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Abstract

It is shown how to associate to a highest weightΛ of the Lie superalge-
bra gl(m|n) a composite partitionν; µ with composite Young diagram
F (ν; µ). The corresponding supersymmetric Schur functionsν;µ(x/y) is
defined. However, it is known that this S-function does not always coin-
cide with the character of the irreducible representationVΛ with highest
weightΛ. Only for covariant, contravariant and typical representations the
character and the S-function are known to coincide.

Here, the notions of critical composite partitions and critical highest
weights are considered. It is shown that for critical composite partitions
(subject to a technical restriction) the correspondinggl(m|n) representa-
tion VΛ is tame, so its character can be computed. Also for this class of
representations the character coincides with the composite supersymmetric
S-functionsν;µ(x/y). This extends considerably the classes ofgl(m|n)
representations for which the character can be computed by means of S-
functions.

1 Introduction

In Lie algebra theory the character of irreducible representations (irreps) ofgl(n)
are given by ordinary Schur functions or S-functionssλ(x), and there is a simple
relation between the highest weight of the representation and the partitionλ.

For the superanalog, the Lie superalgebragl(m|n), the relation between
characters of its irreps and “supersymmetric” S-functionsis not so clear. In
this context, composite supersymmetric S-functionssν;µ(x/y) were introduced.
These S-functions are labelled by a composite partitionν;µ (two partitionsµ
andν), and are functions of two sets of variablesx andy.

In this paper we shall discuss some recent advances in understanding this
relation. Many of the results of the present contribution are based upon the pa-
per [19], so there is a great amount of overlap between [19] and the current
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contribution. The main difference is that now the results are presented for gen-
eral gl(m|n)-standard composite partitions, and that we discuss some further
properties illustrated by means of examples.

In the early days of Lie superalgebra representation theory, the notion of
graded tensors was introduced [7], and it was believed [2, 3]that the standard
methods of covariant, contravariant and mixed tensor representations with the
corresponding Young techniques yield the characters ofgl(m|n) irreps in terms
of supersymmetric S-functionssν;µ(x/y). Although this is certainly true for
the covariant and contravariant tensor representations [4, 7], it is not so for the
mixed tensor representations, as already observed in [15,20]. Despite this nega-
tive answer, it is still surprising how oftensν;µ(x/y) yields the correct character
of agl(m|n) irrep. So far, there were no conditions known when this is actually
the case, except the rule that “m andn should be sufficiently large compared to
the number of boxes inν;µ” [20]. In [19], we give a clear condition (critical-
ity) under whichsν;µ(x/y) is actually the character of an irreduciblegl(m|n)
representation. Note that also for typical representations, sν;µ(x/y) yields the
correct character (an unpublished result obtained by R.C. King). The fact that
sν;µ(x/y) yields the correct character also in the singly atypical case, follows in
particular from the main theorem of this paper.

In this paper we describe the highest weight of agl(m|n) irrep by means
of a gl(m|n)-standard composite partitionν;µ. The notion of a critical atypi-
cal irrep, introduced in [8], is described is Section 3. The following section is
devoted to some examples, describing diagrammatic properties of typical and
critical atypical irreps. Next, we use essentially the method of [18] to show
(under the technical restriction of “no overlap”) that these critical atypical rep-
resentations are “tame”, in the sense of Kac and Wakimoto [13]. Using their
results, an explicit character formula for these irreps canbe constructed, and we
show how this formula can be rewritten in a determinantal form [19]. Using this
determinantal form, the character can be shown to coincide with a composite
supersymmetric S-function.

2 Composite Young diagrams and composite partitions

The composite Young diagramF (ν;µ) = F (. . . ,−ν2,−ν1;µ1, µ2, . . .), speci-
fied by the pair of partitionsµ = (µ1, µ2, . . .) andν = (ν1, ν2, . . .), consists of
two conventional Young diagramsF (µ) andF (ν). The former is composed of
boxes arranged in left-adjusted rows of lengthsµ1, µ2, . . . (from top to bottom),
and the latter of boxes arranged in right-adjusted rows of lengthsν1, ν2, . . . (from
bottom to top). A manner of junxtaposition ofF (µ) andF (ν) to form F (ν;µ)
was given in [6]; we shall refer to this as the traditional corner representation.
To some extent this is a refining of the back-to-back notationof [1] and [14].
By way of illustration, forν;µ = (3, 8); (5, 3, 1) the composite Young diagram
is displayed in Figure 1(a). Note that in(3, 8) we have used the convention of
putting the minus-signs on top of the integers; so in this exampleµ = (5, 3, 1)
andν = (8, 3). We shall refer toν;µ as being a “composite partition”.

Let m andn be fixed. In the process of associating to a weight ofgl(m|n) a
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composite partitionν;µ, there is another way to visualizeν;µ by putting them
together in a(m × n)-rectangle. The partitionµ is now composed of boxes ar-
ranged in left-adjusted rows of lengthsµ1, µ2, . . . starting at the top left-hand
corner of this rectangle, and the partitionν of boxes arranged in right-adjusted
rows of lengthsν1, ν2, . . . starting at the bottom right-hand corner of the rectan-
gle. Forν;µ = (1, 1, 2, 5, 5, 9); (5, 4, 4, 1) and(m|n) = (5|7) this is illustrated
in Figure 1(b). Observe that in this second visualisation, there can be overlap
between the two diagrams (and parts of the diagram might actually fall outside
of the(m × n)-rectangle).

When ν = 0, the (ordinary) partitionµ labels a covariant representation
of gl(m|n) if µm+1 ≤ n; and whenµ = 0, ν labels (under similar condi-
tions) a contravariant representation ofgl(m|n) [4]. In both cases, the partition
determines a certain highest weightΛ of the corresponding irreducible repre-
sentation (or simple module)VΛ. In [22], it was shown how to determine the
highest weightΛ for the given partitionµ or ν. Such a partitionµ determines
a (covariant) highest weightΛµ if µm+1 ≤ n (in this case, the partitionµ is
said to begl(m|n)-standard). Graphically, this means that the Young diagram
of µ should fit inside the so-called(m × n)-hook, see Figure 2. In this ex-
ample,(m,n) = (5, 8) andµ = (11, 9, 4, 3, 2, 2, 2, 1). For such a partition,
the correspondinggl(m|n) highest weightΛµ, in the standardǫ-δ-basis [19], is
determined as follows:

Λµ =

m∑

i=1

µiǫi +

n∑

j=1

〈µ′
j − m〉δj (1)

(a) (b)

Figure 1. (a) The Young diagramF (ν; µ) of a composite partition in its traditional corner
presentation. (b) The Young diagram of another composite partitionν; µ positioned in
the(m × n)-rectangle.

n

m

Figure 2. The Young diagramF (µ) inside the(m × n)-hook.
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where〈a〉 = max(0, a). Thus, for the above example,

Λµ = (11, 9, 4, 3, 2; 3, 2, 0, 0, 0, 0, 0, 0),

the coordinates being written in the standardǫ-δ-basis of the weight space of
gl(m|n).

The relation between a composite partitionν;µ and a certaingl(m|n) weight
Λν;µ is more complicated. This relation has been given in [6,§3] or [5]. Just as
for ordinary partitions, there is a condition to be satisfied:

Definition 2.1 A composite partitionν;µ is said to begl(m|n)-standard if and
only if there existJ andL such that

J = min{j|µ′
j+1 + ν′

n−j+1 ≤ m} with 0 ≤ J ≤ n,

L = min{l|µm−l+1 + νl+1 ≤ n} with 0 ≤ L ≤ m. (2)

In that case, letI = m − L andK = n − J .

The notions of this definition are illustrated in Figure 3. Graphically,gl(m|n)-
standardness means that the diagramF (ν;µ), in its traditional corner represen-
tation, should fit inside the(m×n)-cross, as illustrated in Figure 3. Furthermore,
it should be shifted as far as possible to the right and to the top inside this cross.
In this position, the coordinates of the correspondinggl(m|n) highest weight
Λν;µ in the standardǫ-δ-basis can be determined:

Λν;µ = (µ1, µ2, . . . , µI , n − νL, . . . , n − ν1;

µ′
1 − m, . . . , µ′

J − m,−ν′
K , . . . ,−ν′

1). (3)

This yields a unique correspondence between integral highest weights of
gl(m|n) andgl(m|n)-standard composite partitions. Note that by (3) it is very

ν

µ

-F(   )

F(   )

K J

I

L

n

m

Figure 3. The Young diagramF (ν; µ) of a composite partitionν; µ inside the(m × n)-
cross, and the meaning of the indices(I, J, K, L)
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easy to go from a givengl(m|n)-standard composite partitionν;µ to its cor-
responding highest weightΛν;µ. The converse process, going from an integral
highest weightΛ to agl(m|n)-standard composite partition, is not so easy; even
though it is still a unique process [5, 6]. For more explicit examples, see Sec-
tion 4.

At this point it is convenient to say something about the connection between
representations ofgl(m|n) and of sl(m|n), which is similar to that between
gl(m) and sl(m). Recall thatsl(m|n) consists of those elements ofgl(m|n)
with zero supertrace. Define the elementσ in the standardǫ-δ-basis by

σ =
m∑

i=1

ǫi −
n∑

j=1

δj , (4)

or in coordinatesσ = (1, 1, . . . , 1; −1,−1, . . . ,−1). Then σ = 0 in the
weight space ofsl(m|n) (but not in the weight space ofgl(m|n)). So two
highest weightsΛ andΛ + jσ of gl(m|n) stand for the same highest weight
in sl(m|n). This implies that the corresponding highest weight representations
VΛ andVΛ+jσ must have the same character assl(m|n) representations. Then
theirgl(m|n) characters are also the same, up to a factor. More explicitly,

ch VΛ+jσ = (eσ)j ch VΛ, (5)

with e the formal exponential (see next section).

3 Typical, atypical and critical representations

Let g be the Lie superalgebragl(m|n) andh its Cartan subalgebra. The weight
space ofg is the dual spaceh∗ with standard basis{ǫ1, . . . , ǫm, δ1, . . . , δn} In
the so-calleddistinguished choice[11] for a triangular decomposition ofg, the
simple root system is given by

Π = {ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn}. (6)

In that case, the positive even roots are given by∆0,+ = {ǫi − ǫj |1 ≤ i <
j ≤ m} ∪ {δi − δj |1 ≤ i < j ≤ n}, and the positive odd roots by∆1,+ =
{ǫi − δj |1 ≤ i ≤ m, 1 ≤ j ≤ n}.

In the distinguished basis there is only one simple root which is odd. As
usual, we put

ρ0 =
1

2

( ∑

α∈∆0,+

α
)
, ρ1 =

1

2

( ∑

α∈∆1,+

α
)
, ρ = ρ0 − ρ1. (7)

There is a symmetric form( , ) on h∗ induced by the invariant symmetric form
on g, and in the natural basis it takes the values(ǫi, ǫj) = δij , (ǫi, δj) = 0 and
(δi, δj) = −δij .

The Weyl group ofg is the Weyl groupW of g0, hence it is the direct product
of symmetric groupsSm × Sn. Forw ∈ W , we denote byε(w) its signature.
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Let VΛ be a finite-dimensional irreducible representation ofg with highest
weightΛ. Such representations areh-diagonalizable with weight decomposition
V = ⊕µV (µ), and the character is defined to bech V =

∑
µ dim V (µ) eµ,

whereeµ (µ ∈ h∗) is the formal exponential. To express such characters, we
shall usexi = eǫi andyj = eδj .

It is known that the notion of typical and atypical representations ofgl(m|n)
plays an important role [12]. A representationVΛ with highest weightΛ is
typical if (Λ + ρ, β) 6= 0 for all positive odd rootsβ ∈ ∆1,+; otherwiseΛ
and VΛ are calledatypical. Since∆1,+ consists of the rootsβij = ǫi − δj

(1 ≤ i ≤ m, 1 ≤ j ≤ n), it is natural to construct theatypicality matrix
A(Λ). This is an(m × n)-matrix consisting of the numbersA(Λ)ij = (Λ +
ρ, βij) [22,23]. So if no zeros appear inA(Λ), VΛ is typical. Ifa zeros appear in
A(Λ), Λ andVΛ area-fold atypical (or the atypicality ofΛ is a). When dealing
with highest weights related to (composite) partitions, itis often convenient to
put the entries of the atypicality matrix in an(m × n)-rectangle, together with
the corresponding composite Young diagram. This is illustrated forgl(5|7) and
ν;µ = (4, 6, 6, 6); (3, 3, 2, 2) in Figure 4. Note that for this example,Λ ≡ Λν;µ

is 3-fold atypical, since there are three zeros in the atypicality matrix.
For a given atypical weightΛ with atypicality a, let {γ1, . . . , γa} be the

sets of odd rootsγs = βis,js
such that(Λ + ρ, βis,js

) = 0, wherej1 < j2 <
· · · < ja (in this order). In the example of Figure 4,a = 3 and(γ1, γ2, γ3) =
(β5,1, β3,2, β1,4). Notice thatγ1, . . . , γa are ordered from the bottom left-hand
corner to the top right-hand corner.

With the notations of [8], we distinguish betweennormal, critical and qua-
sicritical related roots of this set{γ1, . . . , γa}. Let xpq with 1 ≤ p < q ≤ a be
the entry inA(Λ) at the intersection of the column containing theγp zero with
the row containing theγq zero. Lethpq be the hook length between the zeros
corresponding toγp andγq, i.e. the number of steps needed to go from theγp

zero ofA(Λ) via xpq to theγq zero, where the zeros themselves are included in
the count. In the example of Figure 4, with(γ1, γ2, γ3) = (β5,1, β3,2, β1,4), the

–10–9–8–7–5–40

4

–3–2–10237

–4–3–2–1126

–6–5–4–3–10

–7–1 –6–5–4–23

Figure 4. The Young diagramF (ν; µ) of a composite partitionν; µ in its traditional
position. Hereν; µ = (4, 6, 6, 6); (3, 3, 2, 2). Forgl(m|n) = gl(5|7) also the atypicality
matrix ofΛν;µ is given.
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hook lengths areh12 = 4, h13 = 8 andh23 = 5, and thexpq values can be read
from the atypicality matrix:x12 = 4, x13 = 7 andx23 = 3.

Definition 3.1 LetΛ be a highest weight ofgl(m|n) with atypicalitya and atyp-
ical roots{γ1, . . . , γa}. Then for every1 ≤ p < q ≤ a: γp andγq are normally
related if and only ifxpq + 1 > hpq; γp andγq are quasicritically related if and
only ifxpq+1 = hpq; γp andγq are critically related if and only ifxpq+1 < hpq.

Thus in the example of Figure 4,γ1 andγ2 are normally related,γ1 andγ3 are
quasicritically related andγ2 andγ3 are critically related.

If each couple(γi, γi+1) (i = 1, 2, . . . , a − 1) is critically related, then all
elements of{γ1, . . . , γa} are critically related. Then the highest weightΛ and
the representationVΛ are calledcritical. If Λ ≡ Λν;µ is originating from a
composite partitionν;µ, we shall also refer toν;µ as a critical composite par-
tition. Criticality coincides with the notion oftotally connected, as described
in [21,24].

For an alternative combinatorial way to check criticality,see [19].

4 Some examples

In this section, we shall give some examples of composite partitions, their Young
diagrams (both in the(m × n)-cross and in the(m × n)-rectangle), their atypi-
cality matrix, and some related composite partitions.

Let us takegl(m|n) = gl(5|7), and consider as first example the composite
partition

ν;µ = (3, 3, 4, 6, 7); (5, 5, 5, 4, 2, 1, 1, 1). (8)

The Young diagram ofν;µ – in its proper corner position in the(m × n)-cross
– is given in Figure 5(a). So in this case,(I, J,K,L) = (0, 5, 2, 5), and hence
we find from (3) that the corresponding weightΛ = Λν;µ is given by

Λ = (4, 4, 3, 1, 0; 3, 0,−1,−1,−2,−5,−5). (9)

The Young diagram ofν;µ is also given in Figure 5(b), where it is represented
in the(m × n)-rectangle. Notice that in this case, there is overlap between the
two diagrams (that ofµ given in black and that ofν given in gray). Furthermore,
in the last figure we also give the atypicality matrixA(Λ), in the appropriate
positions of the(m× n)-rectangle. Notice that there are no zeros in this matrix,
soΛ is typical.

We can now consider the closely related weight

Λ̃ = Λ + σ = (5, 5, 4, 2, 1; 2,−1,−2,−2,−3,−6,−6). (10)

Using (3), it is easy to work out the composite partition corresponding tõΛ. One
finds

ν̃; µ̃ = (2, 2, 2, 3, 5, 6); (5, 5, 4, 2, 1, 1, 1), (11)
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with (I, J,K,L) = (5, 1, 6, 0). Now we can consider the Young diagram of
ν̃; µ̃, once in its corner position in the(m×n)-cross – given here in Figure 6(a);
and once represented in the(m × n)-rectangle – given in Figure 6(b). Also
the atypicality matrix is once again given, and obviouslyA(Λ) = A(Λ̃), since
(σ, βij) = 0 for all odd rootsβij . Notice that in the(m × n)-rectangle (Fig-
ure 6(b)), the Young diagrams of̃µ and ν̃ have no overlap and just “touch”
each other along their boundaries. All positive entries in the atypicality matrix
are inside the diagram of̃µ, whereas all negative entries ofA(Λ̃) are insidẽν.
This is no coincidence. One can show that this is a general feature of typical
weights. More explicitly, letν;µ be a composite partition with corresponding

(a) (b)
n

m

–11–10–6–4–3–13

–9–8–4–2–115

–6–5–11248

–4–3134610

–3–2245711

n

m

Figure 5. Young diagram of a composite partitionν; µ in (a) the(m×n)-cross and (b) the
(m × n)-rectangle, together with its atypicality matrix. Here,µ = (5, 5, 5, 4, 2, 1, 1, 1)
andν = (7, 6, 4, 3, 3).

(a) (b)
n

m

–11–10–6–4–3–13

–9–8–4–2–115

–6–5–11248

–4–3134610

–3–2245711

n

m

Figure 6. Young diagram of a composite partitionν; µ in (a) the(m × n)-cross and (b)
the(m× n)-rectangle, together with its atypicality matrix. Here,µ = (5, 5, 4, 2, 1, 1, 1)
andν = (6, 5, 3, 2, 2, 2).
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weight Λ = Λν;µ and supposeΛ is typical. Then there is a unique integerj

such that̃Λ = Λ + jσ, for which the corresponding composite partition isν̃; µ̃,
satisfies the following properties:

• the Young diagrams of̃µ and ν̃ have no overlap (no intersection) in the
(m × n)-rectangle;

• each box in the(m × n)-rectangle is either part of the Young diagram of
µ̃ or else of the Young diagram of̃ν;

• all positive entries in the atypicality matrix are inside the Young diagram
of µ̃, and all negative entries are inside the Young diagram ofν̃.

As a second example ingl(5|7), let us take the composite partition

ν;µ = (2, 2, 3, 6, 7); (4, 3, 3, 1, 1). (12)

The Young diagram ofν;µ , properly situated in the(m × n)-cross, is given in
Figure 7(a). Note that(I, J,K,L) = (5, 0, 7, 0), and we find from (3) that the
corresponding weightΛ = Λν;µ is given by

Λ = (4, 3, 3, 1, 1; −1,−2,−2,−2,−3,−5,−5). (13)

The Young diagram ofν;µ is also given in Figure 7(b), represented in the(m×
n)-rectangle. Notice the overlap between the two diagrams. Asfor the previous
example, we also give the atypicality matrixA(Λ), in the appropriate positions
of the(m × n)-rectangle in Figure 7(b). Notice that there are two zeros inthis
matrix, soΛ is atypical. By the entry “4” in the hook connecting the two zeros
(in the terminology of Definition 3.1,x12 = 4 andh12 = 6), it follows thatΛ is
critical.

Let us consider the closely related weight

Λ̃ = Λ − σ = (3, 2, 2, 0, 0; 0,−1,−1,−1,−2,−4,−4). (14)

(a) (b)
n

m

0

–9–8–5–3–2–11

–6–5–20124

–5–4–11235

–3–213457

–10–9–6–4–3–2

n

m

Figure 7. Young diagram of a composite partitionν; µ in (a) the(m × n)-cross and (b)
the(m × n)-rectangle, together with its atypicality matrix. Here,µ = (4, 3, 3, 1, 1) and
ν = (7, 6, 3, 2, 2).
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Using (3), the composite partition corresponding toΛ̃ is

ν̃; µ̃ = (2, 2, 3, 6); (3, 2, 2), (15)

with again(I, J,K,L) = (5, 0, 7, 0). The Young diagram of̃ν; µ̃, properly
positioned in the(m × n)-cross, is given in Figure 8(a); and in Figure 8(b) it is
once again given but now positioned in the(m×n)-rectangle, together with the
atypicality matrix (againA(Λ) = A(Λ̃)). Notice that in the(m × n)-rectangle
(Figure 8(b)), the Young diagrams of̃µ and ν̃ have no overlap, and the zeros
of the atypicality matrix are positioned in the “gap” between the two diagrams.
This is a general property of critical atypical weights. More explicitly, letν;µ
be a composite partition with corresponding weightΛ = Λν;µ and supposeΛ
is atypical and critical. Then there is a unique integerj such thatΛ̃ = Λ +
jσ, for which the corresponding composite partitionν̃; µ̃ satisfies the following
properties

• the Young diagrams of̃µ andν̃, positioned in the(m × n)-rectangle, do
not cover the complete rectangle but leave a connected “gap”;

• all the zeros of the atypicality matrix appear in this connected gap.

5 Tame representations in gl(m|n)

Let V be an irreducible representation ofgl(m|n) with highest weightΛ in the
standard (distinguished) simple root basisΠ. The atypicality ofV and ofΛ
is the number of zeros in the atypicality matrixA(Λ), whereA(Λ)ij = (Λ +
ρ, ǫi − δj). Note that all the rootsǫi − δj from ∆1,+ are isotropic:(ǫi − δj , ǫi −
δj) = 0. So the determination of the atypicality ofV is performed with the
highest weight ofV with respect to the distinguished set of simple roots (6), and
the corresponding set∆+. But one can give a definition of atypicality that is

(a) (b)
n

m

57

–10–9–6–4–3–20

–9–8–5–3–2–11

–6–5–20124

–5–4–11235

–3–2134

n

m

Figure 8. Young diagram of a composite partitionν; µ in (a) the(m × n)-cross and
(b) the(m × n)-rectangle, together with its atypicality matrix. Here,µ = (3, 2, 2) and
ν = (6, 3, 2, 2).
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independent from this choice of simple roots. LetΛ ∈ h∗; theatypicalityof Λ,
denoted bya = atyp(Λ), is the maximal number of linearly independent roots
βi such that(βi, βj) = 0 and(Λ + ρ, βi) = 0 for all i andj [13]. Such a set
{βi} is called aΛ-maximal isotropic subset of∆.

Let the highest weight of an irreducible representationV be given byΛ in the
distinguished simple root system, with atypicalitya. With respect to another set
of simple rootsΠ′ (with the correspondingρ′), V has a different highest weight
Λ′. Then it was shown that atyp(Λ′) is also equal toa. In other words, one can
speak of the atypicality of the irrepV : atypicality is independent of the choice
of simple root system that it is computed in [13].

The purpose of the following is to show that for an atypical critical repre-
sentationV = VΛ with highest weightΛ in the distinguished basis, there exists
another basisΠ′ in which V has highest weightΛ′, in such a way that theΛ′-
maximal isotropic subset of∆′ is actually a subset ofΠ′. In this case,V is called
tame, and a character formula can be given.

In order to go fromΠ to Π′, we shall follow the technique of simple odd
reflections, described in [18].

Let Λ be determined by some composite partitionν;µ, soΛ = Λν;µ. We
also need the notion of the(m,n)-indexk of ν;µ; this is the number

k = min

({
i ∈ {1, . . . ,m}|∃j ∈ {1, . . . , n} :

µi+
〈
µ′

n−j+1 − m
〉
+(m−i) = ν′

j +〈νm−i+1 − n〉+(n−j)

}
∪ {m+1}

)

(16)

In what follows,k will always denote this number. In the special case whereν =
0, this definition coincides with the one given in [18]. When therepresentation
is typical k will be equal tom + 1; otherwisek corresponds to the smallest
row number in the atypicality matrix in which there occurs a zero. Thus in the
following we shall assume thatk ≤ m.

DenoteΛ(1) = Λ, ρ(1) = ρ andΠ(1) = Π. Now we perform a sequence
of simple oddα(i)-reflections [18]; each of these reflections preserve∆0,+ but
may changeΛ(i) + ρ(i) andΠ(i). Denote the sequence of reflections by:

Λ(1) + ρ(1), Π(1) α(1)

−→ Λ(2) + ρ(2), Π(2) α(2)

−→ · · ·

· · ·
α(f)

−→ Λ′ + ρ′, Π′ (17)

where, at each stage,α(i) is an odd root fromΠ(i). For givenν;µ, consider
the following sequence of odd roots (with positions on rowm, row m − 1, . . .,
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row k):

row m : βm,1, βm,2, . . . , βm,min{n,µk−k+m}

row m − 1 : βm−1,1, βm−1,2, . . . , βm−1,min{n,µk−k+m−1}

...
...

row k : βk,1, βk,2, . . . , βk,µk

(18)

in this particular order (i.e. starting withβm,1 and ending withβk,µk
). Then we

have:

Lemma 5.1 Let ν;µ begl(m|n)-standard and critical ingl(m|n) and suppose
that the diagrams ofν andµ do not overlap in the(m × n)-rectangle. Then the
sequence (18) is a proper sequence of simple odd reflections for Λν;µ, i.e. α(i)

is a simple odd root fromΠ(i). At the end of the sequence, one finds:

Π′ = {ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫk−2 − ǫk−1, ǫk−1 − δ1,

δ1 − δ2, δ2 − δ3, . . . , δµk−1 − δµk
, δµk

− ǫk,

ǫk − δµk+1, δµk+1 − ǫk+1, ǫk+1 − δµk+2, . . . ,

δµk+m−k − ǫm, ǫm − δµk+m+1−k,

δµk+m+1−k − δµk+m+2−k, . . . , δn−1 − δn}. (19)

Furthermore,

Λ′ + ρ′ = Λλ + ρ +

k+a−1∑

i=k+1

µk−k+i∑

j=µi+1

βi,j +

m∑

i=k+a

max{0,n−νm−i+1}∑

j=µi+1

βi,j . (20)

This proof is similar to the proof of Lemma 2.3 in [18], and hasbeen given
in [19]. In particular, note that criticality is necessary in this process: ifΛ is
not critical, the sequence of odd reflections can be performed, but the atypicality
matrix of Λ′ would not have its zeros in the right places so as to find a proper
Λ′-maximal isotropic subset.

Note that the technical restriction of “no overlap” (meaning that the Young
diagrams ofµ andν do not overlap in the(m×n)-rectangle) is no real restriction
for critical representations. Indeed, by the conclusion ofthe previous section,
one can perform a shift̃Λ = Λ + jσ such that there is no overlap for the related
corresponding partitioñν; µ̃, with essentially the same character, see (5). From
now on, we shall assume thatν;µ is gl(m|n)-standard, critical and with no
overlap.

Corollary 5.2 The critical representationVΛν;µ
≡ Vν;µ is tame.

Proof. Having performed the simple odd reflections (18), one can compute the
atypicality matrix forΛ′ + ρ′ using (20). This gives:

(Λ′ + ρ′, βij) = 0 for all (i, j) with k ≤ i ≤ k + a − 1, µk + 1 ≤ j ≤ µk + a.
(21)
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Therefore the set

SΛ′ = {ǫk − δµk+1, ǫk+1 − δµk+2, . . . , ǫm − δµk+a} (22)

is a(Λ′ + ρ′)-maximal isotropic subset. Furthermore,SΛ′ ⊂ Π′, see (19). This
implies thatVν;µ is tame [18]. Ifν;µ is not critical, (21) does not hold, and there
is noΛ′-maximal isotropic subset that is also a subset ofΠ′. ¤

Let us illustrate some of these notions forν;µ = (3, 3); (9, 5, 3, 3, 2, 2, 1) in
gl(5|7). In Figure 9(a), the atypicality matrix associated withν;µ is given. In
Figure 9(b) the positions marked with “i” refer to the(Λ′+ρ′)-maximal isotropic
set (22). For convenience, let us refer to these positions as“the isotropic diag-
onal.” The positions of the odd roots that have been used for the sequence of
reflections to go fromΛν;µ andΠ to Λ′ andΠ′ are marked by “x” in Figure 9(b).
So, they are simply all positions to the left of the isotropicdiagonal. Finally,
Figure 9(c) shows the positions of thoseβij that appear on the right hand side
of (20); they are marked by “*”. These are all positions to theleft of the isotropic
diagonal that are not insideF (ν;µ). One can see from this example and others
that the(m,n)-indexk determines all other necessary ingredients.

6 Character formulas and sν;µ(x/y).

We have just seen that the representationVν;µ is tame whenν;µ is gl(m|n)-
standard, critical, and with no overlap in the(m × n)-rectangle.

For tame representations, a character formula is known due to Kac and Waki-
moto [13]. It reads, in terms ofΛ′:

ch Vν;µ = j−1
Λ′ e−ρ′

R′−1
∑

w∈W

ε(w)w
(
eΛ′+ρ′

∏

β∈SΛ′

(1 + e−β)−1
)
, (23)

where
R′ =

∏

α∈∆0,+

(1 − e−α)
/ ∏

α∈∆′

1,+

(1 + e−α) (24)

(a) (b) (c)

–6–5–4–1024

–4–3–21246

–3–2–12357

01256810

56710111315

k k

x
xxxxxxx
xxxxxx
ixxxxxx

ixxxxx

* *
*

i***
ik

Figure 9. Young diagram ofν; µ in the (m × n)-rectangle, forµ = (9, 5, 3, 3, 2, 2, 1)
andν = (3, 3). In (a), the atypicality matrix and(m, n)-indexk are determined; in (b)
and (c) the ingredients used in the sequence of odd reflections are indicated.
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andjΛ′ is a normalization coefficient to make sure that the coefficient of eΛ′

on
the right hand side of (23) is 1. By definition ofρ andR

e−ρ′

R′−1 = e−ρR−1.

As usual in this context we put

xi = eǫi , yj = eδj (1 ≤ i ≤ m, 1 ≤ j ≤ n). (25)

Now we have
chVν;µ = j−1

Λ′

ν;µ
D−1

∑

w∈W

ε(w)w(tν;µ),

with

D =

∏
1≤i<j≤m(xi − xj)

∏
1≤i<j≤n(yi − yj)∏m

i=1

∏n
j=1(xi + yj)

(26)

and

tν;µ =

k−1∏

i=1

xµi+m−i−n
i

l−1∏

j=1

y
µ′

j+n−j−m

j

k+a−1∏

i=k

yr
i−k+l

xr
i (xi + yi−k+l)

×
n∏

i=k+a

x
m−i−νm−i+1

i

n∏

j=l+a

y
n−j−ν′

n−j+1

j (27)

wherel = µk +1 andr = n−m+k− l andjΛ′

ν;µ
= a! (due to symmetry there

area! elements ofSm × Sn that leavetν;µ invariant).
This expression can be written in a nicer form:

Theorem 6.1 Let tν;µ be given by (27) andr = n − m + k − µk − 1. Then

1

a!

∑

w∈Sm×Sn

ε(w)w(tν;µ) = (−1)(m−a)(l−1)+n(m−a−k+1) det(C), (28)

whereC is the following square matrix of ordern + m − a:

C =




0 Yµ′ 0
Xµ R(r) Xν

0 Yν′ 0


 with R(r) =

(
yr

j

xr
i (xi + yj)

)

1≤i≤m, 1≤j≤n

(29)
and with

Xµ =
(
x

µj+m−n−j
i

)

1≤i≤m, 1≤j≤k−1
,

Xν =
(
x

m−j−νm−j+1

i

)

1≤i≤m, k+a≤j≤m
,

Yµ′ =
(
y

µ′

i+n−m−i
j

)

1≤i≤l−1, 1≤j≤n
,

Yν′ =
(
y

n−i−ν′

n−i+1

j

)

l+a≤i≤n, 1≤j≤n
.
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Proof. The proof is similar to that of [18][Lemma 3.1]. Apply Laplace’s theorem
for the expansion ofdet(C) with respect to columns1, 2, . . . , k − 1, k + n, k +
n + 1, . . . , n + m − a. Keeping track of the zero blocks, one finds

det(C) = (−1)
(m−a)(m−a+1)

2

∑

1≤i1<···<im−a≤m

(−1)i1+···+im−a+(m−a)(l−1)

×det(Cx) det(Cy), (30)

whereCx is the(m − a) × (m − a)-matrix consisting of rowsi1, i2, . . . , im−a

of the matrix
(

Xµ Xν

)
, andCy is then × n-matrix




Yµ′

R̃(r)

Yν′


 ,

whereR̃(r) is obtained by removing rowsi1, i2, . . . , im−a in R(r). The number
of terms on the rhs of (30) is

(
m

m−a

)
(m − a)!n! = m!n!/a!; due to symmetry

considerations this is the same as the number of distinct terms on the lhs of (28).
For (i1, . . . , im−a) = (1, . . . , k − 1, k + n, ..., n + m − a), and the diagonal
term indet Cx anddet Cy, the contribution on the rhs of (30) is now easily seen
to be (−1)(m−a)(l−1)+n(m−a−k+1)tν;µ. But by definition of the determinant,
every term on the rhs of (30) is (up to the overall sign factor(−1)(m−a)(l−1)) of
the formε(w)w(tν;µ) with w ∈ Sm × Sn. Conversely, every term of the form
ε(w)w(tν;µ) appears as a term on the rhs of (30). It follows that (28) holds. ¤

With the same notation, one finds

Corollary 6.2 The character of a critical representation labelled by agl(m|n)-
standard composite partitionν;µ (without overlap) has the following determi-
nantal form:

chVν;µ = (−1)(m−a)(l−1)+n(m−a−k+1)D−1 det(C).

As an example, letm = 4, n = 5 andν;µ = (1, 1, 4); (3, 1). One finds

–7–4–3–20

–6–3–2–11

–4–1013

–12346
k = 2
l = µk + 1 = 2
a = 2

⇒ r = n − m + k − l = 1
⇒ n + m − a = 7

Thus, according to formula (29),ch V(1,1,4);(3,1) = D−1 det(C) with C given
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by the matrix



0 y2
1 y2

2 y2
3 y2

4 y2
5 0

x1
y1

x1(x1+y1)
y2

x1(x1+y2)
y3

x1(x1+y3)
y4

x1(x1+y4)
y5

x1(x1+y5)
x−4

1

x2
y1

x2(x2+y1)
y2

x2(x2+y2)
y3

x2(x2+y3)
y4

x2(x2+y4)
y5

x2(x2+y5)
x−4

2

x3
y1

x3(x3+y1)
y2

x3(x3+y2)
y3

x3(x3+y3)
y4

x3(x3+y4)
y5

x3(x3+y5)
x−4

3

x4
y1

x4(x4+y1)
y2

x4(x4+y2)
y3

x4(x4+y3)
y4

x4(x4+y4)
y5

x4(x4+y5)
x−4

4

0 y0
1 y0

2 y0
3 y0

4 y0
5 0

0 y−3
1 y−3

2 y−3
3 y−3

4 y−3
5 0




.

Thus the determinantal formula is very explicit.
The main goal of this determinantal formula however is that it allows us to

make the link with another explicit formula that is even moreuseful, namely
a composite supersymmetric S-function. In order to make this connection,
we need to introduce some notations and properties of (supersymmetric) S-
functions. We shall assume that the reader is familiar with notations of ordi-
nary S-functions [17], such assλ(x), sλ/µ(x), cν

λµ for Littlewood-Richardson
coefficients, etc.

The “contravariant” S-functions are usually defined in terms of the ordi-
nary (or “covariant”) S-functions. Suppose we have a set of variablesx =
(x1, . . . , xm). For a partitionλ, letλ = (−λ1,−λ2, . . .) and denote byxi = 1

xi
,

for all i = 1, . . . ,m, then,
sλ(x) = sλ(x). (31)

Similarly, s
λ/µ

(x) = sλ/µ(x). Using the contravariant S-functions, the com-
posite or “mixed” S-functions are defined [5] by

sν;µ(x) =
∑

ζ

(−1)|ζ|s
ν/ζ

(x)sµ/ζ′(x). (32)

The product of a covariant and a contravariant S-function isgiven by

sν(x)sµ(x) = sν(x)sµ(x) =
∑

η

s
ν/η;µ/η

(x) (33)

where
s

ν/η;µ/η
(x) =

∑

ϕ,ψ

cν
ϕηcµ

ψ,ηsϕ;ψ(x). (34)

The composite S-functions can also be written in terms of a decomposition [15]
of x = x′ + x′′, namely

sν;µ(x) =
∑

ρ,σ,τ

s
ν/σ;µ/τ

(x′)s
σ/ρ;τ/ρ

(x′′). (35)

In [6] the composite supersymmetric S-functions are definedin terms of or-
dinary composite S-functions, namely:

sν;µ(x/y) =
∑

ρ,ζ,ξ

s
ν/ξ;µ/ζ

(x)s
ξ′/ρ′;ζ′/ρ′

(y) =
∑

ρ,ϕ,ψ

s
ν/ϕρ;µ/ψρ

(x)sϕ′;ψ′(y).

(36)
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and it can be generalized to composite skew partitions:

s
ν/η;λ/µ

(x/y) =
∑

ρ,σ,τ

s
ν/ησ;λ/µτ

(x)s
(σ/ρ)′;(τ/ρ)′

(y). (37)

The functionssν;µ(x/y) have many properties similar to ordinary Schur
functions [5,6,9,10,16]. For example [6],

sν;µ(x/y) = det

(
hνl+k−l(x/y) hµj−k−j+1(x/y)

hνl−i−l+1(x/y) hµj+i−j(x/y)

)
(38)

wherei, j, k resp.l runs from top to bottom, from left to right, from bottom
to top, resp. from right to left, andhr(x/y) are the complete supersymmetric
polynomials defined byhr(x/y) =

∑r
k=0 hr−k(x)ek(y).

We can now formulate our main result:

Theorem 6.3 Let ν;µ be agl(m|n)-standard and critical composite partition
with no overlap. The characterchVν;µ is equal tosν;µ(x/y).

The proof is similar to the proof of [18, Theorem 5.5]. However, there are many
technical details which need to be reinvestigated, see the Appendix of [19].

7 Conclusions

The determination of characters forgl(m|n) irreps has a long history, see [21]
(where a complete solution is given) and references therein. In our work we
emphasize the relation between characters and supersymmetric S-functions. It
was known for a long time that the characters of typical, of (typical or atypical)
covariant and of (typical or atypical) contravariant representations are given by
supersymmetric S-functions. In the current paper a specialclass of atypical
representations, namely the critical irreps, was described. Also for this class of
representations does the character coincide with a supersymmetric S-function.
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