · · (a+ k − 1) (3.9)

• χ(α)|ζ〉 is an eigenvector of b−1 with eigenvalue α:

b−1 χ(α)|ζ〉 = αχ(α)|ζ〉. (3.10)

Proof. The first assertion follows from (3.8), since it is sufficient to show that the norm of

the vector is finite. Vectors of different weights are orthogonal, therefore

〈 χ(α)|ζ〉, χ(α)|ζ〉 〉 =
∞
∑

n=0

ᾱnαn〈 (b+1 T
−1
1 )n|ζ〉, (b+1 T−1

1 )n|ζ〉 〉.
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It is not difficult to see that

〈 (b+1 T
−1
1 )n+1|ζ〉, (b+1 T−1

1 )n+1|ζ〉 〉

= 〈 b+1 T−1
1 (b+1 T

−1
1 )n|ζ〉, b+1 T−1

1 (b+1 T
−1
1 )n|ζ〉 〉

= 〈 T−1
1 (b+1 T

−1
1 )n|ζ〉, b−1 b+1 T−1

1 (b+1 T
−1
1 )n|ζ〉 〉

= 〈 T−1
1 (b+1 T

−1
1 )n|ζ〉, (b+1 T−1

1 )n|ζ〉 〉

= (n+ 1 + En(2ζ1 − 1))−1〈 (b+1 T
−1
1 )n|ζ〉, (b+1 T−1

1 )n|ζ〉 〉.

Now by induction it follows that

〈 (b+1 T
−1
1 )n|ζ〉, (b+1 T−1

1 )n|ζ〉 〉 =
n
∏

k=1

(k + Ok(2ζ1 − 1))−1. (3.11)

Therefore

〈 χ(α)|ζ〉, χ(α)|ζ〉 〉 =
∞
∑

n=0

ᾱnαn

n
∏

k=1

(k + Ok(2ζ1 − 1))−1

= 1 +
( ᾱα

2
)2

(ζ1)1!
+

( ᾱα
2

)4

(ζ1)(ζ1 + 1)2!
+ · · ·

+
ᾱα

2ζ1

(

1 +
( ᾱα

2
)2

(ζ1 + 1)1!
+

( ᾱα
2

)4

(ζ1 + 1)(ζ1 + 2)2!
+ · · ·

)

= 0F1

(−
ζ1

;
( ᾱα

2

)2
)

+
ᾱα

2ζ1
0F1

( −
ζ1 + 1

;
( ᾱα

2

)2
)

.

Since the classical hypergeometric series (3.9) is convergent for any x one concludes χ(α)|ζ〉 ∈
V (p).

The last part follows from the following computation:

b−1 χ(α)|ζ〉

= b−1
(

1 + αb+1 T
−1
1 + α2(b+1 T

−1
1 )(b+1 T

−1
1 ) + · · ·

)

|ζ〉

=
(

b−1 + αT1T
−1
1 + α2(T1T

−1
1 )(b+1 T

−1
1 ) + · · ·

)

|ζ〉

= b−1 |ζ〉 + α
(

1 + α(b+1 T
−1
1 ) + α2(b+1 T

−1
1 )2 + · · ·

)

|ζ〉 = αχ(α)|ζ〉.

2

Lemma 5 shows that in order to construct b−1 -coherent states we must find a complete

basis of the subspace of weight vectors of V (p), annihilated by b−1 . The weight of the vector

|m) is given by (p
2
, p

2
) + (m11,m12 +m22 −m11) (see (2.3)). Now if we consider the weights,
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one could construct vectors

|ζjk〉 =

j
∑

i=0

ci(j, k)

∣

∣

∣

∣

∣

∣

k + i j − i

j

〉

, k = 0, 1, · · · , j = 0, 1, · · · , k, (3.12)

of weight (p
2
, p

2
) + (j, k) with b−1 |ζjk〉 = 0 and 〈ζjk|ζjk〉 = 1. This construction is given by:

Proposition 6 An orthonormal basis of the subspace of weight vectors of V (p), annihilated

by b−1 is given by (3.12), where

ci(j, k) =

√

(

k − j + i

i

) k−j
∏

r=0

√

r + 1 + Or(p− 2 + 2j)

k + 1 − r + Ok−r(p− 2)

×
i
∏

s=1

(−1)j−s

√

(j + 1 − s+ Ej−s(p− 2))(k − j + 2s+ Ok+j−1)

(k + 1 + s+ Ek+s−1(p− 2))(k − j + 2s−Ok+j−1)
. (3.13)

Proof. The action of b−1 on the GZ basis vectors gives

b−1 |ζjk〉 =

j−1
∑

i=0

(

ci+1(j, k)
√
i+ 1f1(k + i, j − i− 1) − ci(j, k)

√

k + i− j + 1

× f2(k + i, j − i− 1)
)

∣

∣

∣

∣

∣

∣

k + i j − i− 1

j − 1

〉

.

Therefore

ci+1(j, k) =

√

(k + i− j + 1)(j − i+ Ej−i−1(p− 2))(k − j + 2i+ 2 + Ok+j−1)

(i+ 1)(k + i+ 2 + Ek+i(p− 2))(k − j + 2i+ 2 −Ok+j−1)

× (−1)j−i−1ci(j, k).

Clearly, the coefficients ci(j, k) (see (3.13)) satisfy the last equation. The norm condition
∑j

i=0
ci(j, k)

2 = 1 is equivalent to the following identity:

j
∑

i=0

(

k − j + i

i

) i
∏

r=1

(j + 1 − r + Ej−r(p− 2))(k − j + 2r + Ok+j−1)

(k + 1 + r + Ek+r−1(p− 2))(k − j + 2r −Ok+j−1)

=

k−j
∏

r=0

(k + 1 − r + Ok−r(p− 2))

(r + 1 + Or(p− 2 + 2j))
, (3.14)

which can be proved using hypergeometric summations.

In order to show that vectors of the form (3.12) form a basis of the space annihilated by

b−1 , one uses a weight argument and the explicit action of b−1 , given by (2.5). Note that in
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V (p), the multiplicity of the weight (p
2
, p

2
) + (j, k) is given by min(j + 1, k + 1). For k = 0,

it follows from (2.5) that there is only one vector annihilated by b−1 . For k = 1, (2.5) and

the above multiplicity allow the construction of only two vectors annihilated by b−1 . More

generally, the multiplicity argument and (2.5) yield at most k+ 1 vectors annihilated by b−1

for a given k-value. Since all vectors (3.12) are linearly independent, the statement follows.

2

Combination of Proposition 6 and the previous lemma now yields the following result:

Proposition 7 A complete set of b−1 -coherent states b−1 ψjk(α) = αψjk(α) is defined by

ψjk(α) = χ(α)|ζjk〉, k = 0, 1, · · · ; j = 0, 1, · · · , k, (3.15)

where χ(α) and |ζjk〉 are given by (3.7) and (3.12)-(3.13) resp. and

〈 ψjk(α), ψjk(α)〉 = 0F1

( −
p
2

+ j
;
( ᾱα

2

)2
)

+
ᾱα

p+ 2j
0F1

( −
p
2

+ j + 1
;
( ᾱα

2

)2
)

(3.16)

Proof. The only part left to be proved is (3.16). It follows directly from the fact that

T1|ζjk〉 = 2h1|ζjk〉 = (p+ 2j)|ζjk〉 and (3.8). 2

IV. b−1 - AND (b−2 )2-COHERENT STATES

In the previous section we have so far constructed only the b−1 -coherent states. Since

we are dealing with two pairs of parabosons b±1 , b
±
2 , the question is if one can construct

“bicoherent states”. The problem however, is that b−1 and b−2 do not commute, so they

cannot have common eigenstates. However, b−1 and (b−2 )2 commute. In this section we

construct common eigenstates of the operators b−1 and (b−2 )2. Using the defining triple

paraboson relations (2.1) it is straightforward to see that the operator (b−2 )2 commutes with

b−1 . Hence, the action of (b−2 )2 also commutes with T1 and T−1
1 . Therefore one concludes

that (b−2 )2 commutes with χ(α):

(b−2 )2ψjk(α) = χ(α)(b−2 )2|ζjk〉. (4.1)

Note that (b−2 )2|ζjk〉 is a vector of weight (p
2
, p

2
) + (j, k − 2) and that b−1 (b−2 )2|ζjk〉 =

(b−2 )2b−1 |ζjk〉 = 0. Because of the fact that there is only one vector of weight (p
2
+ j, p

2
+k−2)

annihilated by b−1 one concludes that (b−2 )2|ζjk〉 = c|ζj,k−2〉. We could find the constant c by
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computing (b−2 )2|ζjk〉 on one of the GZ basis vectors of |ζjk〉 and compare the result with the

same GZ vector in |ζj,k−2〉. The result is as follows

(b−2 )2|ζjk〉 =
√

(k − 1 − j + Ek−j)(p+ k − 2 + j + Ok+j)|ζj,k−2〉. (4.2)

Therefore

(b−2 )2ψjk(α) =
√

(k − 1 − j + Ek−j)(p+ k − 2 + j + Ok+j)ψj,k−2(α). (4.3)

Now it is not difficult to construct common b−1 - and (b−2 )2-coherent states

b−1 Ψjl(α, β) = αΨjl(α, β), (b−2 )2Ψjl(α, β) = βΨjl(α, β), (4.4)

where

Ψjl(α, β) =
∞
∑

k=0

βk+⌊ l
2
⌋

√

(2k)!!(p+ 2l)(p+ 2l + 2) · · · (p+ 2l + 2(k − 1))
ψj,2k+l(α), (4.5)

j = 0, 1, . . . ; l = j, j + 1.

The index jl in Ψjl refers to the weight of the lowest weight vector in the expansion of Ψjl

in the GZ-basis (just as this was the case for ψjk). The states ψjk can be considered as

bicoherent states.

V. b−2 -MATRIX ELEMENTS

As we mentioned earlier, b−2 does not commute with b−1 , and so the b−1 -coherent states

ψjk(α) constructed in section III are no eigenvectors of b−2 . It turns out however, that the

matrix elements of b−2 acting on these coherent states ψjk(α) can still be computed explicitly.

This is performed in the current section. Let us consider the operator χ(α) acting on a weight

vector |ζ〉 annihilated by b−1 , and apply formula (3.6). Then one could write

χ(α)|ζ〉 =
∞
∑

n=0

αn(b+1 T
−1
1 )n|ζ〉

=
∞
∑

n=0

α2n(b+1 T
−1
1 )2n|ζ〉 +

∞
∑

n=0

α2n+1(b+1 T
−1
1 )2n+1|ζ〉

=
∞
∑

n=0

1

n!(ζ1)n

(αb+1
2

)2n|ζ〉 +
αb+1
2ζ1

∞
∑

n=0

1

n!(ζ1 + 1)n

(αb+1
2

)2n|ζ〉

= 0F1

(−
ζ1

;
(αb+1

2

)2
)

|ζ〉 +
αb+1
2ζ1

0F1

( −
ζ1 + 1

;
(αb+1

2

)2
)

|ζ〉. (5.1)
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Note that, by a weight argument, 〈ψj′,k′(α′)|b−2 |ψjk(α)〉 can be nonzero only if k′ = k − 1.

First, use (5.1) and the fact that b−2 commutes with (b+1 )2:

〈ψj′,k−1(α
′)|b−2 |ψjk(α)〉

= 〈ψj′,k−1(α
′)|b−2

(

0F1

( −
p
2

+ j
;
(αb+1

2

)2
)

+
αb+1
p+ 2j

0F1

( −
p
2

+ j + 1
;
(αb+1

2

)2
))

|ζjk〉

= 〈ψj′,k−1(α
′)| 0F1

( −
p
2

+ j
;
(αb+1

2

)2
)

b−2 |ζjk〉

+ 〈ψj′,k−1(α
′)| 0F1

( −
p
2

+ j + 1
;
(αb+1

2

)2
)

αb−2 b
+
1

p+ 2j
|ζjk〉.

Now, use the action of b+1 to the left and the action b−1 ψj,k−1(α
′) = α′ψj,k−1(α

′). This yields:

〈ψj′,k−1(α
′)|b−2 |ψjk(α)〉

= 0F1

( −
p
2

+ j
;
(αᾱ′

2

)2
)

〈ψj′,k−1(α
′)|b−2 |ζjk〉

+ 0F1

( −
p
2

+ j + 1
;
(αᾱ′

2

)2
)

α

p+ 2j
〈ψj′,k−1(α

′)|b−2 b+1 |ζjk〉.

Therefore the computation is reduced to computing the above two matrix elements. Using

the explicit form of |ζjk〉, the action of b+1 and b−2 on GZ-basis vectors, and the expansion of

ψj′,k−1(α
′) in terms of GZ-basis vectors one finds:

〈ψj′,k−1(α
′)|b−2 |ζjk〉 =



















































p− 2

p− 2 + 2j

√

k − j + Ok−j(p− 1 + 2j) if j′ = j

2(−1)j−1ᾱ′

√

j(p− 2 + j)(p+ k + j − 1 − Ek−j)

(p+ 2j − 2)3/2
if j′ = j − 1

0 otherwise

〈ψj′,k−1(α
′)|b−2 b+1 |ζjk〉 =



















































−ᾱ′ p− 2

p+ 2j

√

k − j + Ok−j(p− 1 + 2j) if j′ = j

2(−1)j

√

(j + 1)(p− 1 + j)(k − j −Ok−j)

(p+ 2j)
if j′ = j + 1

0 otherwise
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Hence 〈ψj′,k−1(α
′)|b−2 |ψjk(α)〉 is 0 for j′ 6= j − 1, j, j + 1. For the other three cases it follows

from the above formulas. For example if j′ = j − 1 it is given by:

〈ψj−1,k−1(α
′)|b−2 |ψjk(α)〉

= 0F1

( −
p
2

+ j
;
(αᾱ′

2

)2
)

2(−1)j−1ᾱ′

√

j(p− 2 + j)(p+ k + j − 1 − Ek−j)

(p+ 2j − 2)3/2
.

VI. CONCLUSION

We constructed coherent state representations of the osp(1|4) superalgebra generated by

two pairs of paraboson operators b±1 , b±2 . The interesting and important problem of the

decomposition of unity will be given in a future publication. We also hope to generalize the

present results to the n-mode paraboson superalgebra osp(1|2n).
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