On the diameter of the rotation graph

of binary coupling trees

V. FACK, S. LIEVENS AND J. VAN DER JEUGT!
Department of Applied Mathematics and Computer Science,

University of Ghent, Krijgslaan 281-S9, B-9000 Gent, Belgium

Abstract

A binary coupling tree on n + 1 leaves is a binary tree in which the leaves have
distinct labels. The rotation graph G,, is defined as the graph of all binary coupling
trees on n + 1 leaves, with edges connecting trees that can be transformed into each
other by a single rotation. In this paper we study distance properties of the graph
G,,. Exact results for the diameter of G,, for values up to n = 10 are obtained. For
larger values of n we prove upper and lower bounds for the diameter, which yield the
result that the diameter of G,, grows like nlg(n).

Corresponding author: J. Van der Jeugt, Department of Applied Mathematics and Computer
Science, University of Ghent, Krijgslaan 281-S9, B-9000 Gent, Belgium.
Tel. ++ 32 9 2644812; Fax ++ 32 9 2644995; E-mail Joris.VanderJeugt@rug.ac.be.

'Research Associate of the Fund for Scientific Research — Flanders (Belgium)

1 Introduction

In computer science and discrete mathematics, one often faces the problem of transforming
one configuration into another by specified rules. The question arises of how many steps
might be needed, in the worst case. This is modeled graph-theoretically by letting the
configurations be the vertices of a graph whose edges correspond to the allowed steps.
The question is then to determine the diameter of this graph. In this paper, we consider a
family of these problems where the configurations are binary trees with the same number

of leaves.

Binary trees are of fundamental importance in graph theory and in various branches
of applied mathematics and computer science. The trees that occur most often are the
binary plane trees, being associated with binary search trees. (In a binary tree, every
node has zero or two children; in a plane tree, the children of a node have a fixed left-
to-right order.) The number of binary rooted plane trees with n + 1 leaves is the nth
Catalan number. On the set of binary rooted plane trees with a fixed number of leaves,
one can define a “rotation” that transforms one tree into another. A fundamental question
is to find the number of rotations needed to transform one such tree into a second one.
Often this problem is formulated as a graph distance problem: the graph is defined on
the set of binary rooted plane trees with n 4 1 leaves, and adjacency is determined by
the rotation operation. It has been shown that the diameter of this graph is bounded
by 2n — 6; computing the actual distance between two given trees remains a difficult

problem [18, 13, 12, 16].

Inspired by this problem, and motivated by two applications, we consider in this paper a
similar problem. The trees appearing here are ordinary (i.e. not plane) binary rooted trees
with n+1 labeled leaves. The number of such trees is given by (2n—1)!! =1-3-...-(2n—1).
We consider a graph G,, defined on the set of such trees, and also define adjacency by a
“rotation” operation that transforms one tree into another. This operation models trans-
formations between objects modeled by the trees. In various applications (e.g. generalized
recoupling coefficients in quantum theory of angular momentum [5], computation of a
similarity measure between dendrograms [20]) the question of how many operations are

needed to turn one object into another is of interest. Thus we study the diameter of this

graph.

The structure of the paper is as follows. Section 2 defines the trees we are dealing with
(referred to as binary coupling trees) and the rotation graph Gy, and describes some basic
properties of the graph G,,. In Section 3 exact results for some distance properties (such as
distance degree sequence and diameter) are given for small values of n (n < 10). The size
of G,, is growing exponentially in n, so for large values of n we look for theoretical bounds
for the diameter of G,,. In Section 4 we obtain an explicit upper bound by constructing
a path between two arbitrary binary coupling trees and by showing that its length is
necessarily bounded by nlg(n) + O(n). Section 5 shows how an Q(nlg(n)) lower bound
for the diameter can be obtained from an upper bound for the number of trees within a
certain distance of any given tree, for which the technique of short encodings introduced
by Sleator et al in [17] can be used. We conclude that the diameter of G,, is ©(nlg(n)).

In particular, we will prove the following theorem:

Theorem 1 For n > 1, the diameter diam(Gy,) of G, satisfies

inlg(g) < diam(Gy) < n[lgn] +n—2[lgn] + 1.

2 Binary coupling trees and the graph G,

We define a binary coupling tree as a binary tree in which the leaves (i.e. nodes with no
children) are given distinct labels. Without loss of generality, we can assume that these
labels are the integer numbers between 1 and n + 1 if the binary coupling tree has n + 1
leaves. For fixed n > 1, we denote the set of all binary coupling trees with n + 1 leaves,
or equivalently with n non-leaf nodes, as 7,. Figure 1(a) and (b) give two drawings of
the same binary coupling tree. Note that one can place the children of a node in a binary
coupling tree in any order; i.e. binary coupling trees are not plane trees. Sometimes, it
will be convenient to attach an extra leaf with label 0 to the root and regard the binary
coupling tree as an unrooted tree in which every node has degree 1 or 3; this is shown in
Figure 1(c). We call these extended binary coupling trees and use 7T, to denote the set of

extended binary coupling trees with n + 2 leaves.

An edge joining non-leaf nodes is an internal edge. In an extended binary coupling

Figure 1: Binary coupling trees

@ (b) (©

tree, the two nodes of an internal edge are adjacent to four other nodes. There are three
pairings of four elements. A rotation allows these four nodes to be paired in one of the
two other ways. There are thus two rotations around an internal edge. Figure 2 gives
an illustration; here each of A, B, C, D stands for a leaf or an arbitrary subtree. Note
that a rotation is invertible; if 7 is obtained by performing a rotation on 77, then 77 can
be obtained by performing a rotation on 75. This is also indicated in Figure 2. In the
literature, other names for rotations appear: flops [6], nearest neighbour interchanges [4]
and crossovers [15]. Note that when plane binary trees are studied there is only one

rotation available at each internal edge.

Figure 2: Rotations on binary coupling trees

el e
\A

Cc D

/
o

D B

For fixed n > 1, we build the rotation graph G, as follows: each vertex of GG, represents
an element from 7,. Two vertices are adjacent if and only if the two binary coupling trees
they represent are related through a single rotation. Some simple properties of G,, were

proved in [15]; see also [5]. We summarize them here:

o [V(Gn)| =Tl =@n—1)!1=1-3-...-(2n—1),

4

e G, is regular of degree 2(n — 1),

e (7, is connected.

To see that |7,| = (2n — 1)!, consider an element T of 7,,—1. The tree T has 2n — 1 edges,
so there are 2n — 1 different ways of subdividing an existing edge and attaching an extra
edge with leaf label n + 1 to the new vertex (see Figure 3). Furthermore, each element of

T, arises exactly once in this way. Thus we have

[Tal = |Tal = (20 = 1)|Ta-1] = (20— DI

Figure 3: Five ways of attaching an extra leaf label 4 to an element of 73

0

INe)

Example 2 As can be seen in Figure 4, the graph G5 has 1-3-5 = 15 vertices, while every
vertex has four neighbours. In Figure 4, every vertex is labeled with a bracket notation of
the binary coupling tree it represents. A bracket notation of a binary coupling tree gives
the way in which the labeled leaves are coupled to form the binary coupling tree. Possible

bracket notations of the binary coupling tree in Figure 1(a) are:

((1,2),(3,(4,5))) or ((2,1),((4,5),3)).

Let o be an element of S,,12, the group of all permutations on n + 2 elements; ¢ acts
on T € T, (and on G,,) by permutation of the n+ 2 leaf labels. It is clear that if T} and T
(viewed as elements of 7,) are adjacent in Gy, then o(T}) and o(T}) are also adjacent in

Gp. Thus o(G,,) is isomorphic to G,. Furthermore, for n > 3 no element of S, 2 except

Figure 4: The rotation graph G3

(4.3,(1.2))

((1,2).3.4)

(3,412

(CICE)) LG4

(3.2,(1.4) (21,34

((1,4.(23) (23,410 24E)

the identity permutation fixes G, completely. Indeed, if o has a cycle (ab) of length 2,
then all trees of the form indicated in Figure 5(a) are not fixed under o. If o has no cycle
of length 2 and o # id, then it must have a cycle (abc...) of length > 2. In this case, all

trees of the form indicated in Figure 5(b) are not fixed under o.

Figure 5: Trees that are not fixed under o

a ¢ b/gc)\aabbc
@

(b)

Thus, we can conclude that for n > 3, the automorphism group of G,, contains Sy, ;2.
For n € {3,4,5,6}, equality holds; we have verified this using the nauty program [14]. For

larger values of n, the question of whether equality holds remains open.

3 Distance in G,

In this paper, we are primarily concerned with computing or estimating the diameter of
Gy, (the diameter diam(G) of a graph G is the maximum over v, v’ € V(G) of the distance
d(v,v")).

The diameter and many other concepts related to distance (eccentricity, radius, center,
periphery, ... [2]) follow easily if we know the distance degree sequence for every vertex of

G- The distance degree sequence for a vertex v of G, is the sequence
dds(v) = (do(v),d1(v),d2(v),...),

where d;(v) is the number of vertices at distance ¢ from v.

It is obvious that many vertices of GG, give rise to the same distance degree sequence.
When two binary coupling trees differ only by a permutation of their labels, we say they
have the same type. Clearly, such trees have the same distance degree sequence. As
indicated in [5] and in Figure 6(a), there are two different types of binary coupling trees
on 4 leaves, yet the distance degree sequence of these two types is identical. This can
be understood by considering the corresponding elements from 7,.; indeed, these elements
differ only by a permutation of their labels, see Figure 6(b). The skeleton of an extended
binary coupling tree is the tree obtained by deleting all leaves from the extended binary
coupling tree, see Figure 6(c). In other contexts, the skeleton of an extended binary
coupling tree has been called its ‘derived tree’. Two extended binary coupling trees differ
only by a permutation of the leaf labels if and only if their skeletons are isomorphic. The
skeletons of elements of 7, are precisely the isomorphism classes of trees with n nodes in

which every node has degree at most 3.

To determine the diameter of G, for some small fixed n, it is sufficient to calculate the
distance degree sequence for all skeletons with n nodes. Table 1 lists the number of types
and skeletons for values of n up to 10. The sequence giving the number of types is sequence
A001190 of [19]; it is also known as the Wedderburn-Etherington sequence. The number
of skeletons is sequence A000672 of [19]. The number of skeletons is (much) smaller
than the number of types, yielding a substantial decrease in the required computation

time. This reduction technique was used by Jarvis et al [8]. Distance degree sequences

Figure 6: (a) The two types in 73, (b) their corresponding extended binary coupling trees
and (c) the correspondlng skeletons

7
A
Ll

(© o—o—o oo —o

4

3

Table 1: Number of types and skeletons for n < 10

n 2 3 45 6 7 8 9 10
types 1 2 3 6 11 23 46 98 207
skeletons |1 1 2 2 4 6 11 18 37

up to n = 7 are given in [5]; the complete results up to n = 10 can be found at URL
http://allserv.rug.ac.be/” jvdjeugt/BCT. The diameter of G,, for n < 10 is shown in
Table 2.

Table 2: Diameter of G, for n < 10

5 6 7 8 9 10
7 10 12 15 18 21

n 2
1

4
diam(G,,) 5

4 An upper bound for the diameter of G,

For T1,Ty € 7T,, we will construct a path between the corresponding vertices in G,,.
Robinson [15], Culik and Wood [3], and Li et al [11] used the same technique to obtain
O(n?), 4nlg(n) + O(n), nlg(n) + O(n) upper bounds for the diameter of G,, respectively.
Here, and in the rest of this paper, 1g denotes the logarithm in base 2. We will follow the
lines indicated in [11] to obtain an explicit upper bound of the form nlg(n) + O(n) for
the diameter of Gy,; in particular, we will make the “O(n)” part explicit by performing a

more careful calculation.

Our approach to obtain an upper bound is a slight modification of the standard ap-
proach to bounding the diameter by showing that all vertices are within a fixed distance
of a single vertex. Here, we show that all vertices are within a fixed distance of a special
set of vertices, and we give an upper bound for the diameter of this set. The reason for
the variation here is the labeling of the leaves: the special set consists of different labelings

of a single isomorphism class.

The level of a node in a tree is defined recursively as follows [10, Section 2.3]: the level

of the root is zero and the level of any other node is one more than the level of its parent.

The depth of a tree T, denoted as depth(T'), is the maximum level of any of its nodes. For

a rooted binary tree T' with n + 1 leaves, it is well known that

[Ig(n +1)] < depth(T) < n. (1)

An element S € T, is a spine if and only if depth(S) = n. Spines exist for every n > 1;

(n+1)!
2

indeed, there are spines in Tj,.

The path between 17 and 715 is constructed in three steps:

1. transform 77 into a spine Si,
2. transform 75 into a spine Sy and,

3. transform the spine S; into Sy (or vice versa).

In this section, we will determine an explicit upper bound for the number of rotations

needed in each step, yielding an explicit upper bound for the diameter of G,.

Let T be a binary coupling tree that is not a spine. Choose a leaf x of T that has
maximum level. Since T is not a spine, there is an internal edge of T' that is not on the
path from the root node of T to z, but that has a node in common with an edge on
this path. Performing the appropriate rotation around this internal edge will increase the
depth of T' by one. Hence, one can transform an arbitrary element T' of 7, into a spine

using n — depth(7T’) rotations.

Thus, given the bound in (1), one can transform any binary coupling tree on n + 1

leaves into a spine using at most

n— [lg(n + 1)] (2)
rotations.

The construction of a path between two arbitrary spines from 7, is easier to understand
when working with extended binary coupling trees, i.e. elements of T,.. We say that an
element S from 7;, is an extended spine if and only if its skeleton is a path. Figure 7(a) is
a drawing of a path on six nodes, while Figure 7(b) is a drawing of an extended spine of
76. Note that an extended spine corresponds to a spine if and only if the label 0 appears

on a leaf at the end of the path.

10

Figure 7: (a) A path on six nodes and (b) an extended spine of Tg

@ (b)

Rotations on extended binary coupling trees are rotations of the corresponding binary
coupling trees. Thus the maximum distance between extended spines in 7;, is an upper
bound for the maximum distance between spines in 7, (it may be larger since the set of
extended spines is larger). By symmetry (relabeling of leaves), it suffices to bound the

distance of all extended spines from a fixed extended spine.

A rotation that transforms one extended spine into another performs (except at the
ends) an adjacent transposition on the permutation recording the leaves. Thus ©(n?)
rotations may be needed to transform one extended spine into another using extended
spines only. This corresponds to simulating a bubble sort [9, Section 5.2.2] on the extended
spines and leads to an O(n?) upper bound for the diameter of G,,. In order to reduce the
bound to O(n lgn), it is necessary to use vertices outside the set of extended spines. The
faster method simulates the merge sort algorithm [9, Section 5.2.4] on the set of extended

spines.

An extended spine of 7, has four end leaves, i.e. leaves whose neighbour is an endpoint
of the skeleton; in Figure 7(b), these are the leaves with labels 7, 4, 2, and 3. Let S be an
extended spine, and let z be an end leaf. We say that S is increasing (resp. decreasing)

with respect to z if and only if for all other leaves z1 and x5 the following property holds:
d(z1,z) < d(z2,z) = 1 < T2 (resp. 1 > z2).

Herein, z; denotes both the leaf z; and the label of this leaf. If the leaf label of = is known,

then there is exactly one extended spine in 7, that is increasing with respect to x; we will

use this extended spine as the fixed spine mentioned before.

Let S be an extended spine of 7, and let z be an end leaf. We say that S € 7,, is

concave with respect to x (resp. convez with respect to x) if and only if for all other leaves

11

1 and x2 the following property holds:

d(z1,1) < d(z9,1z) < [g-| + 1= 21 < z9 (resp. 11 > x3)

and

[21 +2 < d(z1,2) < d(z2,z) = x1 > x2 (resp. z1 <).

If S € 7y, is an extended spine that is concave (resp. convex) with respect to z, then we
can transform S into an increasing (resp. decreasing) extended spine, again with respect
to x, using at most n — 1 rotations. This procedure, illustrated in Figure 8, is quite
analogous to the merge step in the merge sort algorithm, where two sorted sequences are

combined to form a single sorted sequence; it uses induction on n. When n = 2, at most

Figure 8: Merging an extended spine

:1
4765 5

?@ﬁ*hw“ °'i£.
LA S

ot 2\35

one rotation is needed (see Figure 2). For n > 3, consider the two leaves with the largest
labels (excluding z) in an extended spine concave with respect to z. Since the neighbours
of these two leaves are adjacent, we can perform a rotation that gives the two leaves a
common neighbour. We then delete these two leaves and give their neighbour (which is
now a leaf) the label of the smaller one. In this way, we have obtained an extended spine
of 7,,_1 that is concave with respect to z. By induction, at most n — 2 rotations are needed
to transform this extended spine into an increasing one. Since the leaf with the largest
label appears at the end of the extended spine, replacing this leaf with the two original

leaves will produce an extended spine of 7y, increasing with respect to .

Also the other ideas of the merge sort algorithm apply to our problem. Let S € 7,

be an extended spine that is to be transformed into an increasing or a decreasing one

12

with respect to some leaf z. We make an imaginary cut on S and obtain two extended
half-spines by placing an imaginary leaf on each end of the cut. The label we place on the
imaginary leaves is the same for both halves and depends on whether we are transforming
S into an increasing or a decreasing extended spine. In the former case the value of the
label of the imaginary leaves is greater than any other label of the extended spine, while
in the latter it is smaller. In this way, we get two extended half-spines: one in 77%1,
containing the leaf z, and one in TL% |- (To really match the definition, we would have to
do an order-preserving relabeling.) Figure 9 illustrates how we place the imaginary cut
when the extended spine is to be transformed into an increasing one with respect to the

leaf 0.

Figure 9: Placing an imaginary cut on an extended spine

If we are transforming S into an increasing (resp. decreasing) extended spine with
respect to the leaf z, we recursively transform the extended half-spine containing z into
an increasing (resp. decreasing) one with respect to the original leaf z, while we recursively
transform the other extended spine into a decreasing (resp. increasing) one with respect
to the imaginary leaf. Once we have done this, we can merge the two extended half-spines

together.

Each time the sorted subspines double in length, at most n—1 rotations are performed.

We thus expect that approximately nlgn rotations are needed to sort an extended spine.

Let f(n) (resp. g(n)) denote the maximum number of rotations needed to transform
an arbitrary extended spine S € 7, into an increasing (resp. decreasing) one with respect
to some fixed leaf z. By symmetry, it is clear that f(n) = g(n) for all values of n > 1.

Since 71| = 1, f(1) equals 0. Hence f satisfies
f(n)gf([g])Jrf([gJ)Jrn—l, forn > 1 and f(1) = 0. (3)

13

Let fy(n) denote the function for which equality holds in (3), i.e.:
n n
fuln) = fu (H) + fu ([EJ) -1, forn>1and fu(1) = 0. (4)
This is a well-known recurrence [7, Section 3.3] and its solution is given by:
fu(n) = n[lgn] — 20" 41, (5)

which is indeed approximately nlg(n) as expected. As already noted, f(n) is an upper
bound for the number of rotations needed to transform an arbitrary spine S; € 7, into

another arbitrary spine Sy € 7,. We thus have the following theorem:

Theorem 3 The diameter of G,, satisfies

diam(G,,) < n[lg(n)] — 2M8™1 11 4+ 2(n — [Ig(n + 1)]) . (6)

Proof: This follows immediately by combining formulas (5) and (2). O

5 A lower bound for the diameter of G,

Upper bounds on the number of vertices within distance m of an arbitrary vertex in a

graph G yield lower bounds on the diameter of G.

Such a bound is easily obtained by considering the following inequalities that hold for

any vertex v of a graph G with maximal degree A:

do(v) =1, di(v) <A, di(v) <AA-1)"1, fori> 1.

This gives the following inequality:

BT 220 S am) =)l (7)
=0

This bound on the order of graphs with fixed maximum degree and diameter is known
as the Moore bound. Graphs for which equality holds in (7) are Moore graphs and are
extremely rare (see [1, 2] for further discussion). If we apply inequality (7) to the rotation
graph G, we get a linear lower bound for the diameter of G, namely

. In(2n) —1
diam(G,) > Wn (8)

14

Li et al [11] proved an Q(nlg(n)) lower bound for diam(G,,) using the results of [17].
They sketched a way, using “flips” in plane triangulations and short encodings, to derive
that the number of trees within distance m from any given tree is bounded by 3"72*™. We

will show that the number of trees within distance m is bounded by
2n+4m
2n

Since this is smaller than 3"2*™, our lower bound will be better than the one found by
Li et al. We will prove in particular that for n > 1, the following inequality holds:
1 1 n
diam(G —lg(n!) > —nlg(—).
iam(Gy) > £ lg(n!) > ;nlg(2)

In [17] Sleator et al provide a tool for deriving an upper bound for the number of
combinatorial objects within m transformations from a given object. They take advantage
of the fact that often one can interchange the order of the transformations without affecting
the final outcome. This does not imply that all lists of m transformations that reach a
given object are reorderings of each other: it is also possible to reach the given object

using different sets of transformations.

We will apply their technique of short encodings to paths in G,,. We will encode every
path starting from a particular tree as a list of integers in {0, 1,2, 3,4}, and then we will

bound the number of encodings for paths of length at most m by 2"+4™/(2n).

As already noted, a binary coupling tree does not change if one exchanges the “left”
and “right” child of any non-leaf node. This transformation is called an ezchange [6] or a
twist [17]. In the technique following from Sleator et al [17] the trees are ordered, so the
twist transformation is also counted. Here however, we do not want to count twists. This
problem can be overcome by working with ordered trees for which a “twist-rotation-twist”-
transformation is counted as one transformation only. That is why two transformations

will be added to the ordinary rotation transformation (see Figure 10).

Let T and T" be elements of 7, with d(T,7") = m. This means that there exists a
sequence of m rotations that carries 7' into T”; this sequence is called a derivation. Note

that there may be many derivations that carry T into T".

In a derivation, we view the trees along the way as ordered trees, i.e. twists are not

allowed. When regarding 7" as an ordered tree, we denote it as T. We can apply one of

15

the four rules (transformations) indicated in Figure 10 to T' if and only if 7' contains a
subtree identical to the tree on the left side of that rule (temporarily ignore the labels
on the internal nodes). The result is T in which the left side of the rule is replaced by
the right side, so the left (resp. right) side of the rule relates to the shape of the tree
before (resp. after) the rule is applied. The “pure rotations” applied to these ordered
trees correspond to Rules 1 and 3. The other rules correspond to a “twist-rotation-
twist” transformation. For example, Rule 2 corresponds to a twist (exchange a and b),
followed by a rotation, followed by another twist (exchange b with parent node of ¢ and
c¢). Operating on ordered trees, these four rules are necessary and sufficient to produce
all possible rotations on binary coupling trees. The numbers of the nodes in the left sides
of the rules are called pre-position numbers, while the numbers of the nodes in the right

sides of the rules are called post-position numbers. Their use will soon become apparent.

Figure 10: The four rules that can be applied

1 0 3 0
Rule 1 Rule 3
0 - 1 o — - 1
a b c a b c a b c a b c
2 0 4 0
Rule 2 Rule 4
0 — = 1 0 = 1
a b ¢ a ¢ b a b ¢ b a ¢

It is convenient to think of applying a rule as destroying nodes and creating new ones.
To keep track of this process, we assign distinct names to the non-leaf nodes in the trees
produced during a derivation. An action is an application of a rule to particular nodes,
so a derivation is a list of actions. The required nodes of an action are the nodes that
are destroyed by that action. An action is ready if and only if the required nodes of that

action exist.

In order to name each non-leaf node that appears in the trees produced by a derivation,
we first number the actions of that derivation, beginning with 1. Each internal node of
the initial tree 7' is named v;, with 1 < i < n, in some (arbitrary) order. Next, each new

node gets a name of the form v; or v;1, where j is the number of the action that created

16

these nodes and where 0 and 1 refer to the post-position numbers of the applied rule.

Figure 11: A derivation of length 4

Table 3: Required nodes for each action of the derivation in Figure 11

action | required nodes
1 V2, U3
2 V1, Us
3 | vg, v1,1
4 | vy, vo1

In order to build an encoding for the derivation D with initial tree 7', we first (a)
number the actions of D, (b) give each internal node a name, and (c) determine the
required nodes of each action. Furthermore, we associate with the name of each required
node the pre-position number of the corresponding node in the rule applied to that required
node. If no rule is ever applied to a node, then that node survives in T , and we associate
0 with the name of that node. These numbers are determined by which rule is applied,

not the index of the action, so they lie in {0,1,2,3,4}.

In order to encode a derivation D, we first construct a canonical derivation D’ that is a
reordering of the actions of D and produces the same final outcome 7”. To select the next

action for D' from the remaining unprocessed actions of D, at each step we choose from

17

the actions that are ready the action that destroys the node with the smallest name in
lexicographic order. This lexicographic order treats the initial single-coordinate names as
being smaller than all names that are introduced later. Having done this until all actions
are applied, the encoding of D now consists of the pre-position numbers associated with

the internal nodes, in the order introduced by the canonical derivation D’.

Example 4 For the derivation in Figure 11, Tables 3 and 4 give the required nodes of
each action and the association of the names with pre-position numbers. Looking at the
initial tree, or equivalently at Table 3, we see that actions 1 and 2 are ready. We choose to
do action 2 first, because action 2 destroys the node with the smallest name. Thus, nodes
v1 and vs are destroyed and nodes vz o and vo 1 are created. Next, only action 1 is ready
so we do action 1, hereby destroying the nodes vo and v3 and creating the nodes v ¢ and
v1,1. Now, both actions 3 and 4 are ready, but we choose action 3 and then action 4. This
results in the encoding given in the third row of Table 5. The canonical derivation of the

derivation in Figure 11 is given in Figure 12. 1

Figure 12: The canonical derivation of the derivation in Figure 11

An internal node is required by at most one action, since it is destroyed by that action.
Thus, choosing the ready action that destroys the internal node with the smallest name

is well defined. Furthermore, at each stage in the encoding process, at least one action is

18

Table 4: Association of names with pre-position numbers

Ul U W3 V4 Us Vg V1 V11 V20 V21 U3 V31 VL0 V41
4 1 0 0 0 o0 0 3 0 2 0 0 0 0

Table 5: Encoding for the derivation in Figure 11

Vi U2 V3 V4 VU5 Vg V20 V2,1 V10 Vi1 V3,0 V31 V40 V41
V1 U2 V3 V4 U5 Vg ur (%] Vg V10 V11 V12 V13 Vi4
4 1 0 0 0 O 0 2 0 3 0 0 0 0

ready. In particular, the first action of D among those that have not yet been performed is
ready. This shows that one can reorder the actions of derivation D to form the canonical

derivation D’.

Furthermore, the outcome of D’ is identical to the outcome of D. If actions ¢ and j
of the original derivation D are ready at the same time while constructing D’, then these
actions do not require a common node, since each node is required by at most one action.
Furthermore, neither action requires a node that exists as a result of the other, since they
are ready at the same time. Robinson [15] proved that two rotations around two edges
that do not share a common node can be performed in either order without affecting the

outcome. This proves that the outcome of D' equals the outcome of D.

Next, we explain how the canonical derivation D' can be reconstructed (decoded)
when 7" and the encoding are given. The decoding procedure mimics the behaviour of the
encoding procedure. The encoding is simply a list of nonnegative integers, as in the third
line of Table 5. We associate names vy, ..., Un12,;, With these integers in order. The first
n names are those of the initial tree 7'. Inspecting the parent-child pairs in T identifies
which actions are ready. No two actions sharing a node can be ready simultaneously. We
then apply the rule that destroys the node with the smallest name. This will obviously be
the first action of D’. Application of this rule will create internal nodes v,4+1 and vy4o,
corresponding with the (n 4+ 1)-th and (n + 2)-th entry of the code. Continuing in this

manner, we can reconstruct D’.

19

Figure 13: The decoding procedure

Example 5 Next to the nodes of Figure 13 we have written the corresponding entries
from the encoding. In order not to overload the figure, the entries that equal zero are
not shown. As can be seen, rules 1 and 4 can be applied to the initial tree. Because rule
4 destroys the node with the smallest name i.e. v, we apply this rule thus creating the
nodes v7; and vg. Now we can only apply rule 1, yielding the third tree. After two more

actions, we arrive at T". 1

Lemma 6 The number of trees within distance m from any binary coupling tree T € Ty,
. +2

is at most ("T2M)4™,

Proof: Each application of a rule to an ordered tree corresponds to traversal of exactly
one edge in G, and each edge traversal can be achieved by applying one of these rules.
Hence we consider the number of trees that are reachable from T via derivations of length

m.

Using this technique, every tree 7" with d(7,7') = m can be encoded by an array
(code) of length n + 2m. Since a code of length n + 2m has exactly m nonzero entries,

and each nonzero entry lies in {1,2, 3,4}, the number of codes |C(n,m)| of length n 4+ 2m

20

is bounded by

1C(n,m)| < (” * 2m> 4,
m

The number of trees at distance m from any given tree is bounded by this number. We can
even say more: the number of trees within distance m from any given tree is bounded by the
same number. Indeed, if d(T,T") = m — 2I, then there is a derivation of length m carrying
T into T"; one only needs to go back and forth between T and its predecessor on the path of
length m —2[. If d(T',T") = m— 2l —1, then one can construct a derivation of length m —2I
by adding a detour through the common neighbour of 7" and its predecessor on a path of
length m — 2] — 1, since every edge in G, lies on a triangle (see Figure 2). The argument
for m — 2[then applies. The bound holds also when m = 1, since 1 +2(n — 1) < 4(n+ 2).

O

Theorem 7 For n > 1, the diameter of G,, satisfies
1 1 n
i - N> = bt
diam(Gy,) > 1 lg(n!) > 4nlg(e).

Proof: Let D = diam(G),). By Lemma 6,

(” E2D>4D > (20— 1)1l = %(?) 9)

Using asymptotic expansions (Stirling’s formula),

() s) &

From (10) and (”“LgD) < (;/;iDD)a

1\ /1 D
2P S pl(1— =)4/ 4+ =.
>n(8n> 2—I—

For n > 5, the elementary lower bound (Moore bound) D > n(In(2n) — 1)/In(2n) in (8)
now yields 24P > n!. One can check directly that this bound also holds for 2 < n < 4. O

Remark 8 One slightly improves the lower bound from Theorem 7 when bounding the

left side of (9), for n > 0 and D > 1, by

on+2D o (m +2D
n D ’

(11)

21

and the right side of (9) by

instead of by (10). Inequality (12) is proved using Stirling’s formula. 1

Combining Theorem 3 and Theorem 7 yields Theorem 1.

Acknowledgements

The authors would like to thank the referee for many useful suggestions and constructive

criticism.

References

[1] B. Bollobds, Extremal graph theory. London Mathematical Society Monographs, 11.
(Academic Press, 1978).

[2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, 1990).

[3] K. Culik IT and D. Wood, A note on some tree similarity measures, Inform. Process.

Lett. 15 (1982) 39-42.

[4] W. H. Day, Properties of the nearest neighbor interchange metric for trees of small

size, J. Theor. Biol. 101 (1983) 275-288.

[6] V. Fack, S. Lievens and J. Van der Jeugt, On rotation distance between binary
coupling trees and applications for 3nj-coefficients, Comput. Phys. Commun. 119

(1999) 99-114.

[6] V. Fack, S. N. Pitre and J. Van der Jeugt, New efficient programs to calculate general
recoupling coefficients. Part I: Generation of a summation formula, Comput. Phys.

Commun. 83 (1994) 275-292.

[7] R.L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation
for Computer Science (Addison—Wesley, 1995).

22

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Jarvis, J. Luedeman and D. Shier, Comments on computing the similarity of binary

trees, J. Theor. Biol. 100 (1983) 427-433.

D. E. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming
(Addison-Wesley, 1973).

D. E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer Program-
ming (Addison—Wesley, 1997).

M. Li, J. Tromp and L. Zhang, On the nearest neighbour interchange distance between
evolutionary trees, J. Theor. Biol. 182 (1996) 463—467.

F. Luccio and L. Pagli, On the upper bound on the rotation distance of binary trees,

Inform. Process. Lett. 31 (1989) 57-60.

E. Mékinen, On the rotation distance of binary trees, Inform. Process. Lett. 26 (1987)
271-272.

B. McKay. nauty. http://cs.anu.edu.au/people/bdm/nauty/.

D. Robinson, Comparison of labeled trees with valency three, J. Comb. Theory 11
(1971) 105-119.

R. O. Rogers and R. D. Dutton, On distance in the rotation graph of binary trees,
Congr. Numer. 120 (1996) 103-113.

D. D. Sleator, R. E. Tarjan and W. P. Thurston, Short encodings of evolving struc-
tures, SIAM J. Disc. Math. 5 (1982) 428-450.

D. D. Sleator, R. E. Tarjan and W. P. Thurston, Rotation distance, triangulations
and hyperbolic geometry, J. Amer. Math. Soc. 1 (1988) 647-681.

N. J. Sloane, On-line encyclopedia of integer sequences,

http://www.research.att.com/“njas/sequences/index.html.

M. S. Waterman and T. F. Smith, On the similarity of dendrograms, J. Theor. Biol.
73 (1978) 789-800.

23

