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1 Introduction

Exact solutions of the Schrödinger equation describing certain nonrelativistic
quantum system are always attractive due to their huge potential to be applied
for the explanation of an enormous number of phenomena in quantum physics
and related areas. The problem of an external field applied to the quantum
system is among such interesting quantum mechanical problems. The following
achievements can be considered as evidence for its importance: the effect of
differently oriented external electric fields on the velocity of Rayleigh surface
acoustic waves in Lithium Niobate crystal is studied both experimentally and
theoretically in [1,2]. The response of a single cell to an external electric field
is investigated due to its possible relevance to the mechanism of defibrilla-
tion [3]. The effect of an external electric field to the crystallization of certain
proteins have been studied in [4]. Direct impact of external electric fields on
the chemical structure of molecular systems and their unprecedented control
over chemical reactivity have been discussed thoroughly in [5]. The possibility
of construction and diagonalization of the perturbed Hamiltonian matrix at a
relatively computational cost is demonstrated in [6] for three different sample
molecules in vacuo under an external field, when the perturbing external field
is a homogeneous static electric field. References [7–9] discuss powerful com-
putational methods of second- and third-order non-linear optical properties
of the quantum well structures by breaking their symmetry via an external
electric field. [10] discusses the chaotic dynamics of a hydrogen atom interact-
ing with time independent and time dependent external fields of statics and
combined electrical and magnetic type. [11] considers a massless spinor Dirac
particle in the presence of an external electromagnetic field in the cosmic string
space–time and obtains that the degeneracy of the Minkowski space spectral
becomes broken in the transition from Minkowski to cosmic string space. Re-
cently, several methods have been developed to make permanent string-like
cluster structures of colloidal particles acquiring a dipole moment in a ho-
mogeneous external electric field [12]. Also, one needs to highlight here recent
developments in the field of econophysics, where via definition of wavefunctions
and operators of the stock market it was possible to establish the Schrödinger
equation for stock price and then to study the change of the stock price un-
der an external field appearing as certain market information affecting this
price [13–15].

Recently, we presented a new model of a one-dimensional nonrelativistic
canonical quantum harmonic oscillator that exhibited semiconfinement [16].
This was achieved by replacing the constant effective mass with a mass that
depends on the position. We were able to solve the problem exactly and ob-
tained the analytic expression of the wavefunctions of the stationary states by
means of generalized Laguerre polynomials. We also observed a surprising phe-
nomenon regarding the energy spectrum of this new model: there was complete
overlap with the energy spectrum of the standard nonrelativistic canonical
quantum harmonic oscillator. We also demonstrated that in the limit when
the semiconfinement parameter a goes to infinity, the wavefunctions of this
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new model tend to the wavefunctions of the standard nonrelativistic oscilla-
tor in terms of Hermite polynomials. Here, we shall extend our study of this
model to the case when an external homogeneous force Fext = −g (g ≥ 0)
is applied. The exact solution for the nonrelativistic canonical quantum har-
monic oscillator under influence of such an external force is well-known. Its
behaviour is like the nonrelativistic canonical quantum harmonic oscillator but
with a shifted equilibrium position x. Therefore, the wavefunctions and energy
spectrum preserve their general mathematical expressions [17]. For us it was
interesting to explore the analogue of this model but with a position-dependent
effective mass. We will show that this model is still analytically solvable: we
obtain exact solutions of the wavefunctions and the energy spectrum. The
wavefunctions display again a shifted equilibrium position compared to the
nonrelativistic canonical quantum harmonic oscillator. The energy spectrum
has interesting properties: it is again equidistant, but the energy gap now
depends both on the semiconfinement parameter a and the external force g.

The structure of the present paper is as follows: in Section 2, we present
some basic information about the exact solution for the nonrelativistic canoni-
cal quantum harmonic oscillator for the cases of absence and of presence of an
external homogeneous field. We provide exact expressions of the wavefunctions
and energy spectrum for both cases. Then, Section 3 includes basic informa-
tion about the exact expressions of wavefunctions and energy spectrum of the
semiconfined oscillator model developed in our paper [16], and then we solve
exactly the semiconfined harmonic oscillator problem with position-dependent
effective mass in the presence of an external homogeneous field. The final sec-
tion includes some discussions regarding the obtained solutions. In order to
understand better the main differences of the models under construction, we
also compute probabilities of transitions to excited states under the action of
the external field.

2 Nonrelativistic harmonic oscillator without and with an external
field

As we mentioned in the Introduction, this section is informative, because all re-
sults and expressions below are already well known in nonrelativistic quantum
mechanics. We are dealing with a one-dimensional time-independent nonrela-
tivistic quantum system, for which the Schrödinger equation reads [17,18]

Ĥψ (x) = Eψ (x) , (1)

where the Hamiltonian Ĥ is a sum of the kinetic and potential term

Ĥ = Ĥ0 + V (x) , (2)

with kinetic energy operator

Ĥ0 =
p̂2x
2m0

, (3)
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and m0 being a constant effective mass of the quantum system. In general,
the momentum operator p̂x can be represented according to two different ap-
proaches. The first one is following the canonical approach [17]:

p̂x = −ih̄ d

dx
. (4)

It is worth mentioning that there exists also another non-canonical ap-
proach due to Wigner [19,20]:

p̂x = −ih̄
(

d

dx
− γ − 1/2

x
R̂

)

, (5)

where R̂ is the parity operator and γ > 0 is a positive constant. One can
easily observe that for γ = 1/2 one completely recovers the canonical form. For
simplicity, we will follow here the canonical case (4). However, it is noteworthy
that computations performed by employing the non-canonical definition (5) of
the momentum operator can also lead to attractive results [21–23].

For the quantum harmonic oscillator, the potential in the case of absence
of an external homogeneous field is given by

V (x) ≡ V ho (x) =
m0ω

2x2

2
, −∞ < x < +∞, (6)

where ω is the constant angular frequency of the quantum harmonic oscillator.
Substitution of (2) in (1) by taking into account (4) and (6) leads to the
following second order differential equation:

h̄2

2m0

d2ψ

dx2
+

(

E − m0ω
2x2

2

)

ψ = 0. (7)

Its exact solution under the condition ψ(x → ±∞) → 0 leads to the discrete
energy spectrum E ≡ Ehon and wavefunctions ψ (x) ≡ ψhon (x) as follows [17,
18]:

Ehon = h̄ω

(

n+
1

2

)

, n = 0, 1, 2, . . . . (8)

ψhon (x) = e−
m0ω

2h̄
x2

Hn

(
√

m0ω

h̄
x

)

. (9)

Herein, Hn (x) is a Hermite polynomial, defined in terms of the 2F0 hyperge-
ometric function as follows [24]:

Hn(x) = (2x)n 2F0

(

−n/2,−(n− 1)/2
− ; − 1

x2

)

. (10)

The orthogonality relation for Hermite polynomials on the whole interval
(−∞,+∞),

1√
π

∞
∫

−∞

e−x
2

Hm(x)Hn(x)dx = 2nn!δmn (11)
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yields the following orthonormal wavefunctions ψ̃n (x):

ψ̃hon (x) =
1√
2nn!

(m0ω

πh̄

)

1
4
e−

m0ωx2

2h̄ Hn

(
√

m0ω

h̄
x

)

. (12)

Next, let us assume that an external homogeneous field V ext (x) = gx is
applied to the nonrelativistic quantum harmonic oscillator system (6). Then,
it is obvious that the resulting potential will be changed as follows [17]:

V (x) ≡ V ho (x) + V ext (x) =
m0ω

2x2

2
+ gx, −∞ < x < +∞. (13)

The following Schrödinger equation corresponding to this extended potential
is still exactly solvable:

h̄2

2m0

d2ψ

dx2
+

(

E − m0ω
2x2

2
− gx

)

ψ = 0. (14)

Its solutions lead to the discrete energy spectrum E ≡ Egn and wavefunctions
ψ (x) ≡ ψgn (x) as follows [17]:

Egn = h̄ω

(

n+
1

2

)

− g2

2m0ω2
, n = 0, 1, 2, . . . , (15)

ψ̃gn (x) = ψ̃hon

(

x+
g

m0ω2

)

(16)

=
1√
2nn!

(m0ω

πh̄

)
1
4

e−
m0ω2

(

x+
g

m0ω2

)2

2h̄ Hn

(
√

m0ω

h̄

(

x+
g

m0ω2

))

.

One easily observes that the analytical expression (15) of the energy spec-
trum of the oscillator under the external field differs from (8) by an additional

term − g2

2m0ω2 . The analytical expression (16) of wavefunction of the oscilla-
tor under the external field coincides with (12) up to a shift x → x + g

m0ω2 .
Both the energy spectrum (15) and wavefunctions (16) easily yield the energy
spectrum (8) and wavefunctions (12) by putting g = 0.

3 Semiconfined harmonic oscillator model with a
position-dependent effective mass under an external field

In our recent paper [16] we constructed a nonrelativistic quantum harmonic
oscillator in the canonical approach with the wavefunctions tending to zero
at the right side at position x → +∞, but from the left side already at some
finite value of the position x, i.e. ψ(x) = 0 for −∞ < x ≤ −a with a a positive
constant (a > 0). Therefore, we called this a semiconfined harmonic oscillator
model. The vanishing of the wavefunctions of the oscillator for x ≤ a implied
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that the potential V (x) |x=−a tends to +∞. We achieved this effect of an “infi-
nite high wall” by replacing the constant effective mass m0 of the oscillator by
a position-dependent effective mass M (x). Taking into account this property
of the effective mass, the following Hermitian version of the kinetic energy op-
erator with position-dependent effective mass (also called as BenDaniel-Duke
kinetic energy operator) was chosen for our further computations [25]:

Ĥ0 ≡ ĤBD
0 = − h̄

2

2

d

dx

1

M (x)

d

dx
. (17)

Here again one needs to mention that different versions of nonrelativistic
kinetic energy operators (3) exist for the case of effective mass changing with
position. There are Gora-Williams, Zhu-Kroemer, von Roos kinetic energy op-
erators [26–28] as well as kinetic energy operators based on the contact point
transformation method [29–32] and non-Hermitian PT symmetric kinetic en-
ergy operators [33–38].

Rewriting the harmonic oscillator potential V (x) via modification of (6)
under the replacement m0 →M (x)

V (x) ≡ V ho (x) =
M (x)ω2x2

2
, −a < x < +∞, (18)

we solved exactly the following Schrödinger equation corresponding to this
potential

h̄2

2m0

(

d2ψ

dx2
+

1

a+ x

dψ

dx

)

+
aE (a+ x)− m0ω

2a2

2 x2

(a+ x)
2 ψ = 0, (19)

by using the following simple analytic expression for the position-dependent
effective mass M (x):

M (x) =







am0

a+ x
, for − a < x < +∞

+∞, for x ≤ −a
(a > 0). (20)

We found that the energy spectrum E of this oscillator model completely
overlaps with the energy spectrum of the nonrelativistic quantum harmonic
oscillator (8), i.e.

E ≡ En = h̄ω

(

n+
1

2

)

, (21)

but the orthonormalized wavefunctions of the stationary states are expressed
in terms of the generalized Laguerre polynomials as follows:

ψ̃n (x) = Cn ·
(

1 +
x

a

)

m0ω

h̄
a2

e−
m0ω

h̄
a(x+a)L

(2m0ω

h̄
a2)

n

(

2
m0ω

h̄
a (x+ a)

)

, (22)

(−a < x < +∞),
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where Cn is a normalization constant that can be extracted from the orthog-
onality relation for the wavefunctions (22):

∫ +∞

−∞

ψ̃m(x)ψ̃n(x) dx =

∫ +∞

−a

ψ̃m(x)ψ̃n(x) dx = δmn.

The exact expression of the normalization constant is

Cn = (−1)
n
(

2
m0ω

h̄
a2
)

m0ω

h̄
a2+ 1

2

√

n!

aΓ
(

n+ 2m0ω
h̄ a2 + 1

) . (23)

Also, it was shown that the wavefunctions (22) tend to the Hermite oscil-
lator wavefunctions (12) when a→ +∞. Its proof was based on the following
known limit relation between the Laguerre and Hermite polynomials [24]:

lim
α→+∞

(

2

α

)
1
2
n

L(α)
n

(

(2α)
1
2 x+ α

)

=
(−1)

n

n!
Hn (x) ,

and another simple limit relation

lim
a→+∞

(

1 +
x

a

)λ2
0a

2

e−λ
2
0a(x+a) = e−

λ2
0
x2

2 ,

as well as application of Stirling’s approximation for the Gamma function.
Now, let us assume that an external homogeneous field V ext (x) is applied

to the nonrelativistic semiconfined harmonic oscillator model with a position-
dependent effective mass (18). Then, it is obvious that the resulting potential
will be changed as follows:

V (x) ≡ V ho (x) + V ext (x) =
M (x)ω2x2

2
+ gx, −a < x < +∞. (24)

Then, the Schrödinger equation corresponding to eqs. (17), (20) and (24) can
be written as follows:

d2ψ

dx2
+

1

a+ x

dψ

dx
−
(

m2
0ω

2a2

h̄2 x2 + 2m0ga
h̄2 x (a+ x)− 2m0aE

h̄2 (a+ x)

(a+ x)
2

)

ψ = 0.

(25)
In order to solve this, let us apply the following transformation to a di-

mensionless variable ξ:

ξ =
x

a
,

dψ

dx
=
dξ

dx

dψ

dξ
=

1

a

dψ

dξ
,

d2ψ

dx2
=

1

a2
d2ψ

dξ2
.

Then, introducing also the following notation

λ0 =

√

m0ω

h̄
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and

c0 =
2m0a

2E

h̄2
, c1 =

2m0a
3g

h̄2
, c2 = c0 +

m2
0ω

2a4

h̄2
= c0 + λ40a

4 (26)

one arrives at the following second-order differential equation:

ψ′′ +
1

1 + ξ
ψ′ +

c0 − (c1 − c0) ξ − (c2 + c1 − c0) ξ
2

(1 + ξ)
2 ψ = 0, (27)

where ψ′′ ≡ d2ψ
dξ2 and ψ′ ≡ dψ

dξ .
Since this is a second order differential equations of the type

ψ′′ +
τ̃

σ
ψ′ +

σ̃

σ2
ψ = 0,

with σ and σ̃ being polynomials of at most second degree and τ̃ being a
polynomial of at most first degree, with

τ̃ = 1, σ = 1 + ξ, σ̃ = c0 − (c1 − c0) ξ − (c2 + c1 − c0) ξ
2,

allows us to apply the Nikiforov-Uvarov method [39] to solve eq. (27) exactly.
We write the solution for ψ as

ψ = ϕ (ξ) y, (28)

where ϕ (ξ) is defined as a result of straightforward computations as follows:

ϕ (ξ) = (ξ + 1)
λ2
0a

2

e−
√
λ4
0
a4+c1ξ. (29)

The necessary boundary conditions for ϕ (ξ) are satisfied:

lim
ξ→−1

ϕ(ξ) = 0, lim
ξ→+∞

ϕ(ξ) = 0.

The substitution of ψ in eq.(27) leads to the following second-order differ-
ential equation for y:

(ξ + 1) y′′ +

(

2λ20a
2 + 1− 2

√

λ40a
4 + c1 (ξ + 1)

)

y′ (30)

=

(

(

2λ20a
2 + 1

)

√

λ40a
4 + c1 − 2λ40a

4 − c1 − c0

)

y.

In order to have polynomial solutions, compare with the following equation
for the generalized Laguerre polynomials [24]

(x− d) y′′n (x) + {2ε (x− d) + α+ 1} y′n (x) = 2εnyn (x) ,

where, d < x, ε < 0 and α+ 1 > 0. Then

yn (x) = L(α)
n (2ε (d− x)) ,
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and hence the energy spectrum of the model under consideration is

E ≡ Egn = h̄ω

√

1 +
2g

m0ω2a

(

n+
1

2
+
m0ω

h̄
a2
)

−m0ω
2a2 − ag. (31)

The orthonormal wavefunctions have the following exact expression

ψ̃gn (x) = Cgn

(

1 +
x

a

)

m0ω

h̄
a2

e
−

m0ω

h̄
a

√

1+ 2g

m0ω2a
(x+a)

L
(2m0ω

h̄
a2)

n

(

2
m0ω

h̄
a

√

1 +
2g

m0ω2a
(x+ a)

)

.

(32)
Here, the normalization constant is determined in similar manner to (23) as
follows:

Cgn =

(
√

1 +
2g

m0ω2a

)

m0ω

h̄
a2+ 1

2

Cn

= (−1)
n

(

2
m0ω

h̄
a2
√

1 +
2g

m0ω2a

)

m0ω

h̄
a2+ 1

2

√

n!

aΓ
(

n+ 2m0ω
h̄ a2 + 1

) .

(33)

Our main goal was to show that the semiconfined quantum harmonic os-
cillator with position-dependent effective mass is exactly solvable even if it
is under an external homogeneous field. We achieved this goal by obtaining
analytical expressions of the energy spectrum (31) and normalized wavefunc-
tions (32). In the following section, we are going to discuss some important
properties of this model.

4 Discussion and Conclusion

First of all, we note an important property of the energy spectrum (31).
Whereas in all previous models – canonical without external field (8), canoni-
cal with external field (15), and semiconfined without external field (21) – the
energy gap ∆E of the equidistant spectrum is always given by

∆E = h̄ω,

the energy gap of the equidistant spectrum of the current semiconfined model
with external field (31) is

∆E = h̄ω

√

1 +
2g

m0ω2a
. (34)

Thus the energy levels are wider apart, and this gap tends to the standard gap
when g goes to 0 or when a tends to infinity.

Observe also that the energy levels (31) tend to the energy levels (15) when
a goes to infinity. In order to see this, expand the square root in (31) as follows:

√

1 +
2g

m0ω2a
= 1 +

g

m0ω2a
− g2

2m2
0ω

4a2
+ . . . .
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Fig. 1 Comparative plot of the semiconfined quantum harmonic oscillator potential with-
out (18) an external field (dashed line) and with an external field (24) (solid line). Also given

are the corresponding energy levels (21) and (31) and the probability densities
∣

∣ψ̃n(x)
∣

∣

2

of

the wavefunctions of the stationary states (22) and (32) for the value of g = 1 and for the
ground state and 6 excited states. Fig. a) is for the confinement parameter a = 2; Fig. b)
for the confinement parameter a = 12 (m0 = ω = h̄ = 1).

Substitution in (31) leads to the following expansion for the energy spectrum:

Egn = h̄ω

(

1 +
g

m0ω2a
− g2

2m2
0ω

4a2
+ . . .

)(

n+
1

2
+
m0ω

h̄
a2
)

−m0ω
2a2 − ag,

and from here it is easy to see that it reduces to (15) when a → ∞. This
statement is also true for the corresponding wavefunctions (32) and (16).

In order to understand better the impact of the external homogeneous field
on the behavior of the semiconfined oscillator model under study, we present
some plots in Fig. 1. We plot the semiconfined quantum harmonic oscillator
potential without (18) and with an applied external field (24), the correspond-

ing energy levels (21) and (31), and the probability densities
∣

∣

∣ψ̃n(x)
∣

∣

∣

2

of the

wavefunctions of the stationary states (22) and (32). We choose the value
g = 1, and make the plots for the ground state and 6 excited states. We made
these plots for a small value of the semiconfinement parameter a, a = 2, in
Fig. 1a, and for a large value of a, a = 12, in Fig. 1b (m0 = ω = h̄ = 1).

In Fig. 1a one observes that the location of ground state energy level Eg0
is lower than the location of the ground state energy level E0. However, all
excited energy levels Egn (n > 0) are higher than the energy levels En (n > 0).
A similar feature can be observed from figure Fig.1b, where the behavior of
the semiconfined oscillator becomes closer to the Hermite oscillator due to
the fact that a is bigger (thus closer to infinity). There, the ground and first
five excited energy levels Egn (n = 0, 1, . . . , 5) are below the energy levels En.
Higher up, the energy levels of Egn are greater than En. Such a behavior can be
explained by the computation of the ratio Egn/En. From this ratio one obtains
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that Egn ≥ En only if

n ≥ −1

2
+

1

2

mωa2

h̄

(

√

1 +
2g

mω2a
− 1

)

.

In order to observe the impact of the external field under the semiconfine-
ment effect, we decided to study also the probabilities of transitions. Let us
imagine the situation where an external homogenenous field is suddenly ap-
plied to the semiconfined oscillator with a position-dependent effective mass in
the ground state. The determination of the probabilities of transitions of the
nonrelativistic harmonic oscillator wavefunctions (12) from ground to excited
states under the action of such a perturbation are described in [17]. These
probabilities are defined as follows:

w0k =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

ψ̃ho0 (x) ψ̃gk (x) dx

∣

∣

∣

∣

∣

∣

2

. (35)

Taking into account the expression of ψ̃gk (x) (16) and of the wavefunctions

ψ̃hok (x) (12), one has

w0k =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

ψ̃ho0 (x) ψ̃hok

(

x+
g

m0ω2

)

dx

∣

∣

∣

∣

∣

∣

2

. (36)

The exact computation of this transition probability is a Poisson distribution,
i.e.

w0k =
κ̄2

k!
e−κ̄

2

, κ̄ = (2m0h̄ω)
−1/2 g

ω
. (37)

In order to explore the semiconfinement oscillator model under study, ob-
serve that the wavefunctions ψ̃gk (x) (32) can be expressed through the wave-

functions ψ̃hok (x) (22):

ψ̃gn (x) =

(

m0ω
2a

2g +m0ω2a

)
1
4

ψ̃n

(
√

1 +
2g

m0ω2a
x

)

. (38)

Then, the computation of the transition probabilities of the semiconfined har-
monic oscillator wavefunctions (22) from ground to excited states ψ̃gk (x) (32)
under the action of an external homogeneous field leads to the following ex-
pression:

w0k =
1

√

1 + 2g
m0ω2a

∣

∣

∣

∣

∣

∣

∞
∫

−a

ψ̃0 (x) ψ̃k

(
√

1 +
2g

m0ω2a
x

)

dx

∣

∣

∣

∣

∣

∣

2

. (39)
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This can be computed exactly using the following known integral relation for
the generalized Laguerre polynomials [40, eq.(2.19.3.3)]:

∞
∫

0

ζλe−pζL(λ)
n (cζ) dζ =

Γ (λ+ n+ 1) (p− c)
n

n!pλ+n+1
, ℜ(p) > 0, ℜ(λ) > −1.

Without going into the details of this technical calculation, one obtains for
(39) :

w0k =

(

2λ20a
2 + 1

)

k

k!





1−
√

1 + 2
√
2λ−1

0 κ̄

1 +
√

1 + 2
√
2λ−1

0 κ̄





2k



2
√

1 + 2
√
2λ−1

0 κ̄

1 + 2
√
2λ−1

0 κ̄+
√

1 + 2
√
2λ−1

0 κ̄





2λ2
0a

2+1

.

(40)
It can be shown that (40) tends to (39) for a→ ∞.

We leave it to the reader as an exercise to compute the transition probabil-
ities of the nonrelativistic harmonic oscillator wavefunctions from any excited
state s to k under action of the external homogeneous field. Such a probabil-
ity wsk is also exactly computable by applying the following integral relation
involving two generalized Laguerre polynomials [40, eq.(2.19.14.6)]:

∞
∫

0

ζλe−pζL(λ)
s (bζ)L

(λ)
k (cζ) dζ =

(λ+ 1)s (λ+ 1)k
s!k!ps+k+λ+1

Γ (λ+ 1)

× (p− b)
s
(p− c)

k
2F1

(

−s,−k
λ+ 1

;
bc

(p− b) (p− c)

)

.

(41)

Then wsk will be expressed through Meixner polynomials. Under the limit
a → ∞ the probability of the corresponding transition for the nonrelativistic
quantum harmonic oscillator under the external homogeneous field will be
recovered by applying the known limit relation between Meixner and Charlier
polynomials [24].

Finally, note that we considered here only the case when g ≥ 0. The same
problem can also be studied for negative values of g. However, then it is nec-
essary to extend the computations done here to states both of a continuous
and discrete spectrum.
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