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Abstract

In the beginning of the 1950’s, Wigner introduced a fundamental deformation from the
canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a
Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the so-
called Wigner distribution is considered to be the closest quantum analogue of the classical
probability distribution over the phase space. In this article, we consider which definition for
such distribution function could be used in the case of non-canonical quantum mechanics. We
then explicitly compute two different expressions for this distribution function for the case of
the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized)
Laguerre polynomials. Plots then show that the Wigner distribution function for the ground
state of the parabose oscillator is similar in behaviour to the Wigner distribution function of
the first excited state of the canonical quantum oscillator.

Keywords: Wigner distribution function, non-canonical quantum mechanics, phase space, para-
bose oscillator
Running head: Wigner d.f. for the parabose oscillator

1 Introduction

The harmonic oscillator is one of the most appealing models due to its well known solutions
in classical mechanics and in quantum mechanics, and due to a wide variety of applications in
various branches of physics [1]. In classical mechanics its solution is unique, and so it is in the
canonical non-relativistic treatment in quantum mechanics [2]. In this quantum approach, the
position and momentum operators (p̂ and q̂, respectively) satisfy the canonical commutation
relation [p̂, q̂] = −i~, and the model is described by its Hamiltonian Ĥ and the Heisenberg
equations. This algebraic description can be translated to a description by means of wave
functions. In the position representation, for example, the operator q̂ corresponds to multiplying
functions by the variable q and the Heisenberg operator equations correspond to Schrödinger’s
equation, the solutions of which are expressed through Hermite polynomials. These solutions or
wave functions lead to important position probability functions.

To study the applicability of a system modelled by a harmonic oscillator, one often turns
to expressions for the joint probability function of momentum and position, i.e. to a quantum
analogue of phase space. The Wigner distribution function (d.f.) [3] is the main theoretical
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tool here, as it is considered as the closest quantum analogue of a classical distribution function
over the phase space. The quantum harmonic oscillator is one of the first systems for which
the Wigner d.f. was computed analytically. Nowadays, there are also advanced experimental
techniques that enable one to measure phase space densities for certain quantum systems [4, 5],
and thus compare theoretical results with experimental results [6, 7, 8].

It is in this context that certain deformations or generalizations of the quantum harmonic
oscillator are of relevance. In particular, deformations that are still exactly solvable and for
which the Wigner d.f. can be computed analytically are highly interesting. One such model is
the q-deformed quantum harmonic oscillator, being exactly solvable [9, 10, 11] and having found
applications in various physical models [12]. Its Wigner d.f. has been computed in [13].

A deformation or generalization of the canonical quantum harmonic oscillator that is more
fundamental in nature was proposed by Wigner [14]. It is known as the one-dimensional Wigner
quantum oscillator or as the parabose oscillator. In Wigner’s approach, the canonical commuta-
tion relations are not assumed. Instead of that, the compatibility of Hamilton’s equations and
the Heisenberg equations is required. This approach has been the fundamental starting point
of so-called Wigner Quantum Systems [15]. In such an approach, one typically obtains several
solutions (several algebraic representations), of which only one corresponds to the canonical
solution. It is thus a natural and fundamental extension of canonical quantum mechanics. It is
also of growing importance as deviations from the canonical commutation relations (in partic-
ular of commuting position operators in the context of non-commutative quantum mechanics)
are supported by investigations from several field [16, 17, 18, 19].

The one-dimensional Wigner quantum oscillator itself was already solved by Wigner [14],
leading to an oscillator energy spectrum similar to the canonical one but with shifted ground
state energy equal to some arbitrary positive number a. In a sense, this number a can be
considered as the deformation parameter, and the solutions of the Wigner quantum oscillator
reduce to the canonical one when a = 1/2. Wigner’s formulation was also the inspiration for
the introduction of parabosons (and parafermions), as the common boson commutator relation
of the canonical case is, in Wigner’s approach, replaced by a triple relation that is also the
defining relation of a paraboson [20]. Later on, one realized that Lie superalgebras are the
natural framework for this algebraic description [21], and in particular that the representations
of the Wigner quantum oscillator are in one-to-one correspondence with the unitary irreducible
lowest weight representations of the Lie superalgebra osp(1|2).

So the Wigner quantum oscillator, being the generalization of the canonical one, could play
an important role to explain various phenomena more precisely, and its importance is undeniable.
However, so far its application has been restricted in comparison with the canonical harmonic
oscillator due to the fact that its behaviour in phase space has not been studied. In other words,
there is no expression of the joint probability distribution function (Wigner d.f.) of position
and momentum available for the Wigner quantum oscillator. The main problem is that the
treatment a Wigner d.f. usually starts from the assumption that the commutator of p̂ and q̂ is
a constant, which is no longer the case for the non-canonical Wigner quantum oscillator. It is
precisely this problem which is being tackled and solved here.

In this paper, we first recall some basic facts of the one-dimensional Wigner quantum oscil-
lator or parabose oscillator. The emphasis is on the algebraic description, in terms of the Lie
superalgebra osp(1|2) and representations characterized by a positive real number a (section 2).
In section 3 we discuss the main definition of the Wigner d.f. in the current non-canonical set-
ting. The main part of the paper is devoted to computing the Wigner d.f. Wn(p, q) analytically,
for the parabose oscillator in the nth excited pure state |n〉. For n = 0 (and n = 1), the calcu-
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lation is somewhat simpler than in the general case, and this is treated first in section 4. The
calculation involves various computational tools. In some steps, series are term wise integrated,
so one should pay attention to convergence. Here, we shall often assume that the parameter
a is of the form a = 1/2 + m, with m a nonnegative integer; in that case all series appearing
are finite and there are no convergence problems. The final expression of W0(p, q) is essen-
tially a series in terms of Laguerre polynomials, depending only upon p2 + q2, or alternatively
a confluent hypergeometric series in p2 + q2, see (33). Section 5 then deals with the general
case: the computation of Wn(p, q). Here, the analysis is quite involved, and some intermediate
calculations are performed in an Appendix. We obtain two alternative expressions for Wn(p, q),
(39) and (41), both as series of Laguerre polynomials in p2 + q2. Section 6 deals with some plots
of the newly obtained Wigner distribution functions, discusses some properties and summarizes
some conclusions.

To end the introduction, let us introduce some of the notation and classical results we are
going to use. Many of the formulas encountered in this article will involve binomial coefficients,
factorials etc. It is therefor convenient to use the notation for (generalized) hypergeometric
series [22]. Let r and s be nonnegative integers, a hypergeometric series with r numerator and
s denominator parameters is then defined as

rFs

(

a1, . . . , ar

b1, . . . , bs
; z

)

=
∑

k≥0

(a1, . . . , ar)k

(b1, . . . , bs)k

zk

k!
, (1)

where

(a1, . . . , ar)k = (a1)k(a2)k · · · (ar)k, and (a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1) (2)

is the rising factorial or Pochhammer symbol. When one of the numerator parameters aj is a
negative integer, the series is terminating and in fact a polynomial in z. Of course, if one of the
denominator parameters is also a negative integer, it has to be “more negative” such that the
numerator vanishes before the denominator does.

All classical orthogonal polynomials can be written using this hypergeometric notation. In
particular one has for the Laguerre polynomials [23]:

L(α)
n (z) =

(α+ 1)n

n!
1F1

( −n
α+ 1

; z

)

=
(α+ 1)n

n!
1F1(−n;α+ 1; z). (3)

Here, we also introduced an alternative notation for the confluent hypergeometric series 1F1. If

the parameter α is 0, we will simply write Ln(z) instead of L
(0)
n (z). Often, the Ln(z) are called

Laguerre polynomials, while the L
(α)
n are called the generalized Laguerre polynomials. For the

classical orthogonality of the Laguerre polynomials to hold α needs to be bigger than −1. In
particular, if α is a negative integer, the definition (3) is no longer valid since one has a negative
integer appearing as a denominator parameter. The Laguerre polynomials can be written in an
alternative way such that they are defined for all values of α:

L(α)
n (z) =

1

n!

n
∑

k=0

(−n)k(α+ k + 1)n−k

k!
zk. (4)

Many well known summation formulas can be very neatly expressed using the hypergeometric
notation. Most notable are the binomial summation theorem:

1F0(a; ; z) = (1 − z)−a, (5)
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with |z| < 1 if a is not a negative integer, and the Chu-Vandermonde summation theorem for a
terminating Gauss hypergeometric series:

2F1

(−n, a
c

; 1

)

=
(c− a)n

(c)n
, (6)

with n a nonnegative integer. There exists also a very extensive theory of hypergeometric
transformations, a very important transformation being Kummer’s transformation for confluent
hypergeometric series:

1F1(b; c; z) = ez 1F1(c− b; c;−z). (7)

2 The one-dimensional parabose oscillator

In this paragraph we briefly describe the treatment of a harmonic oscillator as a Wigner quantum
system. Although first introduced by Wigner almost 60 years ago, and described in some articles
and book chapters, it may still be useful to recall the main results.

Consider the Hamiltonian for a one-dimensional harmonic oscillator (in units with mass and
frequency both equal to 1):

Ĥ =
p̂2

2
+
q̂2

2
, (8)

where p̂ and q̂ denote respectively the momentum and position operator of the system. Wigner
[14] already noted that there are other solutions besides the canonical one if one only requires
the compatibility between the Hamilton and the Heisenberg equations. Thus, one drops the
canonical commutation relation [p̂, q̂] = −i (we have taken ~ = 1), and instead one imposes the
equivalence of Hamilton’s equations

˙̂p = −∂H
∂q

, ˙̂q =
∂H

∂p

and the Heisenberg equations
˙̂p = i[Ĥ, p̂], ˙̂q = i[Ĥ, q̂].

Expressing this equivalence leads to the following compatibility conditions:

[Ĥ, p̂] = iq̂, [Ĥ, q̂] = −ip̂. (9)

So, one has to find operators p̂ and q̂, acting in some Hilbert space, such that the compatibility
conditions (9) hold, with Ĥ given by (8). Also, in this Hilbert space p̂ and q̂ have to be self-
adjoint.

The solutions to (9) can be found by introducing two new (yet unknown) operators b̂+ and
b̂−:

b̂± =
1√
2
(q̂ ∓ ip̂), (10)

or equivalently

q̂ =
1√
2
(b̂+ + b̂−), p̂ =

i√
2
(b̂+ − b̂−).

It is then easily checked that

Ĥ =
1

2
{b̂−, b̂+}, (11)

4



and that the compatibility conditions (9) are equivalent with

[{b̂−, b̂+}, b̂±] = ±2b̂±. (12)

The relations (12) are in fact the defining relations of one pair of parabose operators b̂± [20].
Moreover, from the self-adjointness of the position and momentum operators it follows that

(b̂±)† = b̂∓. (13)

It is known that the Lie superalgebra generated by two odd elements b̂± subject to the restric-
tion (12) is the Lie superalgebra osp(1|2) [21]. So, the solutions to our problem are given by the
star representations of the Lie superalgebra osp(1|2). These are known, and are characterized
by a positive real number a and a vacuum vector |0〉, such that

b̂−|0〉 = 0, {b̂−, b̂+}|0〉 = 2a|0〉.

The representation space can then be shown to be the Hilbert space ℓ2(Z+) with orthonormal
basis vectors |n〉 (n ∈ Z+) and with the following actions:

b̂+|2n〉 =
√

2(n+ a) |2n+ 1〉, b̂−|2n〉 =
√

2n |2n− 1〉,
b̂+|2n+ 1〉 =

√

2(n+ 1) |2n+ 2〉, b̂−|2n+ 1〉 =
√

2(n+ a) |2n〉,
(14)

from which it immediately follows that

{b̂−, b̂+}|n〉 = 2(n+ a) |n〉. (15)

Using the actions (14), one can now compute the action of the commutator [p̂, q̂]:

[p̂, q̂]|2n〉 = −2ai|2n〉, [p̂, q̂]|2n+ 1〉 = −2(1 − a)i|2n+ 1〉. (16)

So the canonical commutation relations are only satisfied for a = 1/2 and any representation
with a 6= 1/2 thus leads to a non-canonical solution. It is also important to note that for such
non-canonical solutions, the commutator [p̂, q̂] is not constant. This last fact has a serious impact
on the computation of exponential operators involving linear combinations of p̂ and q̂ since the
Baker-Campbell-Hausdorff theorem does not give rise to a simple formula.

The energy spectrum is now very easy to determine as well using (15) and (11):

Ĥ|n〉 = (n+ a) |n〉,

so one has an equidistant energy spectrum with ground level given by a. This once again confirms
that only a = 1/2 yields the canonical solution.

Also the wave functions for the parabose oscillator in the position and momentum repre-
sentation are known. Working in the position representation, the operator q̂ is still represented
by “multiplication by q”, the operator p̂ however is no longer given by its canonical realization
−i d

dq , but instead has a different realization with an extra term (depending on a) coming in.
Using this realization the time-independent Schrödinger equation can then be solved yielding the
following expressions for the orthonormal wave functions in terms of Laguerre polynomials [24,
Chapter 23] and [25]:

Ψ
(a)
2n (q) = (−1)n

√

n!

Γ(n+ a)
|q|a−1/2 e−q2/2L(a−1)

n (q2)

Ψ
(a)
2n+1(q) = (−1)n

√

n!

Γ(n+ a+ 1)
|q|a−1/2 e−q2/2qL(a)

n (q2).

(17)
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Again, for a = 1/2, one recovers the very well known expression for the wave functions for a

harmonic oscillator in terms of Hermite polynomials, since there are formulas relating L
(∓1/2)
n (x2)

to H2n(x) and H2n+1(x) respectively.

3 Distribution function for a non-canonical quantum system

A major advantage of the phase-space formulation of quantum mechanics is the fact than one
is no longer dealing with operators, but instead with constant-number equations. More in
particular, the expectation value of an arbitrary operator Â(p̂, q̂) can be calculated using the
distribution function Φ(p, q) as follows:

Tr{ρ̂(p̂, q̂)Â(p̂, q̂)} =

∫∫

A(p, q)Φ(q, p) dq dp, (18)

with A(p, q) the scalar function obtained by replacing the operators p̂ and q̂ in the expression for
Â(p̂, q̂) by scalar variables p and q. Herein, ρ̂ is the density operator, representing the state of the
system. Also, both integrations run from −∞ to +∞; this will be the case for all integrations
in this article.

It is also known that the distribution function Φ depends on the so-called correspondence
rule used, this is, on the way one associates a function of non-commuting operators (thus an
operator) to a given function of scalar variables. A very popular association rule is the Weyl
correspondence, yielding as distribution function the so-called Wigner distribution function.
Very often, the definition for the Wigner d.f. is written as follows:

W (p, q) =
1

2π

∫

〈q +
η

2
|ρ̂|q − η

2
〉e−iηpdη. (19)

This definition, however, is completely unsuitable for the case of non-canonical quantum me-
chanics, since it relies heavily on the canonical commutation relations.

Another approach is the following: is it clear that in order to define an association rule
between functions of scalar variables f(p, q) and operators f̂(p̂, q̂) it suffices to define this corre-
spondence for the function F (λ, µ) = exp(i(λp + µq)), with λ and µ real variables. Indeed, an
arbitrary analytical function f(p, q) can be obtained from F (λ, µ) in the following way:

f(p, q) = f(
1

i

∂

∂λ
,
1

i

∂

∂µ
)F (λ, µ) |λ=µ=0 .

Note that this expression is well-defined since the partial derivate operators commute. The
operator corresponding to the function f(p, q) under the chosen association rule, i.e. for the
particular choice of F̂ , is then given by

f̂(p̂, q̂) = f(
1

i

∂

∂λ
,
1

i

∂

∂µ
)F̂ (λ, µ) |λ=µ=0 .

Once a choice for F̂ is made, the corresponding distribution function WF may be calculated
as follows:

WF (p, q) =
1

4π2

∫∫

〈ψ|F̂ (λ, µ)|ψ〉e−i(λp+µq)dλdµ, (20)

where ψ denotes the state of the system. This definition is independent of the canonical com-
mutation relations and still allows the computation of averages by use of (18).
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We now make the following choice for F̂ [26, 27]:

F̂ (λ, µ) = ei(λp̂+µq̂) = eiX̂ , (21)

where we have introduced the operator X̂:

X̂ = λp̂+ µq̂. (22)

Since this is the only correspondence rule we are using in this article, the subscript F will
be dropped from the notation. On the other hand, as we will be concentrating on calculating
explicit expressions for the distribution function W for the pure states |n〉, we will introduce the
subscript n to indicate this:

Wn(p, q) =
1

4π2

∫∫

〈n|eiX̂ |n〉e−i(λp+µq)dλdµ. (23)

Since in this article our goal will be to compute an explicit expression for (23), it is convenient
to recall the expression for the Wigner d.f. W̃n in the case of canonical commutation relations:

W̃n(p, q) =
(−1)n

π
e−p2−q2

Ln(2p2 + 2q2), (24)

where Ln are the Laguerre polynomials. So, whatever result we obtain for Wn, replacing the
parameter a by 1/2 should yield (24).

4 Wigner distribution function for the ground state and the

first excited state

In this section, we compute an explicit expression for W0(p, q). This will already show the
techniques involved in the computation of the Wigner d.f. for arbitrary states |n〉, but the
resulting calculations are not quite so lengthy. To reiterate, the goal is to compute

W0(p, q) =
1

4π2

∫∫

〈0|eiX̂ |0〉e−i(λp+µq) dλdµ. (25)

Thus, obviously, in a first step we are going to determine the matrix elements 〈0| exp(iX̂)|0〉,
and in a second step the integration will be performed.

The operator exp(iX̂) being defined as

eiX̂ =
∑

k≥0

ikX̂k

k!

we first try to find 〈0|X̂k|0〉. To this end, we write X̂ = λp̂+ µq̂ in terms of b̂±:

X̂ = α+b̂+ + α−b̂− with α± =
µ± iλ√

2
. (26)

It is then immediately clear that

〈0|X̂2k+1|0〉 = 0 (27)
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since an odd number of applications of b̂+ and b̂− on |0〉 does not yield a term corresponding
to |0〉 in the resulting expansion, as can be seen from (14). On the other hand, using (14), one
finds easily that

〈0|X̂0|0〉 = 1,

〈0|X̂2|0〉 = 2α+α−a,

〈0|X̂4|0〉 = (2α+α−)2a(a+ 1),

〈0|X̂6|0〉 = (2α+α−)3a(a+ 1)(a+ 2).

This suggests, as will be proved later, that one has

〈0|X̂2k|0〉 = (2α+α−)k (a)k = (λ2 + µ2)k (a)k. (28)

Using (27) and (28), one thus finds that

〈0|eiX̂ |0〉 = 〈0|
∑

k≥0

ikX̂k

k!
|0〉 =

∑

k≥0

(−1)k

(2k)!
〈0|X̂2k|0〉 =

∑

k≥0

(−1)k(λ2 + µ2)k (a)k

(2k)!

=
∑

k≥0

(a)k

k!(1/2)k
(−λ

2 + µ2

4
)k = 1F1

(

a

1/2
;−λ

2 + µ2

4

)

.

(29)

where we have used the fact that (2k)! = (1/2)k k! 4
k. This means that we now have:

W0(p, q) =
1

4π2

∫∫

1F1

(

a

1/2
;−λ

2 + µ2

4

)

e−i(λp+µq) dλdµ.

In order to compute this integral, it is useful to introduce a quadratic decaying exponential
into the integrand by applying Kummer’s transformation (7) on the confluent hypergeometric
series. One then has:

W0(p, q) =
1

4π2

∫∫

1F1

(

1/2 − a

1/2
;
λ2 + µ2

4

)

e−(λ2+µ2)/4e−i(λp+µq) dλdµ

=
1

4π2

∑

k≥0

(1/2 − a)k

k!(1/2)k4k

∫∫

e−(λ2+µ2)/4e−i(λp+µq)(λ2 + µ2)k dλdµ,

where we have swapped summation and integration. We assume that the parameter a is such
that this is possible. In any case, when the parameter a is of the form

a = 1/2 +m with m ∈ Z+, (30)

this can certainly be done since one is then only dealing with finite summations. In the Appendix,
it is shown that

1

4π2

∫∫

e−(λ2+µ2)/4e−i(λp+µq)(λ2 + µ2)k dλdµ =
1

π
e−p2−q2

k! 4k Lk(p
2 + q2), (31)

such that

W0(p, q) =
1

π
e−p2−q2

∑

k≥0

(1/2 − a)k

(1/2)k
Lk(p

2 + q2). (32)
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It is important to remark that, apart from the exponential factor, the expression (32) is a
polynomial in p2 + q2 whenever the parameter a is of the form (30). In this case, it is possible
to simplify the expression (32) even further. Expand the Laguerre polynomials as single sums
and switch the two (finite) summations. On the resulting inner sum Vandermonde’s summation
theorem (6) can be applied. After some further easy manipulations one then finds:

W0(p, q) =
1

π
e−p2−q2 1

1 − 2m
1F1(

−m
3/2 −m

; p2 + q2), with a = 1/2 +m. (33)

Clearly, in the canonical case (i.e. m = 0) the resulting expression reduces correctly to W̃0(p, q).
To compute W1(p, q), we first have to find an expression for the matrix elements 〈1|X̂k|1〉.

Again, one finds the matrix elements with odd powers of X̂ to be zero. For the even powers,
one finds using (14) and (26):

〈1|X̂0|1〉 = 1,

〈1|X̂2|1〉 = 2α+α−(a+ 1),

〈1|X̂4|1〉 = (2α+α−)2(a+ 1)(a+ 2),

〈1|X̂6|1〉 = (2α+α−)3(a+ 1)(a+ 2)(a+ 3),

indicating that
〈1|X̂k|1〉 = 〈0|X̂k|0〉|a→a+1.

Since these matrix elements are the only place where the parameter a appears, the expression
for W1(p, q) is also found by replacing a with a+ 1 in the expression for W0(p, q):

W1(p, q) = W0(p, q)|a→a+1. (34)

5 Wigner distribution function for arbitrary states |n〉
We now would like to find an explicit expression for the following integral:

Wn(p, q) =
1

4π2

∫∫

〈n|eiX̂ |n〉e−i(λp+µq)dλdµ.

As is clear from the previous section, the key in calculating this integral is finding an expression
for the matrix elements 〈n|X̂k|n〉. As before, matrix elements with odd powers of X̂ are easily
seen to be zero. It will also be the case that matrix elements for a state |2n+1〉 will be determined
from those with state |2n〉 simply by replacing a with a + 1. We will now give two different
expressions for the matrix elements 〈2n|X̂2k|2n〉. We will show that they are equivalent and will
compute the Wigner d.f. using each of them.

The proof that the proposed expressions are in fact the correct matrix elements is relegated
to an appendix, despite the importance of the result to the calculations. The proof, although in
itself not difficult, requires rather lengthy calculations as one also needs the off-diagonal matrix
elements. Basically, it involves checking that a certain expression satisfies the recurrence relation
for the matrix elements (as well as the correct boundary conditions).

We have the following expressions for the matrix elements 〈2n|X̂2k|2n〉:

〈2n|X̂2k|2n〉 = (λ2 + µ2)k
n

∑

j=0

2j≤k

(2j)!

j!

(

n

j

)(

k

2j

)

(a+ n− j)j(a+ 2n)k−2j , (35)
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or alternatively

〈2n|X̂2k|2n〉 = (λ2 + µ2)k

min(n,k)
∑

j=0

1

j!

(

n

j

)

(a+ j)k−j(k + 1 − j)2j . (36)

Note that both expressions reduce to (28) for n = 0. To see that both expressions are indeed
equivalent, it is easiest to write them in hypergeometric notation. For formula (36) we have

〈2n|X̂2k|2n〉 = (λ2 + µ2)k (a)k 3F2

(−k, k + 1,−n
1, a

; 1

)

,

whilst formula (35) is

〈2n|X̂2k|2n〉 = (λ2 + µ2)k (a+ 2n)k 4F3

( −n,−k/2, 1/2 − k/2, 1 − n− a

1, 1/2 − n− a/2 − k/2, 1 − n− a/2 − k/2
; 1

)

.

So, we would like a transformation for hypergeometric series that relates a series of type 3F2

with one of type 4F3. In Krattenthaler’s list [28], transformation T3231 does just that and is
indeed applicable to the 3F2-series at hand. It will turn out that we will need to apply yet
another transformation, namely T4301 from the list, to the resulting series. Finally, a doubling
formula for rising factorials, see e.g. [22, I.25], has to be applied. We thus have:

3F2

(−k, k + 1,−n
1, a

; 1

)

= 4F3

(−n,−k/2, k/2 + 1/2, a+ n

1, a/2, a/2 + 1/2
; 1

)

=
(a/2 + k/2, a/2 + k/2 + 1/2)n

(a/2, a/2 + 1/2)n
4F3

( −n,−k/2, 1/2 − k/2, 1 − n− a

1, 1/2 − n− a/2 − k/2, 1 − n− a/2 − k/2
; 1

)

=
(a+ k)2n

(a)2n
4F3

( −n,−k/2, 1/2 − k/2, 1 − n− a

1, 1/2 − n− a/2 − k/2, 1 − n− a/2 − k/2
; 1

)

.

This shows that formulas (35) and (36) are indeed equivalent.
The next step is to compute expressions for 〈2n| exp(iX̂)|2n〉, by using the series expansion

for the operator exp(iX̂). We first use (35):

〈2n|eiX̂ |2n〉 =
∑

k≥0

(−1)k

(2k)!
〈2n|X̂2k|2n〉

=
n

∑

j=0

(

n

j

)

(2j)!(a+ n− j)j

(4j)!j!
(λ2 + µ2)2j

1F1

(

a+ 2n

2j + 1/2
;−λ

2 + µ2

4

)

.

(37)

This simply follows from swapping the summation order and writing the inner sum again as a
hypergeometric series. The same procedure is applicable to formula (36), but here one gets:

〈2n|eiX̂ |2n〉 =
n

∑

j=0

(

n

j

)

(−1)j

j!
(λ2 + µ2)j

2F2

(

a+ j, 1 + 2j

j + 1/2, 1 + j
;−λ

2 + µ2

4

)

. (38)

Basically, all that is left to do is to integrate these expressions against the complex exponen-
tial exp(−i(λp + µq)). For the expression (37), we proceed as in the case of the ground state.
We apply Kummer’s transformation (7) to each of the confluent hypergeometric series. One
will then get a double summation over integrals of the type (31). (Here, we thus again assume
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that the order of summation and integration may be switched, which is certainly the case when
the parameter a is of the form (30).) Application of (31) for each of the integrals in the series,
will yield a triple sum expression for W2n(p, q), with one summation “hidden” in the Laguerre
polynomial. Explicitly, we have the following result:

W2n(p, q) =
1

π
e−p2−q2

n
∑

j=0

(

n

j

)

(a+ n− j)j

j!(1/2 − a− 2n)2j

∑

k≥2j

k! (1/2 − a− 2n)k

(1/2)k(k − 2j)!
Lk(p

2 + q2). (39)

As a sanity check, we would like to see that for a = 1/2 formula (39) reduces to W̃2n(p, q).
This means that the summation part of (39) should equal L2n(2p2+2q2). This is not immediately
clear, so we substitute a = 1/2 and write the Laguerre polynomial as an explicit summation and
the triple sum then becomes:

∑

k,l

(−2n)k(−k)l(p
2 + q2)l

(1/2)kl!2
2F1

(−k/2,−k/2 + 1/2

1
; 1

)

,

where the summation over j is now performed first. The Gauss hypergeometric series, which
terminates because either −k/2 or −k/2 + 1/2 is a non positive integer, can be summed in a
unified way by applying transformation [28, T2140] first:

2F1

(−k/2,−k/2 + 1/2

1
; 1

)

= 2−k
2F1

(−k,−k
1

; 1

)

= 2−k (1 + k)k

k!
.

Apply this summation, and one gets a double summation. The summation over the index k can
then be summed using the binomial theorem, and the result follows, showing that for a = 1/2
expression (39) reduces correctly to the known expression (24).

Can we also do the integration starting from (38)? Clearly, we need a Kummer-like trans-
formation for 2F2-series that introduces a quadratic decaying exponential. Fortunately, such a
transformation was published quite recently by Paris [29]. His main transformation expresses
one 2F2-series as an exponential function multiplied by an infinite series containing 2F2-series.
We, however, only need a simpler version where a finite sum of 2F2-series is involved:

2F2

(

a, c+ j

b, c
; z

)

= ez
j

∑

k=0

(

j

k

)

zk

(c)k
2F2

(

b− a, c+ j

b, c+ k
;−z

)

, with j ∈ Z+. (40)

As is stands, expression (38) is a double sum. After applying (40), it will be a triple sum,
and since integrating using (31) introduces an extra summation, the resulting expression will
be a four-fold summation. Since this computation is quite similar to the ones we have already
done, we just state the result:

W2n(p, q) =
1

π
e−p2−q2

∑

j,l

(−n)j(1/2 − a)l(j + 1)j+l

j!l!(1/2)j+l

j
∑

k=0

(−1)k

(

j

k

)

Lj+l+k(p
2 + q2).

There now exist quite a number of formulas relating sums of Laguerre polynomials to another
Laguerre polynomial, one of them being the following [30, 4.4.1.5]:

n
∑

k=0

(−1)k

(

n

k

)

L
(α)
r+k(z) = (−1)nL

(α−n)
r+n (z).

11



This identity is also valid for α = 0, provided one defines the Laguerre polynomials as in (4).
Application of this identity then leads immediately to:

W2n(p, q) =
1

π
e−p2−q2

n
∑

j=0

(

n

j

)

(j + 1)j

(1/2)j

∑

k≥0

(1/2 − a)k(2j + 1)k

k! (1/2 + j)k
L

(−j)
k+2j(p

2 + q2). (41)

Also in this case, reduction to the known result for a = 1/2 can be verified, and is easier than
in the previous case, since the identity needed is recorded as [30, 4.4.1.16].

We thus have found closed expressions for W2n(p, q) namely (39) and (41). From this we
now immediately find the corresponding expressions W2n+1(p, q). We state the following:

W2n+1(p, q) = W2n(p, q)|a→a+1. (42)

This follows immediately from the fact, shown in the Appendix, that

〈2n+ 1|X̂k|2n+ 1〉 = 〈2n|X̂k|2n〉|a→a+1, (43)

together with the observation that this is the only place in which the parameter a plays a role
in the computation of the Wigner distribution function.

6 Discussion and conclusions

Parastatistics is one of the alternative approaches in particle statistics proposing that there
are particles obeying statistics different from Bose-Einstein or Fermi-Dirac [24]. It involves an
additional parameter (often referred to as the order of statistics), and for one particular value of
this parameter one recovers the common Bose-Einstein or Fermi-Dirac statistics. In the current
case, where we just considered one parabose oscillator, this parameter is a, and for a = 1/2 one
is reduced to the canonical quantum oscillator.

The simple case treated here can also be viewed as a deviation from canonical quantum
mechanics. The one-dimensional quantum oscillator is treated as a Wigner Quantum System,
and allows several representations of osp(1|2) labelled by a positive number a. In some sense,
a (or a − 1/2) can be viewed as a quantity measuring the deviation from canonical quantum
mechanics, see (16).

We have now obtained, for the first time, explicit expressions of the Wigner d.f. for the
parabose oscillator stationary states. This allows one to consider “phase space densities” for a
“parastatistics quantum system” or for a “non-canonical quantum system”.

Let us now examine some plots of the Wigner distribution functions. First of all, note that
the Wigner d.f. Wn(p, q) is, just as in the canonical case, a function of p2 + q2 only. So the
3D-plots of Wn(p, q) in (p, q)-space are rotational invariant. This is why it is more convenient
to give only two-dimensional plots of Wn(p, q) as a function of r, where

r =
√

p2 + q2.

In Figure 1 we have plotted the ground state Wigner d.f. W0(p, q) of the one-dimensional
parabose oscillator for values of the parameter a equal to 1/2, 3/2, 5/2 and 7/2 (or m =
0, 1, 2, 3). One can see that for a = 1/2 (m = 0, the well-known canonical case) one finds the
usual Gaussian behaviour of the distribution function. As a (or m) increases, the shape changes
quite significantly. In fact, for values of a larger than 1/2, the shape of W0(p, q) is rather similar

12



to the shape of the Wigner d.f. for the first excited state of the canonical harmonic oscillator.
As a increases, the maximum value of W0(p, q) moves further away from the origin. The ground
state of the parabose oscillator behaves as the first excited state of a canonical quantum oscillator
but with increasing energy as a increases.

In Figure 2 we plot the distribution functions Wn(p, q) for a fixed a-value (namely a = 3/2),
and for a number of stationary states (n = 0, 1, 2, 3). Note the separation of even and odd states
near the origin.

The properties of the Wigner distribution functions are in agreement with the “wave-
mechanical representation” for the parabose oscillator, as discussed in [24, Chapter 23]. The
wave functions in the position representations have also been given here in (17). Note that these
wave functions are also the solutions of a wave equation of the form

(

−1

2

d2

dq2
+

1

2
q2 +

1

2

g(g − 1)

q2

)

Ψ(q) = EΨ(q). (44)

The even solutions are the functions Ψ
(a)
2n (q) with a = g+1/2 and E = g+1/2+2n, and the odd

solutions are the functions Ψ
(a)
2n+1(q) with a = g − 1/2 and E = g + 1/2 + 2n. Equation (44) is

often referred to as that of the non-relativistic singular harmonic oscillator, or of the Calogero-
Sutherland model [31, 32, 33]. The singular behaviour of the last term of the Hamiltonian in (44)
is once more in agreement with the negative values of the Wigner distribution function near the
origin.

To summarize, we have in this paper constructed the Wigner distribution function for the
one-dimensional parabose oscillator. This is a quantum system for which the Hamiltonian is
given by the standard expression (8), and for which the position and momentum operators p̂ and
q̂ do not satisfy the canonical commutation relations, but instead the more general compatibility
conditions (9). This non-canonical situation makes the definition (and computation) of the
Wigner function more difficult. The approach of Section 3 allowed us to define the right Wigner
function, satisfying all necessary properties. The computation of the Wigner function Wn(p, q)
for stationary states is still quite involved, and uses some techniques from hypergeometric series.
The main results of the computation are given in (39), (41) and (42). On the basis of some
plots, the behaviour of the Wigner distribution function is further discussed in the context of
parastatistics or in the context of the wave-mechanical representation of the parabose oscillator.
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Appendix A

We have to show that

1

4π2

∫∫

e−(λ2+µ2)/4e−i(λp+µq)(λ2 + µ2)k dλdµ =
1

π
e−p2−q2

k! 4k Lk(p
2 + q2), (45)
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Figure 1: The ground state Wigner function of the one-dimensional parabose oscillator, for
values of a = 1/2, 3/2, 5/2, 7/2 (m = 0, 1, 2, 3).
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Figure 2: The Wigner function of the stationary states of the one-dimensional parabose oscillator
Wn(p, q), for fixed value of a = 3/2 (m = 1) and n = 0, 1, 2, 3.
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for k ∈ Z+ and p and q real. Let us call the left hand side of the expression (45) I, and apply
the binomial theorem to the factor (λ2 + µ2)k:

I =
k

∑

j=0

(

k

j

)(

1

2π

∫

e−λ2/4−ipλλ2j dλ

)(

1

2π

∫

e−µ2/4−iqµµ2k−2j dµ

)

.

Each of the two simple integrals above has a known expression in terms of Hermite polynomi-
als [34, 2.3.15.10]:

1

2π

∫

e−ax2−ibxx2n dx =
(−1)ne−b2/4a

√
π22n+1an

√
a
H2n(− b

2
√
a
), a > 0, b ∈ R

yielding

I =
(−1)k

π
e−p2−q2

k
∑

j=0

(

k

j

)

H2j(−p)H2k−2j(−q).

Finally, there is a known summation formula for Hermite polynomials [34, 4.5.2.4]:

k
∑

j=0

(

k

j

)

H2j(x)H2k−2j(y) = (−1)kk!4kLk(x
2 + y2).

Application of this summation formula immediately yields the desired result (45).

Appendix B

In this Appendix, it is our aim to prove formula (36). We will do so by given formulas for the
matrix elements 〈2n+2l|X̂2k|2n〉, with l ∈ Z, which will be seen to reduce to formula (36) when
l = 0. The proof relies on the fact that the formulas given below satisfy the same recurrence
and the same boundary conditions as the matrix elements themselves.

With X̂ as before, one sees that

X̂2 = (α+)2(b̂+)2 + α+α−{b̂+, b̂−} + (α−)2(b̂−)2,

and hence one gets, using (14) and (15):

〈2n+ 2l|X̂2k|2n〉 = 〈2n+ 2l|X̂2k−2X̂2|2n〉
= (α+)2〈2n+ 2l|X̂2k−2(b̂+)2|2n〉 + α+α−〈2n+ 2l|X̂2k−2{b̂+, b̂−}|2n〉

+ (α−)2〈2n+ 2l|X̂2k−2(b̂−)2|2n〉
= 2(α+)2

√

(n+ a)(n+ 1) 〈2n+ 2l|X̂2k−2|2n+ 2〉
+ 2α+α−(2n+ a) 〈2n+ 2l|X̂2k−2|2n〉

+ 2(α−)2
√

n(n+ a− 1) 〈2n+ 2l|X̂2k−2|2n− 2〉.

So, if we now denote 〈2n+ 2l|X̂2k|2n〉 as Fk,l(n), the recurrence that Fk,l(n) satisfies is:

Fk,l(n) = 2(α+)2
√

(n+ a)(n+ 1)Fk−1,l−1(n+ 1) + 2α+α−(2n+ a)Fk−1,l(n)

+ 2(α−)2
√

n(n+ a− 1)Fk−1,l+1(n− 1).
(46)
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From the fact that we are dealing with orthonormal states |n〉, it follows immediately that

F0,0(n) = 1, (47)

and also from the actions (14) and (15) it is clear that

Fk,l(n) = 0, if |l| > k. (48)

These two boundary conditions determine the unique solution of the recurrence (46). We will
now give explicit formulas that satisfy the boundary conditions (47) and (48), and we will verify
that these formulas also satisfy (46). The verification of that last fact will boil down to checking
that two polynomials are equal. As a polynomial basis, we will however not choose the classical
basis xk, but rather we will work with the polynomials (x)k.

We now state the formulas,

〈2n+ 2l|X̂2k|2n〉 = (−1)l2k(α+)k+l(α−)k−l
√

(n+ 1)l(n+ a)l

×
min(n,k−l)

∑

j=0

(a+ l + j)k−l−j(−n)j(−k)l+j(k + l + 1)j

(l + j)!j!

(49)

and

〈2n− 2l|X̂2k|2n〉 = (−1)l2k(α+)k−l(α−)k+l
√

(n− l + 1)l(n− l + a)l

×
min(n−l,k−l)

∑

j=0

(a+ l + j)k−l−j(−n+ l)j(−k)l+j(k + l + 1)j

(l + j)!j!
,

(50)

where, in both cases, l ≥ 0. It is immediately clear that formulas (49) and (50) satisfy the
boundary conditions (47) and (48). Also, the reduction to (36) for l = 0 is readily seen.

Since the explicit formulas for the matrix elements are different depending on l being positive
or not, checking that (49) and (50) indeed satisfy (46) will involve three cases: l > 0, l = 0
and l < 0. Since all three are very similar, we will only deal with the case l > 0 here. We will
abbreviate the summation in (49) as Sk,l(n), then substituting the expression (49) in (46) allows
simplification of the powers of 2 and α± as well as the square roots, and leads to the following
that needs to be checked:

Sk,l(n) = −Sk−1,l−1(n+ 1) + (2n+ a)Sk−1,l(n) − n(n+ a− 1)Sk−1,l+1(n− 1).

This is a polynomial identity in the variable −n. Let us denote −n as x. The coefficients of
the polynomials (x)j are immediately clear for the lhs. For the right hand side, one can use the
following easy identities:

(x− 1)j = (x)j − j(x)j−1, and x(x)j = (x)j+1 − j(x)j .

This allows to extract to coefficient of (x)j in the right hand side. This coefficient is a rational
function in the variables a, k, j and l. After clearing the denominator and simplifying the
remaining rising factorials, one ends up with a polynomial of a low degree that needs to be
identically zero, and that is indeed the case.

So, although the checking is rather tedious, it is at the same time also simple and indeed
shows that our formulas for the matrix elements are correct.
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We end this appendix by noting that one indeed has:

〈2n+ 1 + 2l|X̂k|2n+ 1〉 = 〈2n+ 2l|X̂k|2n〉|a→a+1.

Indeed, it is easily checked that the recurrence satisfied by Gk,l(n) = 〈2n+ 1 + 2l|X̂k|2n+ 1〉 is
identical to (46) but with a replaced by a+1. Also, the boundary conditions for G are identical
to (47) and (48) and as these do not involve a the statement is now proved.

Appendix C

In this Appendix, we are briefly going to discuss some aspects of the convergence of the main
expressions (32) and (39). The main result is that expressions (32) and (39) converge absolutely
when a > 1 for all p and q. In the origin, i.e. (p, q) = (0, 0), the condition a > 1 is also necessary
for convergence. For the odd states, we thus have absolute convergence for the expressions
derived from (32) and (39) everywhere for a > 0. The only remaining question is thus what
happens for the even states when (p, q) 6= (0, 0) in the case 0 < a < 1 (and a 6= 1/2).

First, let us recall the well known fact that if one has two series of positive terms
∑

k bk and
∑

k ck such that bk ≤ ck, then convergence of
∑

k ck implies that of
∑

k bk. Secondly, there are
some well known tests for convergence of positive series, one of them is Raabe’s test which can
be used if the ratio test fails: let

∑

k bk be a series of positive terms and let:

lim
k→∞

k(
bk
bk+1

− 1) = L,

one then has that
∑

k bk converges if L > 1 and diverges whenever L < 1. When L = 1, the test
is inconclusive.

Let us abbreviate p2 + q2 as t. The convergence of (32) then reduces to the convergence of

∑

k≥0

(1/2 − a)k

(1/2)k
Lk(t) =

∑

k≥0

bk. (51)

Next, we are going to use an inequality for the Laguerre polynomials Lk(t) which gives an upper
bound for |Lk(t)| not depending on k [35, 10.18(3)]:

|Lk(t)| ≤ et/2, for t ≥ 0. (52)

This gives us:

|bk| =

∣

∣

∣

∣

(1/2 − a)k

(1/2)k
Lk(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

(1/2 − a)k

(1/2)k

∣

∣

∣

∣

et/2 = ck.

The ratio test fails on the series
∑

k ck, but Raabe’s test gives:

lim
k→∞

k(
ck
ck+1

− 1) = lim
k→∞

k

( |1 + 2k|
|1 − 2a+ 2k| − 1

)

= lim
k→∞

k

(

1 + 2k

1 − 2a+ 2k
− 1

)

= a.

So clearly, the series
∑

k ck converges if a > 1, and hence the series (51) is absolutely convergent
in that case. Note that the fact that

∑

k ck diverges for a < 1 does not imply anything about the
convergence of (32). The issue about the convergence of (32) thus remains open for 0 < a ≤ 1.
When t = 0, however, something more can be said:

W0(0, 0) =
1

π

∑

k≥0

(1/2 − a)k

(1/2)k
= 2F1

(

1/2 − a, 1

1/2
; 1

)

.
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A Gauss hypergeometric series

2F1

(

a, b

c
; 1

)

converges if and only if Re(c− a− b) > 0 [22], which in this case amounts to a > 1.
The convergence behaviour of W1(p, q) is now easy to determine from (34). It is immediately

clear that W1(p, q) is absolutely convergent for a > 0.
For the convergence of (39) we follow the same strategy. First, it is clear that the convergence

of
∑

k

bk =
∑

k≥2j

k! (1/2 − a− 2n)k

(1/2)k(k − 2j)!
Lk(p

2 + q2) (53)

is a sufficient condition for the convergence of (39) since the summation over j is finite. Then,
we again use (52), and in this case we get

|bk| ≤
∣

∣

∣

∣

k! (1/2 − a− 2n)k

(1/2)k(k − 2j)!

∣

∣

∣

∣

et/2 = ck.

Raabe’s test yields in this case that the series
∑

k ck is convergent if a > 1 + 2j − 2n. Since
j ≤ n (see the summation bounds in (39)), a sufficient (and necessary) condition for this to be
true is a > 1. For t = 0, use of the convergence of the Gauss hypergeometric series for z = 1
again yields convergence if and only if a > 1. Finally, for the functions W2n+1(p, q), we will thus
have (absolute) convergence everywhere for a > 0.
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