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Abstract. We present a new model of a one-dimensional non-relativistic canonical quantum harmonic
oscillator which is semiconfined. Semiconfinement is achieved by replacing the constant effective mass
with a mass that varies with position. The problem is exactly solvable and the analytic expression of
the wavefunctions of the stationary states is expressed by means of generalized Laguerre polynomials.
Surprisingly, the energy spectrum completely overlaps with the energy spectrum of the standard non-
relativistic canonical quantum harmonic oscillator. In the limit when the semiconfinement parameter a
goes to infinity, the wavefunctions also tend to the wavefunction of the standard oscillator in terms of
Hermite polynomials.

PACS. 03.65.-w Quantum mechanics – 02.30.Hq Ordinary differential equations – 03.65.Ge Solutions of
wave equations: bound states

1 Introduction

The harmonic oscillator, restoring its displacement to the equilibrium position under the force F = −kx, can be
considered as one of the most versatile problems of modern physics. The solution to this problem in classical mechanics
is standard. The motion of the simple harmonic oscillator under the force F is a sinusoidal oscillation with some constant
amplitude that defines the borders of the maximal oscillations for the classical problem [1]. The study of the same
problem within quantum mechanics opens the door to different viewpoints. In the non-relativistic approximation to
quantum mechanics, the Schrödinger equation for the harmonic oscillator can be solved exactly. Here, two well-known
solutions to the one-dimensional non-relativistic quantum harmonic oscillator problem are known: in the canonical
approach, one finds the discrete energy spectrum with ground state level 1

2 h̄ω and wavefunctions of the stationary
states expressed by the Hermite polynomials [2]; in the non-canonical approach, one finds a discrete energy spectrum
with ground state level ah̄ω (a ≥ 1

2 ) and wavefunctions of the stationary states expressed by the generalized Laguerre
polynomials [3]. It is obvious that canonical approach to the harmonic oscillator problem is simply one of the special
cases of the same problem under the non-canonical approach, when a = 1

2 [4, 5].
Inspired by the solution of the (non-canonical) non-relativistic quantum oscillator in terms of generalized Laguerre

polynomials, we decided to explore other possibilities to achieve exact solutions of the harmonic oscillator wavefunctions
in terms of these polynomials. We achieved this goal by considering the non-relativistic quantum harmonic oscillator in
the canonical approach, with wavefunctions vanishing from the left side at some finite value of the position x and from
the right side at infinity. Due to such a property, we call this model the semiconfined quantum harmonic oscillator.
Despite the fact that such an oscillator model has not been studied before theoretically, it can be a powerful tool
for the description of a number of physical phenomena. For example, the growth of a monocrystal on a substrate,
modern nano-scale FET structures, extensions of the various stochastic processes as well as a number of problems
belonging to econophysics can be studied by the application of the semiconfined harmonic oscillator model [6–10].
For example, if the morphology, equilibrium crystal shape and shape evolution of a monocrystal of micron size grown
on a substrate can be accurately predicted by the Gibbs–Curie–Wulff theorem [11], then one can assume that the
exactly-solvable semiconfined model of the quantum harmonic oscillator can be considered as a good candidate for
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the accurate description of the above listed properties of the sub-micron or nano-sized crystallic structures grown on
various substrates. A similar assumption is also true for the fabrication of advanced nano-scale QFETs which are
considered as modern quantum well types of MOSFETs [12].

The main reason for the absence of such an oscillator model is due to the opinion that the semiconfined oscillator
problem generalizing the non-relativistic oscillator in terms of the Hermite polynomials can not be solved exactly. In
such problems, one is lead to approximate numerical solutions in terms of the zeros of Hermite functions [13]. Here,
we show that such an exactly solvable model does exist provided one replaces the constant effective mass m0 of the
non-relativistic harmonic oscillator by a particular position-dependent effective mass M (x).

The structure of the current paper is as follows: Section 2 collects some standard information about the non-
relativistic quantum harmonic oscillator in the canonical approach, which energy spectrum En ∼ n+ 1

2 and orthonormal
wavefunctions of the stationary states expressed via the Hermite polynomials. Then, the model of the semiconfined
quantum harmonic oscillator is presented in Section 3. There, we also propose the expression of the position-dependent
effective mass for the model under study. We show that the corresponding Schrödinger equation has exact solutions
with wavefunctions in terms of the generalized Laguerre polynomials, and that the energy spectrum for this model
overlaps with the energy spectrum of the canonical non-relativistic quantum harmonic oscillator. Further discussion
of the obtained results, including the correct limit relations from the constructed semiconfined model to the standard
Hermite oscillator, is provided in the last section.

2 The non-relativistic canonical quantum harmonic oscillator

The non-relativistic quantum harmonic oscillator in the canonical approach is one of the most inspiring examples of
exactly solvable quantum systems. Its beauty stems from the simplicity of the equidistant energy spectrum and the
exact solution of the wavefunctions of the stationary states in terms of the Hermite polynomials. For further reference
and for comparison with the new model, we are going to list some known results of this oscillator.

The one-dimensional time-independent Schrödinger equation for a non-relativistic quantum system reads

Ĥψ (x) = Eψ (x) , (1)

where Ĥ consist of a kinetic and potential term

Ĥ = Ĥ0 + V (x) , (2)

with

Ĥ0 =
p̂2x
2m0

. (3)

Here, m0 is a constant effective mass of the quantum system and in the canonical approach the momentum operator
p̂x is represented as

p̂x = −ih̄ d

dx
. (4)

For the quantum harmonic oscillator, the potential is given by

V (x) =
m0ω

2x2

2
, −∞ < x < +∞, (5)

where ω is a constant angular frequency. Substitution of (4) and (5) in the previous equations leads to the following
second order differential equation:

h̄2

2m0

d2ψ

dx2
+

(

E − m0ω
2x2

2

)

ψ = 0. (6)

The condition that ψ(x) should tend to 0 when x→ ±∞ leads to the discrete energy spectrum E ≡ En and the well
known wavefunctions ψ (x) ≡ ψn (x) [2]:

En = h̄ω

(

n+
1

2

)

, n = 0, 1, 2, . . . . (7)

ψn (x) = e−
m0ω

2h̄
x2

Hn

(
√

m0ω

h̄
x

)

. (8)
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Herein, Hn (x) is a Hermite polynomial, defined in terms of the 2F0 hypergeometric function as follows [14]:

Hn(x) = (2x)n 2F0

(

−n/2,−(n− 1)/2
− ; − 1

x2

)

. (9)

The orthogonality relation for Hermite polynomials on the whole interval (−∞,+∞),

1√
π

∞
∫

−∞

e−x2

Hm(x)Hn(x)dx = 2nn!δmn (10)

yields the following orthonormal wavefunctions ψ̃n (x):

ψ̃n (x) =
1√
2nn!

(m0ω

πh̄

)

1
4
e−

m0ωx
2

2h̄ Hn

(
√

m0ω

h̄
x

)

. (11)

3 Semiconfined harmonic oscillator model with a position-dependent effective mass

As announced in the Introduction, we are going to construct a non-relativistic quantum harmonic oscillator in the
canonical approach, but with a different behavior of the wavefunctions than the “Hermite oscillator” of the previous
section. Whereas the Hermite oscillator wavefunctions tend to zero at infinity, the wavefunctions of the oscillator
model under construction tend to zero at the right side at +∞, but from the left side already at some finite value of
the position x, i.e. ψ(x) = 0 for −∞ < x ≤ −a with a a positive constant (a > 0). Therefore, we call the model a
semiconfined harmonic oscillator. The vanishing of the wavefunctions of the oscillator model for x ≤ a implies that
the potential V (x) |x=−a should tend to +∞. One of the ways to achieve such an effect of an “infinite high wall” for
the potential is to replace the constant effective mass m0 of the oscillator system by a position-dependent effective
mass M (x).

The idea of an effective mass depending on the position is not new in physics. Its birth can be traced to the seminal
experiment on the observation of tunneling of electrons in superconductors [15, 16]. A theoretical explanation of this
effect was based on the assumption that the band structure changes with position within the independent-particle
model of the superconductor [17]. Later, this assumption developed to the more general assumption stating that change
of the band structure also changes an effective mass of the solid state system, and the following Hermitian version of
the kinetic energy operator with position-dependent effective mass was proposed (it is also called as BenDaniel-Duke
kinetic energy operator) [18]:

ĤBD
0 = − h̄

2

2

d

dx

1

M (x)

d

dx
. (12)

Various modified versions of the BenDaniel-Duke kinetic energy operator have been introduced, based on different
properties of the solid state structures [19–21]. However, it is shown that singular terms appearing in modified versions
of the kinetic energy operator (12) and leading to a discontinuity of the wavefunction are compensated only in the case
of the BenDaniel-Duke kinetic energy operator [22]. The Schrödinger equation with the BenDaniel-Duke kinetic energy
operator (12) has been used successfully in a number of computations related to various aspects of non-relativistic
quantum mechanics [23–26]. We have to note here that definition of Hermitian version of the kinetic energy operator
with position-dependent effective mass via (12) and its modifications is not unique. Application of the contact point
transformation method for the proper definition of the kinetic energy operator with position-dependent effective mass
is proposed in [27] and it is also shown that such an application leads to a special case of the Von Roos kinetic
energy operator [21] with α + β + γ = −1, where α = − 1

4 , β = − 1
2 and γ = − 1

4 . More details of such interesting
correspondence can be found in [28–30]. Another approach for generalizing the kinetic energy operator in the case
of position-dependent mass is the introduction of the non-Hermitian PT symmetric kinetic energy operator [31] in
which the ordinary derivative is replaced by the q-derivative [32]. Successful application of such an approach for the
description of various quantum systems with position-dependent effective mass can be found in [33–37]. Here, we are
going to use the BenDaniel-Duke kinetic energy operator (12) for our current computations highlighting that both
contact point transformation and non-Hermitian PT symmetric generalization methods for the kinetic energy operator
can also lead to attractive results with slightly different behaviour of the semiconfined oscillator model.

From a mathematical viewpoint it is interesting to study the behavior of exact solutions for wavefunctions and
energy spectra for certain analytical expression ofM (x). For a semiconfined harmonic oscillator model, the expression
of the position-dependent effective mass M (x) should satisfy the following main conditions:

– The harmonic oscillator potential should have infinite high wall at the position x = −a, or V (x) = +∞ for
−∞ < x ≤ a;
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– The position-dependent effective mass M (x) should yield the constant effective mass m0 for x = 0, and also under
the limit a→ ∞;

– The Schrödinger equation corresponding to the Hamiltonian with the BenDaniel-Duke kinetic energy operator and
harmonic oscillator potential with the position-dependent effective mass M (x) should be exactly solvable, i.e. with
analytic expressions for the wavefunctions of the stationary states and for the energy spectrum;

– The obtained analytic expressions for the energy spectrum and the wavefunctions should reduce to (7) and (11)
under the limit a→ ∞.

We propose the following simple analytic expression for the position-dependent effective mass M (x):

M (x) =







am0

a+ x
, for − a < x < +∞

+∞, for x ≤ −a
(a > 0). (13)

Note that this expression is different from certain standard choices for the mass function [33–35], but is chosen so as
to serve for our purpose. It can indeed be verified that the conditions listed above are satisfied. First of all, one needs
to rewrite the harmonic oscillator potential V (x) via modification of (5) under the replacement m0 →M (x):

V (x) =
M (x)ω2x2

2
, −a < x < +∞. (14)

Now, one can easily observe that
V (−a) = +∞. (15)

Note that
lim

x→+∞

V (x) = +∞.

Such a behavior of the harmonic oscillator potential implies the vanishing property of the wavefunction at +∞.
Next, we easily observe from (13) that the second condition is satisfied:

M (0) = m0 and lim
a→∞

M (x) = m0. (16)

Now we want to show that the Schrödinger equation corresponding to the Hamiltonian with the BenDaniel-Duke
kinetic energy operator and harmonic oscillator potential with the position-dependent effective mass M (x) is exactly
solvable. Let us rewrite the Schrödinger equation corresponding to eqs. (12), (13) and (14):

d2ψ

dx2
+

1

a+ x

dψ

dx
−

m2

0
ω2a2

h̄2 x2 − 2m0aE
h̄2 (a+ x)

(a+ x)
2 ψ = 0. (17)

Introduction of a new dimensionless variable ξ = x
a
gives

d2ψ

dξ2
+

1

1 + ξ

dψ

dξ
−

(

λ40a
4
)

ξ2 − c0ξ − c0

(1 + ξ)
2 ψ = 0, (18)

where

c0 =
2m0a

2E

h̄2
, λ0 =

√

m0ω

h̄
. (19)

We look for exact solutions of eq.(18) of the following form

ψ = y (ξ)ϕ (ξ) , (20)

where ϕ (ξ) is chosen as follows:

ϕ (ξ) = C · (1 + ξ)
A
eBξ. (21)

By substitution and performing straightforward computations, one can obtain that

A = ε1λ
2
0a

2, B = ε2λ
2
0a

2, ε1 = ±1, ε2 = ±1, (22)

and the second-order differential equation reduces to:

(1 + ξ) y′′ (ξ) +
[

2 (ε1 + ε2)λ
2
0a

2 + 1 + 2ε2λ
2
0a

2ξ
]

y′ (ξ) +
[

2 (1 + ε1ε2)λ
4
0a

4 + ε2λ
2
0a

2 + c0
]

y (ξ) = 0. (23)
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Now we need to take into account that our wavefunctions have to vanish at position values ξ = −1 (x = −a) and
ξ → +∞ (x→ +∞), in other words, the following limits must be satisfied:

lim
ξ→+∞

ϕ (ξ) = lim
ξ→−1

ϕ (ξ) = 0.

Clearly, this only holds when A is positive and B negative. Thus only one of the four solutions of (22) remains:

ϕ (ξ) = C · (1 + ξ)
λ2

0
a2

e−λ2

0
a2ξ. (24)

Therefore, eq.(23) simplifies as follows:

(1 + ξ) y′′ (ξ) +
(

1− 2λ20a
2ξ
)

y′ (ξ) =
(

λ20a
2 − c0

)

y (ξ) . (25)

This equation has polynomial solutions for y, by comparing it to the second order differential equation for the gener-
alized Laguerre polynomials. Indeed, writing

α = 2λ20a
2

in (25),

(1 + ξ) y′′ (ξ) + (1 + α− α(1 + ξ)) y′ (ξ) =
(α

2
− c0

)

y (ξ) , (26)

one can see that a polynomial solution is given by

yn (ξ) = L(α)
n (α(ξ + 1)) , (27)

provided
α

2
− c0 = −nα ⇔ c0 = (n+

1

2
)α = (n+

1

2
)2λ20a

2. (28)

Herein, L
(α)
n (z) is the classical generalized Laguerre polynomial, satisfying the second order differential equation [14]

z p′′(z) + (α+ 1− z) p′(z) + n p(z) = 0, p(z) = L(α)
n (z) (29)

given explicitly in terms of the 1F1 hypergeometric function as follows:

L(α)
n (z) =

(α+ 1)n
n!

1F1

(

−n
α+ 1

; z

)

. (30)

From comparison of (28) and (19) one obtains that energy spectrum of the model under construction completely
overlaps with energy spectrum of the non-relativistic quantum harmonic oscillator (7), i.e.

E ≡ En = h̄ω

(

n+
1

2

)

. (31)

Rewriting the solution (27) in terms of the original data, the wavefunctions of the stationary states are expressed in
terms of the generalized Laguerre polynomials as follows:

ψ̃n (x) = Cn ·
(

1 +
x

a

)

m0ω

h̄
a2

e−
m0ω

h̄
a(x+a)L

(2m0ω

h̄
a2)

n

(

2
m0ω

h̄
a (x+ a)

)

, (−a < x < +∞) (32)

where Cn is an orthonormalization parameter. It is useful to extend the domain of ψ̃ by putting ψ̃(x) = 0 for x ≤ −a.
From the orthogonality relations of generalized Laguerre polynomials, one obtains

∫ +∞

−∞

ψ̃m(x)ψ̃n(x) dx =

∫ +∞

−a

ψ̃m(x)ψ̃n(x) dx = δmn,

for the following orthonormalization parameter:

Cn = (−1)
n
(

2
m0ω

h̄
a2
)

m0ω

h̄
a2+ 1

2

√

n!

aΓ
(

n+ 2m0ω
h̄
a2 + 1

) . (33)

The obtained analytic expressions of the energy spectrum (31) and the wavefunctions of the stationary states (32)
show that the third condition is satisfied. In the next section we will discuss some properties of the solution, and its
behavior under the limit a→ ∞.
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Fig. 1. The semiconfined quantum harmonic oscillator potential (14), the corresponding energy levels (31) and the probability

densities
∣

∣ψ̃n(x)
∣

∣

2

of the wavefunctions of the stationary states (32) for the ground and 6 excited states: a) for the confinement
parameter a = 2; b) for the confinement parameter a = 12 (m0 = ω = h̄ = 1).

4 Discussion and Conclusion

Our main goal was to show that the Schrödinger equation corresponding to a Hamiltonian with the BenDaniel-Duke
kinetic energy operator and a harmonic oscillator potential with position-dependent effective mass M (x) of type (13)
is exactly solvable. We obtained indeed orthonormalized wavefunctions of the stationary states (32) and the energy
spectrum (31) of the semiconfined quantum system under study. It proves that our third condition is completely
satisfied.

Let us now examine if our final condition is satisfied, i.e. if the obtained analytical expressions for the energy
spectrum and for the wavefunctions reduce to the corresponding expressions (7) and (11) of the canonical non-
relativistic quantum harmonic oscillator under the limit a→ ∞. For the energy spectrum, this is clear, as both spectra
coincide. For the wavefunctions, it is useful to consider first some examples and some plots, in order to describe their
behavior when a tends to infinity. In Figure 1, we present two such plots, for a = 2 and for a = 12. We plot here

the potential function (14), the lowest energy levels En, and the probability densities
∣

∣

∣
ψ̃n(x)

∣

∣

∣

2

, for n = 0, 1, . . . , 6.

One observes from the distribution of the probability densities that when the semiconfinement parameter a is close to
zero, then the quantum system stays close to the infinitely high wall. As the value of the parameter a increases, the
effect of the semiconfinement gradually disappears and the behavior becomes harmonic oscillator-like. This is a quite
interesting phenomenon, and it shows the potential importance of this simple model.

The observation that the wavefunctions (32) tend to the Hermite oscillator wavefunctions (11) when a → +∞
can also be proved analytically. The actual computation is based on the following known limit relation between the
Laguerre and Hermite polynomials [14]:

lim
α→+∞

(

2

α

)
1

2
n

L(α)
n

(

(2α)
1

2 x+ α
)

=
(−1)

n

n!
Hn (x) .

Therefore, one can check that the following limit holds:

lim
a→+∞

L
(2λ2

0
a2)

n

(

2λ20a (x+ a)
)

=
(−1)

n

n!
Hn (λ0x) .

Also, one can easily prove that

lim
a→+∞

(

1 +
x

a

)λ2

0
a2

e−λ2

0
a(x+a) = e−

λ
2

0
x
2

2 .
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The reduction of the normalization parameter Cn under the limit a→ +∞ is obtained using Stirling’s approximation
for the Gamma function. Thus the fourth condition is also satisfied: under this limit, the energy spectrum and the
wavefunctions of the semiconfined oscillator model tend to those of the Hermite oscillator.

We consider the oscillator model introduced in this short paper as relevant. One the one hand, it is a very simple
model which is exactly solvable, with an energy spectrum coinciding with the ordinary harmonic oscillator. On the
other hand, it clearly exhibits a semiconfinement effect, for which no exactly solvable models existed so far. These
properties can be important for the exploration of a number of physical phenomena in which semiconfinement appears.
Unlike other known exactly-solvable harmonic oscillator-like models with a mass varying by position, this very simple
model is still exactly solvable when it is under the action of an external homogeneous field Vext = gx. In a forthcoming
paper, we shall present these results, containing wavefunctions of the stationary states and energy spectrum of this
extended model. Both the current oscillator model and the model under the external homogeneous field can be adopted
further for the precise computation of the optical rectification, second-harmonic generation, electro-optic effect and
other nonlinear optical properties of the semiconductor nanostructures of GaAs/AlxGa1−xAs type [38–40].
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