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Abstract

It is shown how to associate to a highest weighof the Lie superalge-
bra gl(m|n) a composite partition; . with composite Young diagram
F(v; u). The corresponding supersymmetric Schur functipn (z/y) is
defined. However, it is known that this S-function does not always-coin
cide with the character of the irreducible representaii@nwith highest
weight A. Only for covariant, contravariant and typical representations the
character and the S-function are known to coincide.

Here, the notions of critical composite partitions and critical highest
weights are considered. It is shown that for critical composite partitions
(subject to a technical restriction) the correspondifign|n) representa-

tion V, is tame, so its character can be computed. Also for this class of
representations the character coincides with the composite supersyenmetr
S-functionsg,, (z/y). This extends considerably the classegiin|n)
representations for which the character can be computed by means of S
functions.

1 Introduction

In Lie algebra theory the character of irreducible represténs (irreps) ofil(n)
are given by ordinary Schur functions or S-functispéx), and there is a simple
relation between the highest weight of the representatiortiae partition\.

For the superanalog, the Lie superalgeptan|n), the relation between
characters of its irreps and “supersymmetric” S-functiamsot so clear. In
this context, composite supersymmetric S-functiens(z/y) were introduced.
These S-functions are labelled by a composite partitign (two partitionsu
andv), and are functions of two sets of variableandy.

In this paper we shall discuss some recent advances in tadeéirsy this
relation. Many of the results of the present contributiom laased upon the pa-
per [19], so there is a great amount of overlap between [16]tha current
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2 Composite S-functions and characters

contribution. The main difference is that now the resultsresented for gen-
eral gl(m|n)-standard composite partitions, and that we discuss sontieefu
properties illustrated by means of examples.

In the early days of Lie superalgebra representation theébeynotion of
graded tensors was introduced [7], and it was believed [h&]the standard
methods of covariant, contravariant and mixed tensor sgmtations with the
corresponding Young techniques yield the charactegg(ot|n) irreps in terms
of supersymmetric S-functions;,,(x/y). Although this is certainly true for
the covariant and contravariant tensor representatiarg,[# is not so for the
mixed tensor representations, as already observed inQl.3)2spite this nega-
tive answer, it is still surprising how oftes,, (x/y) yields the correct character
of agl(m|n) irrep. So far, there were no conditions known when this isaltt
the case, except the rule that‘andn should be sufficiently large compared to
the number of boxes im; " [20]. In [19], we give a clear condition (critical-
ity) under whichsg,,(x/y) is actually the character of an irreducilg&m|n)
representation. Note that also for typical representatien, (z/y) yields the
correct character (an unpublished result obtained by Ri@g)K The fact that
sp.u(x/y) yields the correct character also in the singly atypicactdlows in
particular from the main theorem of this paper.

In this paper we describe the highest weight afl@n|n) irrep by means
of a gl(m|n)-standard composite partitian .. The notion of a critical atypi-
cal irrep, introduced in [8], is described is Section 3. Tbkofving section is
devoted to some examples, describing diagrammatic piepest typical and
critical atypical irreps. Next, we use essentially the rodtlof [18] to show
(under the technical restriction of “no overlap”) that thesitical atypical rep-
resentations are “tame”, in the sense of Kac and Wakimoth [U3ing their
results, an explicit character formula for these irrepstmaononstructed, and we
show how this formula can be rewritten in a determinantahf{it9]. Using this
determinantal form, the character can be shown to coincitle avcomposite
supersymmetric S-function.

2 Composite Young diagrams and composite partitions

The composite Young diagrafi(v; 1) = F(...,—va, —v4; 41, M2, - - -), SPECI-
fied by the pair of partitiong, = (11, o, ...) andv = (v, v, .. .), consists of
two conventional Young diagranfs(x.) and F'(v). The former is composed of
boxes arranged in left-adjusted rows of lengthsps, . . . (from top to bottom),
and the latter of boxes arranged in right-adjusted rowsgftlesy, , v, . . . (from
bottom to top). A manner of junxtaposition 6f(x) and F'(v) to form F(7; i)
was given in [6]; we shall refer to this as the traditionalrearrepresentation.
To some extent this is a refining of the back-to-back notatibfl] and [14].
By way of illustration, forz; u = (3, 8); (5, 3, 1) the composite Young diagram
is displayed in Figure 1(a). Note that {8, 8) we have used the convention of
putting the minus-signs on top of the integers; so in thiseday = (5,3,1)
andv = (8, 3). We shall refer ta7; 1 as being a “composite partition”.

Letm andn be fixed. In the process of associating to a weighglof|n) a
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composite partitiorw; i, there is another way to visualize . by putting them
together in §m x n)-rectangle. The partitiop is now composed of boxes ar-
ranged in left-adjusted rows of lengths, i, . .. starting at the top left-hand
corner of this rectangle, and the partitiorof boxes arranged in right-adjusted
rows of lengths/, v, . .. starting at the bottom right-hand corner of the rectan-
gle. Forv; = (1,1,2,5,5,9); (5,4,4,1) and(m|n) = (5|7) this is illustrated

in Figure 1(b). Observe that in this second visualisatibere¢ can be overlap
between the two diagrams (and parts of the diagram mighabgtiall outside

of the (m x n)-rectangle).

Whenv = 0, the (ordinary) partitiory: labels a covariant representation
of gl(m|n) if gms+1 < m; and wheny = 0, 7 labels (under similar condi-
tions) a contravariant representationgtfm|n) [4]. In both cases, the partition
determines a certain highest weightof the corresponding irreducible repre-
sentation (or simple moduld),. In [22], it was shown how to determine the
highest weightA for the given partitiorp, or 7. Such a partition: determines
a (covariant) highest weight,, if ., < n (in this case, the partitiop is
said to begl(m|n)-standard). Graphically, this means that the Young diagram
of 1 should fit inside the so-callefin x n)-hook, see Figure 2. In this ex-
ample,(m,n) = (5,8) andp = (11,9,4,3,2,2,2,1). For such a partition,
the correspondingl(m|n) highest weight\ ,, in the standard-¢-basis [19], is
determined as follows:

Au = i€+ Y (s —m)d; 1)
i=1 j=1

(a) (0)

LI

Figure 1. (a) The Young diagraf(7; 1) of a composite partition in its traditional corner
presentation. (b) The Young diagram of another composite partitipnpositioned in
the (m x n)-rectangle.

3 —

Figure 2. The Young diagraifi (i) inside the(m x n)-hook.



4 Composite S-functions and characters

where(a) = max(0, a). Thus, for the above example,
A, =(11,9,4,3,2; 3,2,0,0,0,0,0,0),

the coordinates being written in the standafétbasis of the weight space of
gl(mn).

The relation between a composite partition. and a certaigl(m|n) weight
Ay, is more complicated. This relation has been given irg8,or [5]. Just as
for ordinary partitions, there is a condition to be satisfied

Definition 2.1 A composite partition; . is said to begl(m|n)-standard if and
only if there exist/ and L such that

J=min{jluy + v, ;o <m} with 0<J<n,
L = min{l|pty—141 + V41 < n} with 0<L<m. (2)

Inthat case, lef = m — LandK =n — J.

The notions of this definition are illustrated in Figure 3.a@mnically,gl(m|n)-
standardness means that the diag#afm; 1), in its traditional corner represen-
tation, should fitinside thén x n)-cross, as illustrated in Figure 3. Furthermore,
it should be shifted as far as possible to the right and todpérside this cross.
In this position, the coordinates of the correspondjiign|n) highest weight
Ay, in the standard-d-basis can be determined:

Avy = (B2, 0, n— v, ..., 0 — Vg
li I / /
My — My iy —my Ve, oo =), 3)

This yields a unique correspondence between integral kigheights of
gl(m|n) andgl(m|n)-standard composite partitions. Note that by (3) it is very

FOV)

FH) I

Figure 3. The Young diagratfi (7; 1) of a composite partitio®; 1 inside the(m x n)-
cross, and the meaning of the indidds J, K, L)
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easy to go from a givegl(m|n)-standard composite partitian » to its cor-
responding highest weightt;,,,. The converse process, going from an integral
highest weight\ to agl(m|n)-standard composite partition, is not so easy; even
though it is still a unique process [5, 6]. For more expliciamples, see Sec-
tion 4.

At this point it is convenient to say something about the emtion between
representations af((m|n) and ofsl(m|n), which is similar to that between
gl(m) andsl(m). Recall thatsl(m|n) consists of those elements gf{m|n)
with zero supertrace. Define the elemerih the standard-6-basis by

o= €—> 3 4)
i=1 j=1

or in coordinatesr = (1,1,...,1; —1,—-1,...,—1). Theno = 0 in the
weight space ofl(m|n) (but not in the weight space gfi(m|n)). So two
highest weights\ and A + jo of gl(m|n) stand for the same highest weight
in s[(m|n). This implies that the corresponding highest weight regmetions
Va andV, 4 ;- must have the same charactetsg§sn|n) representations. Then
their gl(m|n) characters are also the same, up to a factor. More explicitly

ch VAJ,-jo = (eg)j ch Va, (5)
with e the formal exponential (see next section).
3 Typical, atypical and critical representations

Let g be the Lie superalgebggd(m|n) andh its Cartan subalgebra. The weight
space ofg is the dual space* with standard basige, ..., €emn,01,...,0,} In
the so-calledlistinguished choicgl1] for a triangular decomposition @f, the
simple root system is given by

II= {61_62;"'76777,71 _6m7€m_517§1 _527"'7677/71 _5n} (6)

In that case, the positive even roots are givenyy; = {e; —¢;|1 < i <
j <m}uU{d — ;|1 <i< j<n}, and the positive odd roots b, ; =
{ei—=0;[1<i<m, 1<j<n}.

In the distinguished basis there is only one simple root tvliécodd. As
usual, we put

T S T R

a€lo, + a€Aq ¢

There is a symmetric forri, ) onh* induced by the invariant symmetric form
on g, and in the natural basis it takes the valggse;) = 0;;, (&;,9;) = 0 and
(6i,05) = —0ij.

The Weyl group ofj is the Weyl grough” of go, hence it is the direct product
of symmetric groups,,, x S,,. Forw € W, we denote by (w) its signature.
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Let V, be a finite-dimensional irreducible representatiory afith highest
weightA. Such representations graliagonalizable with weight decomposition
V = &,V(n), and the character is defined to deV’ = >_  dim V() e*,
wheree” (1 € b*) is the formal exponential. To express such characters, we
shall user; = e andy; = €% .

It is known that the notion of typical and atypical represgions ofgl(m|n)
plays an important role [12]. A representatidfy with highest weightA is
typical if (A + p,3) # 0 for all positive odd roots3 € A; y; otherwiseA
and V are calledatypical SinceA; ; consists of the rootg;; = ¢; — J;

1 <i<m,1 < j < mn), itis natural to construct thatypicality matrix
A(A). This is an(m x n)-matrix consisting of the numberé(A);; = (A +
p, Bi;) [22,23]. Soif no zeros appear ifi(A), V, is typical. Ifa zeros appear in
A(A), A andV, area-fold atypical (or the atypicality of\ is a). When dealing
with highest weights related to (composite) partitionss ibften convenient to
put the entries of the atypicality matrix in ém x n)-rectangle, together with
the corresponding composite Young diagram. This is ilatstt forg((5|7) and
7;p = (4,6,6,6); (3,3,2,2) in Figure 4. Note that for this exampl&,= Ay.),
is 3-fold atypical, since there are three zeros in the aglipjcmatrix.

For a given atypical weighf\ with atypicality a, let {v1,...,7v,} be the
sets of odd roots, = f;, ;, such that(A + p, 5, ;,) = 0, wherej; < ja <
-+« < jg (in this order). In the example of Figure d,= 3 and(v1,72,73) =
(Bs,1,03,2, 01,4). Notice thaty,, .. .,~, are ordered from the bottom left-hand
corner to the top right-hand corner.

With the notations of [8], we distinguish betwerarmal, critical and qua-
sicritical related roots of this s€ty, ..., Vs }. Leta,, with1 < p < ¢ < a be
the entry inA(A) at the intersection of the column containing thezero with
the row containing the, zero. Leth,, be the hook length between the zeros
corresponding tey, and-,, i.e. the number of steps needed to go from-he
zero of A(A) via z,, to thewy, zero, where the zeros themselves are included in
the count. In the example of Figure 4, withy , v2,7v3) = (05,1, 83,2, 01,4), the

3/2/0i-1-2 -3
2:1i-1-2/-3.-4
0 -1.-3-4:-5 -6
-1 -2{-4 5{-6 -7
—4:-5.-7:-8:-9-10

O w!bh o

Figure 4. The Young diagranf’(v; 1) of a composite partitiow; u. in its traditional

position. Herer; u = (4, 6,6, 6); (3, 3,2, 2). Forgl(m|n) = gl(5|7) also the atypicality
matrix of Az, is given.



E.M. Moens and J. Van der Jeugt 7

hook lengths aré» = 4, h13 = 8 andhgs = 5, and thex,,, values can be read
from the atypicality matrixzio = 4, 13 = 7 andzoz = 3.

Definition 3.1 LetA be a highest weight gff(m|n) with atypicalitya and atyp-
ical roots{v1,...,7.}. Then forevery < p < ¢ < a: y, and~, are normally
related if and only itc,q + 1 > h,q; v, and-y, are quasicritically related if and
only ifzpg+1 = hyg; v and-y, are critically related if and only ifep,g+1 < hpg.

Thus in the example of Figure 4; and~s are normally relatedy; and~; are
quasicritically related angl, and~s are critically related.

If each couple(v;,vi+1) (@ = 1,2,...,a — 1) is critically related, then all
elements of vy, ...,v,} are critically related. Then the highest weightand
the representatioir, are calledcritical. If A = Ay, is originating from a
composite partitiorv; ., we shall also refer to; 1 as a critical composite par-
tition. Criticality coincides with the notion dfotally connectedas described
in[21, 24].

For an alternative combinatorial way to check criticalgge [19].

4 Some examples

In this section, we shall give some examples of composittitjoas, their Young
diagrams (both in thém x n)-cross and in thém x n)-rectangle), their atypi-
cality matrix, and some related composite partitions.

Let us takegl(m|n) = gl(5|7), and consider as first example the composite
partition

vip=(3,3,4,6,7);(5,5,5,4,2,1,1,1). (8)

The Young diagram of; 1. — in its proper corner position in then x n)-cross
— is given in Figure 5(a). So in this cagd, J, K, L) = (0,5,2,5), and hence
we find from (3) that the corresponding weight= Ay, is given by

A=(4,4,3,1,0; 3,0,—1,—-1,-2,—5,—5). )

The Young diagram of’; . is also given in Figure 5(b), where it is represented
in the (m x n)-rectangle. Notice that in this case, there is overlap betvwhe
two diagrams (that of given in black and that of given in gray). Furthermore,
in the last figure we also give the atypicality matéXA), in the appropriate
positions of thgm x n)-rectangle. Notice that there are no zeros in this matrix,
SOA is typical.

We can now consider the closely related weight

A=A+o=(55421;2 -1,-2 -2 -3 —6,—6). (10)

Using (3), itis easy to work out the composite partition esponding tol. One
finds

vii=(2,2,2,3,5,6);(5,5,4,2,1,1,1), (11)
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with (I, J,K,L) = (5,1,6,0). Now we can consider the Young diagram of
; i, once in its corner position in ten x n)-cross — given here in Figure 6(a);
and once represented in tlier x n)-rectangle — given in Figure 6(b). Also
the atypicality matrix is once again given, and obviougi\) = A(K), since
(0,0;5) = 0 for all odd roots;;. Notice that in the(m x n)-rectangle (Fig-
ure 6(b)), the Young diagrams @f and 7 have no overlap and just “touch”
each other along their boundaries. All positive entriehi dtypicality matrix
are inside the diagram @f, whereas all negative entries d{ A) are insidev.
This is no coincidence. One can show that this is a genertirizaf typical
weights. More explicitly, lew; ;. be a composite partition with corresponding

©
rla|lo|~
N
-
|
N
|
a0
|
)

Figure 5. Young diagram of a composite partit@an. in (a) the(m xn)-cross and (b) the
(m x n)-rectangle, together with its atypicality matrix. Here= (5,5,5,4,2,1,1,1)
andv = (7,6,4,3,3).

(a) (0)
n

-
H

11( 7

5
| 1016 | 4
2
1

8
5(1]-1]-2/-4]-8]|-9
3

.........

Figure 6. Young diagram of a composite partit@. in (a) the(m x n)-cross and (b)
the (m x n)-rectangle, together with its atypicality matrix. Here= (5,5,4,2,1,1,1)
andv = (6,5,3,2,2,2).
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weight A = Ap,, and supposé is typical. Then there is a unique integer

such thath = A + jo, for which the corresponding composite partitionvigi,
satisfies the following properties:

e the Young diagrams gii andz have no overlap (no intersection) in the
(m x n)-rectangle;

e each box in thém x n)-rectangle is either part of the Young diagram of
1 or else of the Young diagram of

e all positive entries in the atypicality matrix are inside tioung diagram
of 1z, and all negative entries are inside the Young diagramm of

As a second example ii(5|7), let us take the composite partition

P;/L: (27 2? 3? 6)7);(4? 3? 37171) (12)
The Young diagram of; 1. , properly situated in thém x n)-cross, is given in

Figure 7(a). Note thatl, J, K, L) = (5,0,7,0), and we find from (3) that the
corresponding weight = Ay, is given by

A=(4,3,31,1; —1,-2,-2,-2,-3, -5, —5). (13)

The Young diagram of; 11 is also given in Figure 7(b), represented in the x
n)-rectangle. Notice the overlap between the two diagramgoAthe previous
example, we also give the atypicality matriXA), in the appropriate positions
of the (m x n)-rectangle in Figure 7(b). Notice that there are two zerdhis
matrix, SoA is atypical. By the entry “4” in the hook connecting the twoae
(in the terminology of Definition 3.1y, = 4 andhy2 = 6), it follows thatA is
critical.

Let us consider the closely related weight

A=A—0=(322,00 0 —1,-1,—1,-2, —4,—4). (14)

@

-~

.....

7
5
a4

— 1]|-1|-=2|-3|-5|-8|-9
[o]

Figure 7. Young diagram of a composite partitin. in (a) the(m x n)-cross and (b)
the (m x n)-rectangle, together with its atypicality matrix. Here= (4, 3, 3,1,1) and
v=(7,6,3,2,2).
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Using (3), the composite partition correspondingN\tts
Ui =(2,2,3,6);(3,2,2), (15)

with again(I,.J,K,L) = (5,0,7,0). The Young diagram oF; i, properly
positioned in th&m x n)-cross, is given in Figure 8(a); and in Figure 8(b) it is
once again given but now positioned in the x n)-rectangle, together with the
atypicality matrix (agaimd(A) = A(K)). Notice that in thgm x n)-rectangle
(Figure 8(b)), the Young diagrams pfandz have no overlap, and the zeros
of the atypicality matrix are positioned in the “gap” betwebe two diagrams.
This is a general property of critical atypical weights. Maxplicitly, let7; u

be a composite partition with corresponding weight= Ap,,, and supposé

is atypical and critical. Then there is a unique integesuch thath = A +
jo, for which the corresponding composite partitian: satisfies the following
properties

e the Young diagrams gi and?, positioned in thgm x n)-rectangle, do
not cover the complete rectangle but leave a connected /'gap”

¢ all the zeros of the atypicality matrix appear in this conadagap.
5 Tame representations in gi(m|n)

Let V be an irreducible representationgifm|n) with highest weight\ in the
standard (distinguished) simple root balis The atypicality oflV and of A

is the number of zeros in the atypicality matiA), where A(A);; = (A +
p,€; —d;). Note that all the roots; — ¢; from A; | are isotropici(e; — d;,¢; —

d;) = 0. So the determination of the atypicality df is performed with the
highest weight of” with respect to the distinguished set of simple roots (6J, an
the corresponding sek,. But one can give a definition of atypicality that is

(@) (b)

.....

o kx|~
N

Figure 8. Young diagram of a composite partitionu in (a) the (m x n)-cross and
(b) the(m x n)-rectangle, together with its atypicality matrix. Here= (3,2,2) and
v=(6,3,2,2).



E.M. Moens and J. Van der Jeugt 11

independent from this choice of simple roots. lAet h*; the atypicality of A,
denoted by, = atyp(A), is the maximal number of linearly independent roots
B; such that(3;, 3;) = 0 and(A + p, 3;) = 0 for all  andj [13]. Such a set
{B;} is called aA-maximal isotropic subset ak.

Let the highest weight of an irreducible representatiome given byA in the
distinguished simple root system, with atypicalityWith respect to another set
of simple rootdI’ (with the corresponding’), V' has a different highest weight
A’. Then it was shown that atyp’) is also equal ta. In other words, one can
speak of the atypicality of the irrelg: atypicality is independent of the choice
of simple root system that it is computed in [13].

The purpose of the following is to show that for an atypicdtical repre-
sentation = V, with highest weight\ in the distinguished basis, there exists
another basi$I’ in which V' has highest weight’, in such a way that tha’-
maximal isotropic subset @’ is actually a subset ai’. In this caseV is called
tame and a character formula can be given.

In order to go fromlII to II’, we shall follow the technique of simple odd
reflections, described in [18].

Let A be determined by some composite partitian, sOA = Ag,,. We
also need the notion of then, n)-indexk of 7; u; this is the number

k:min({z’e{l,...,m}HjE {1,...,n}:

pi g1 — m)+(m—i) = vj+ Vit — n>+(n—j)} U {m+1})
(16)

In what follows, & will always denote this number. In the special case where
0, this definition coincides with the one given in [18]. When tepresentation
is typical & will be equal tom + 1; otherwisek corresponds to the smallest
row number in the atypicality matrix in which there occurseaaz Thus in the
following we shall assume that< m.

DenoteA) = A, p() = pandII™ = II. Now we perform a sequence
of simple oddn(?-reflections [18]; each of these reflections presekye, but
may change\(® 4 p(*) andII(Y). Denote the sequence of reflections by:

2
AW L0 o e e e g e

(f)
O R 1 17)

where, at each stage.”) is an odd root fromI(?). For givenw; , consider
the following sequence of odd roots (with positions on rawrow m — 1, .. .,
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row k):
rowm : ﬁm,l, ﬁm,% cee 7ﬁm,min{n,uk7k+m}
rowm —1: ﬂm—l,h ﬁ7n—1,2a s 76m71,min{n,ukfk+m71}
| (18)
rowk : Bre,1s Br,2s -+ s Bropn

in this particular order (i.e. starting witt,, ; and ending withgy, ., ). Then we
have:

Lemma 5.1 Letw; u be gl(m|n)-standard and critical ingl(m|n) and suppose
that the diagrams of and . do not overlap in th€m x n)-rectangle. Then the
sequence (18) is a proper sequence of simple odd reflectionsf,, i.e. o)
is a simple odd root froril(!), At the end of the sequence, one finds:

!
II' = {e1—e€x,e2—€3,..., €42 — €x—1,€p—1 — 01,
51 - 52752 - 637 .. '75,U.k,*1 - 5#k7511~k — €k,
€k — Oppt15Opup+1 — €ktlyr €l — Oppt2, - - s

5;4k+'rn—k —€m,€m — 5;Lk+m+1—k7

5uk+m+17k - 6uk+m+27ka SERE) 67171 - 6n} (19)
Furthermore,
k4+a—1 pr—k+i m  max{0,n—vm_it1}
R TEYTES S DIN TR DI SN e
i=k+1 j=pi+1 i=k+a j=pi+1

This proof is similar to the proof of Lemma 2.3 in [18], and leeen given
in [19]. In particular, note that criticality is necessarythis process: ifA is
not critical, the sequence of odd reflections can be perfdyimat the atypicality
matrix of A’ would not have its zeros in the right places so as to find a prope
A’-maximal isotropic subset.

Note that the technical restriction of “no overlap” (meanthat the Young
diagrams of: andv do not overlap in thém x n)-rectangle) is no real restriction
for critical representations. Indeed, by the conclusiotthef previous section,
one can perform a shift = A + jo such that there is no overlap for the related
corresponding partitiol; 7z, with essentially the same character, see (5). From
now on, we shall assume thatp is gl(m|n)-standard, critical and with no
overlap.

Corollary 5.2 The critical representatioly,,, = V5., is tame.

Proof. Having performed the simple odd reflections (18), one canptaenthe
atypicality matrix forA’ + p’ using (20). This gives:

(N +p,Bi;)=0forall (i,j)withk <i<k+a—1,u +1<j<p+a.
(21)
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Therefore the set
SA/ = {Ek —6Hk+1,6]€+1 _5ﬂk+27"'a€m _6Mk+a} (22)

isa(A’ + p')-maximal isotropic subset. Furthermor®,, C IT', see (19). This
implies thatl7;,, is tame [18]. If7; 1 is not critical, (21) does not hold, and there
is noA’-maximal isotropic subset that is also a subsdiof a

Let us illustrate some of these notions fop. = (3,3);(9,5,3,3,2,2,1) in
gl(5|7). In Figure 9(a), the atypicality matrix associated with. is given. In
Figure 9(b) the positions marked with “i” refer to th&’+ p’)-maximal isotropic
set (22). For convenience, let us refer to these positiorithassotropic diag-
onal.” The positions of the odd roots that have been usedhsequence of
reflections to go from\y,,, andII to A’ andIl’ are marked by “x” in Figure 9(b).
So, they are simply all positions to the left of the isotrogiagonal. Finally,
Figure 9(c) shows the positions of thoSg that appear on the right hand side
of (20); they are marked by “*”. These are all positions toléfeof the isotropic
diagonal that are not insidB(7; 11). One can see from this example and others
that the(m, n)-indexk determines all other necessary ingredients.

6 Character formulas and sg,,(z/y).

We have just seen that the representafign, is tame wherv; p is gl(m|n)-
standard, critical, and with no overlap in the x n)-rectangle.

For tame representations, a character formula is knownodkiad and Waki-
moto [13]. It reads, in terms of’:

ch Vi = jite P RN ey (M T (1467971, (@29)

weWw BES s
where
R = H (1—6—(1)/ H (1+e—a) (24)
O‘GAO,+ aeAll)+
(a) (b) ()
[ ]
15:13:11:10;{ 76 ! 5 ] Kk i
k i10i8i6i5i2 0 k XXX FaFSEar
X[X|X[XIXiXiij I
7i5i{38}2{-1i-2/-3 X[ x [ x [x[x[x]x —
614121 1i-2i-31-4 x| x| xix[x|[x]x
412,0{-1-4-5-6 — ——

Figure 9. Young diagram af; 1 in the (m x n)-rectangle, forn = (9,5,3,3,2,2,1)
andv = (3,3). In (a), the atypicality matrix an@in, n)-indexk are determined; in (b)
and (c) the ingredients used in the sequence of odd reflections areténtlica
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andj, is a normalization coefficient to make sure that the coeffioid ¢*’ on
the right hand side of (23) is 1. By definition pfand R

/
e PR~ =¢ PRI

As usual in this context we put

x; = e, y; = % (1<i<m,1<j<n). (25)
Now we have
ch Vg, = JA' ! Z i)
weWw
with
D= H1§i<j§m(xi - )Hl<z<g<n(y Y;) (26)
m
| Hj:l(xl + ;)
and
k—1 -1 it k4+a—1 yr
itm—i— n—j—m i— kAt
i=1 j=1 i T Yi—k+l
n . n X ,
< IT a7 I y* (27)
i=k+a j=l+a
wherel =y +1andr =n—m+k—landj, = al (due to symmetry there

area! elements of5,,, x S, that leavety,, |nvar|ant)
This expression can be written in a nicer form:

Theorem 6.1 Letty,, be given by (27) and = n — m + k — i, — 1. Then

1 —a —_ nim—a—
= Y cultn,) = ()T dey(C),(28)
" wWESH XS

where( is the following square matrix of order + m — a:
0 Y, O

C=| X, R" X, with R(”):(
0 Y, 0

i )
i (T +Yj) ) 1<i<m, 1<j<n
(29)
and with

7n7]>
1<i<m, 1<j<k—1"
J—Vm ;+1)
b
1<i<m, k+a<j<m
)19@-1, 1<j<n’

Y., = - V’:l 1+1)
v = .
+a<i<n, 1<j<n
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Proof. The proof is similar to that of [18][Lemma 3.1]. Apply Laplis theorem
for the expansion oflet(C') with respect to columns, 2,....k — 1,k +n,k +

n+1,...,n+m — a. Keeping track of the zero blocks, one finds
det(C) = (—1)7(7”7&)(5”7”1) Z (= 1)t Fim—at(m—a)(i=1)
1< < <im—a<m
x det(Cy) det(Cy), (30)

whereC, is the(m — a) x (m — a)-matrix consisting of rows;, iz, ..., im—q
of the matrix( X,, X, ), andC, is then x n-matrix

Y
i)
Y,

whereR (") is obtained by removing rows, is, . . . , im_q in R). The number

of terms on the rhs of (30) i§,™ ) (m — a)!n! = m!n!/a!; due to symmetry

considerations this is the same as the number of distinotsten the Ihs of (28).

For (i1, .-+ im—a) = (1,...,k — 1,k +n,...,n + m — a), and the diagonal

termindet C, anddet C,, the contribution on the rhs of (30) is now easily seen

to be (—1)(m-a)i=Dtn(m—a=k+1)y — But by definition of the determinant,

every term on the rhs of (30) is (up to the overall sign fa¢tet )~ (=1)) of

the forme(w)w(tz,,) with w € S,,, x S,,. Conversely, every term of the form

e(w)w(ty,,) appears as a term on the rhs of (30). It follows that (28) holds
With the same notation, one finds

Corollary 6.2 The character of a critical representation labelled bylém|n)-
standard composite partition; i (without overlap) has the following determi-
nantal form:

€ Vi, = (1) bkt ol ey ().

As an example, letv = 4, n = 5 andv; u = (1,1, 4); (3,1). One finds

6|l4l3|2 2 ko= 2
I = uk+1:2
3|1 0 -1|-4 a = 2

1{-1,-2:-3[-6

= r=n—-m+k-1=1
=

0|-2|-3|-4]|-7 n+m—a="7

Thus, according to formula (29h Vi1 7 7).5.1) = D=1 det(C) with C given
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by the matrix

Composite S-functions and characters

2 2 2 2 2
0 Yi Y3 Y3 Yi Y5 0
x Y1 Y2 Y3 Y4 Ys .%‘74
z1(xz1+y1) z1(xz1+y2) 1 (x1+y3) z1(x1+ya) z1(x1+Yys) 1
Zo Y1 Y2 Y3 Y4 Ys 1’74
za(w2+y1)  x2(raty2) w2(x2+tys) w2(z2tys)  z2(x2tys) 2
Z3 Y1 Y2 Y3 Y4 Ys 1‘74
z3(x3+y1) xs(a:eryz) Is(l’ery%) 9133(9133+y4) z3(x3+ys) 34
Y1 Ys -
T4 Ti@aty) 934(1’4+y2) I4(I4+y3) I4(I4+y4) Ta(@atys) T4
0 Y1 Ys Ys Y4 Y3 0
-3 -3 -3 -3 -3
0 Y1 Yo Ys Yy Ys 0

Thus the determinantal formula is very explicit.

The main goal of this determinantal formula however is thatlows us to
make the link with another explicit formula that is even maeeful, namely
a composite supersymmetric S-function. In order to make tlainnection,
we need to introduce some notations and properties of (symenetric) S-
functions. We shall assume that the reader is familiar witations of ordi-
nary S-functions [17], such as\(z), sx,. (), c§,, for Littlewood-Richardson
coefficients, etc.

The “contravariant” S-functions are usually defined in teraf the ordi-
nary (or “covariant”) S-functions. Suppose we have a setasfablesz =
(x1,...,T,,). Forapartitiom\, letA = (-1, —Xo,...) and denote by; = %
foralli =1,...,m, then,

sx(@) = sx(®). (31)
Similarly, sm(x) = s5/,(T). Using the contravariant S-functions, the com-
posite or “mixed” S-functions are defined [5] by

87;#(x) = Z( )IC‘S /(( ) }L/C'(:E)' (32)
¢
The product of a covariant and a contravariant S-functiaivien by
sp()5,(2) = 5, (@)su() = > 570 (@) (33)
n
where
V/mu/n Z Cs@ncw 5@ (). (34)

The composite S-functions can also be written in terms ofcanposition [15]

of x = 2/ + 2", namely
)= D Sopaur(@)

p,o,T

(39)

Sﬂ;u(aj So'_/p;T/p(x//)'

In [6] the composite supersymmetric S-functions are defingdrms of or-
dinary composite S-functions, namely:

Z SuTem/c(®

p:¢,€

Z SW;H/W(*’”)S?;W (1)-
Py
(36)

sou(T/y) = {’/p/;C’/ﬂ/(y) -
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and it can be generalized to composite skew partitions:

ST = D 5 e OS5y (0): @37

p0sT

The functionssg,,(x/y) have many properties similar to ordinary Schur
functions [5, 6,9, 10, 16]. For example [6],

/) = de bkt (Z/G)  hyy—k—jr1(z/y)
swinl /”““( ANy A ) (38)

wheresi, j, k resp.l runs from top to bottom, from left to right, from bottom
to top, resp. from right to left, andl,.(x/y) are the complete supersymmetric
polynomials defined by, (z/y) = Y"1 _o hr—r(z)er(y).

We can now formulate our main result:

Theorem 6.3 Let 7; u be agl(m|n)-standard and critical composite partition
with no overlap. The characteh Vy,, is equal tosy,, (2 /y).

The proof is similar to the proof of [18, Theorem 5.5]. Howe\there are many
technical details which need to be reinvestigated, see ppeeAdix of [19].

7 Conclusions

The determination of characters fgi(m|n) irreps has a long history, see [21]
(where a complete solution is given) and references theriirour work we
emphasize the relation between characters and supersyim®dtnctions. It
was known for a long time that the characters of typical, gi¢tal or atypical)
covariant and of (typical or atypical) contravariant reggnetations are given by
supersymmetric S-functions. In the current paper a spetask of atypical
representations, namely the critical irreps, was desdriéso for this class of
representations does the character coincide with a supersiric S-function.
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