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Abstract

We study the effects of the branching osp(1|2n) ⊃ gl(n) on a particular class of simple
infinite-dimensional osp(1|2n)-modules L(p) characterized by a positive integer p. In the first
part we use combinatorial methods such as Young tableaux and Young subgroups to construct
a new basis for L(p) that respects this branching and we express the basis elements explicitly in
two distinct ways. First as monomials of negative root vectors of gl(n) acting on certain gl(n)-
highest weight vectors in L(p) and then as polynomials in the generators of osp(1|2n) acting
on a osp(1|2n)-lowest weight vector in L(p). In the second part we use extremal projectors and
the theory of Mickelsson-Zhelobenko algebras to give new explicit constructions of raising and
lowering operators related to the branching osp(1|2n) ⊃ gl(n). We use the raising operators
to give new expressions for the elements of the Gel’fand-Zetlin basis for L(p) as monomials of
operators from U(osp(1|2n)) acting on a osp(1|2n)-lowest weight vector in L(p). We observe
that the Gel’fand-Zetlin basis for L(p) is related to the basis constructed earlier in the paper
by a triangular transition matrix. We end the paper with a detailed example treating the case
n = 3.

1 Introduction

In both the finite- and infinite-dimensional representation theory of Lie superalgebras many ques-
tions remain open. In the particular case of infinite-dimensional modules of the orthosymplectic
Lie superalgebra osp(1|2n), where we have classification theorems [4, 5] and some knowledge of
character formulas [3], there is only one class of simple modules that has been studied in detail.
These are the simple lowest weight modules L(p) of lowest weight (p2 , . . . ,

p
2), for p ∈ N, sometimes

referred to as the paraboson Fock spaces. Character formulas and Gel’fand-Zetlin bases related to
the branching osp(1|2n) ⊃ gl(n) ⊃ · · · ⊃ gl(1) were obtained for the modules L(p) in [17]. Currently
no expressions are known for the elements of these Gel’fand-Zetlin bases in terms of polynomials of
operators in U(osp(1|2n)) acting on a lowest weight vector of L(p) (i.e. on the vacuum state of the
paraboson Fock space). The search for a basis for L(p) whose elements are given as polynomials of
operators acting on a lowest weight vector has led to the discovery of the only other known basis
for L(p), see [2].

The goal of this paper is two-fold. In the first part of the paper we identify the gl(n)-highest
weight vectors of L(p) and use this information to construct a new basis for L(p) related to the
branching osp(1|2n) ⊃ gl(n). This basis restricts to a monomial basis on each of the simple gl(n)-
submodules of L(p). In [25], such monomial bases were considered as PBW-parametrizations for
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various bases of simple gl(n)-modules. We proceed to construct a second expression for the elements
of this new basis for L(p) using Young subgroups to write each basis element as a polynomial in
the generators of osp(1|2n) acting on a lowest weight vector of L(p). In the second part of the
paper we use the theory of extremal projectors to construct raising and lowering operators that
act on the space spanned by the gl(n)-highest weight vectors of L(p). These operators generate
the Mickelsson-Zhelobenko algebra Z(osp(1|2n), gl(n)). Using these operators we obtain results
regarding the action of osp(1|2n) on the new basis for L(p). Additionally, we apply these raising
and lowering operators to obtain operator expressions for elements of the Gel’fand-Zetlin basis for
L(p). We end this part of the paper with the observation that the new basis for L(p) constructed
in this paper and the Gel’fand-Zetlin basis for L(p) are related by a triangular transition matrix.
Throughout the paper we point out relevant connections to the theory of parabosons.

The paper is organized as follows. In Section 2 we give an initial overview of the Lie superalgebra
osp(1|2n) and its subalgebra gl(n). We present the classes of simple infinite-dimensional osp(1|2n)-
modules L(p) and simple finite-dimensional gl(n)-modules V (λ+ p

2) that we will be working with
throughout the paper. At the end of the section we introduce bases for the modules V (λ+ p

2) and
use them to construct a novel basis for L(p). In Section 3 we use combinatorial methods to obtain
two distinct expressions for the elements of the basis for L(p) which we introduced in Section 2.
In Section 4 we take a more general look at the branching osp(1|2n) ⊃ gl(n) and construct novel
expressions for the raising and lowering operators which generate the Mickelsson-Zhelobenko algebra
Z(osp(1|2n), gl(n)) and which can be used to study the gl(n)-highest weight vectors in any given
osp(1|2n)-module. We apply the properties of the Mickelsson-Zhelobenko algebra to the module
L(p) and use the raising operators to give new expressions for the elements of the Gel’fand-Zetlin
basis for L(p), relating this basis to the one we constructed in Section 2 in the process. In Section
5 we provide a detailed treatment of the case n = 3 while emphasizing connections to parabosons.
Here we illustrate explicitly the main results of the paper and provide further interesting results.
This includes the calculation of the matrix elements of the action of osp(1|6) on the gl(3)-highest
weight weight vectors in L(p) and the explicit calculation of the transition matrix between the
Gel’fand-Zetlin basis for L(p) and the basis constructed in Section 2. With this transition matrix
we are able to explicitly express the Gel’fand-Zetlin basis states of the paraboson Fock space L(p)
as polynomials in the parabosonic creation operators acting on the vacuum state.

2 The Lie superalgebra osp(1|2n) and its subalgebra gl(n)

In this section we present the preliminary details regarding the Lie superalgebra osp(1|2n) and its
subalgebra gl(n). This includes definitions of the algebras in terms of generators and relations,
root systems and simple modules. We end the section with an initial discussion of bases for the
simple osp(1|2n)-modules we will be studying. Unless stated otherwise any algebra, vector space
or module considered in this paper will be considered to have base field C.

2.1 Definitions and root systems

When it was introduced by Kac in [12], the Lie superalgebra osp(1|2n) was defined as a matrix
algebra. For our purposes it will be more useful to instead use the equivalent definition in terms of
generators and relations given by Ganchev and Palev in [6].

Theorem 2.1. The Lie superalgebra osp(1|2n) is the superalgebra over C generated by the 2n odd
elements B+

j and B−j , for j ∈ {1, . . . , n}, satisfying the relations

[{Bξ
i , B

η
j }, B

ϵ
l ] = (ϵ− η)δjlB

ξ
i + (ϵ− ξ)δilB

η
j , (2.1)
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for i, j, l ∈ {1, . . . , n} and η, ϵ, ξ ∈ {+,−}. Here ± is to be interpreted as ±1 in the algebraic
expressions ϵ− η and ϵ− ξ. Additionally the notations [·, ·] and {·, ·} are used for the commutator
and anticommutator brackets.

There is a natural Hermitian anti-involution for osp(1|2n) determined by (B±i )
∗ = B∓i . The

Lie superalgebra osp(1|2n) contains a subalgebra isomorphic to the Lie algebra gl(n).

Proposition 2.2. The elements Eij := 1
2{B

+
i , B

−
j }, for i, j ∈ {1, . . . , n}, form a basis for the

subalgebra gl(n) ⊂ osp(1|2n), satisfying the relations

[Eij , Ekl] = δjkEil − δilEkj , (i, j, k, l ∈ {1, . . . , n}), (2.2)

and conform to E∗ij = Eji.

Throughout this paper we will refer to the branchings (or embeddings) osp(1|2n) ⊃ gl(n) and
gl(n) ⊃ gl(n − 1) ⊃ · · · ⊃ gl(1). Here we particularly refer to the embedding of gl(n) in osp(1|2n)
as the subalgebra spanned by the elements Eij := 1

2{B
+
i , B

−
j }, for i, j ∈ {1, . . . , n}. Similarly,

gl(m) ⊃ gl(m−1) refers to the embedding of the Lie algebra gl(m−1), as spanned by the elements
Eij , for i, j ∈ {1, . . . ,m− 1}, in the Lie algebra gl(m) spanned by Eij , for i, j ∈ {1, . . . ,m}.

We denote by h the Cartan subalgebra of osp(1|2n) spanned by the elements Eii, for i ∈
{1, . . . , n}. This is simultaneously a Cartan subalgebra of gl(n) and the elements E11, . . . , Enn

form a basis for h. For the remainder of the paper this choice of Cartan subalgebra for osp(1|2n)
and gl(n) will be fixed. We denote the corresponding dual basis for h∗ by ϵi, for i ∈ {1, . . . , n}.
The notation (µ1, . . . , µn) will be used to represent any weight µ =

∑n
i=1 µiϵi ∈ h∗.

The Lie superalgebra osp(1|2n) has root system{
ϵi − ϵj ,±ϵk ± ϵl,±ϵm : i, j, k, l,m ∈ {1, . . . , n}, i ̸= j, k ≤ l

}
, (2.3)

for which we choose the simple root system

{ϵ1 − ϵ2, . . . , ϵn−1 − ϵn, ϵn}. (2.4)

Here Eij is a root vector of the root ϵi − ϵj , {B±k , B
±
l } is a root vector of the root ±ϵk ± ϵl and

B±m is a root vector of the root ±ϵm. The subalgebras of osp(1|2n) spanned by the positive and
negative root vectors relative to the choice (2.4) of simple roots are given by

n+ = spanC{Eij , {B+
k , B

+
l }, B

+
k : i < j, k ≤ l} (2.5)

and
n− = spanC{Eij , {B−k , B

−
l }, B

−
k : i > j, k ≤ l} (2.6)

respectively.
The root system and simple root system of gl(n) are subsets of those for osp(1|2n), specifically

gl(n) has root system {
ϵi − ϵj : i, j ∈ {1, . . . , n}, i ̸= j

}
(2.7)

for which we choose the simple root system

{ϵ1 − ϵ2, . . . , ϵn−1 − ϵn}. (2.8)

We let t+ and t− denote the subalgebras of gl(n) spanned by the positive and negative root vectors
relative to the choice (2.8) of simple roots respectively, in particular

t+ = spanC{Eij : i < j} (2.9)

and
t− = spanC{Eij : i > j}. (2.10)

For the remainder of the paper highest and lowest weight vectors of osp(1|2n) will always be relative
to the Borel subalgebra h⊕ n+. Similarly, highest and lowest weight vectors of gl(n) will always be
relative to the Borel subalgebra h⊕ t+.
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2.2 Simple modules of osp(1|2n) and gl(n)

We will use the following notation for the simple modules of osp(1|2n) and gl(n) that will be relevant
in this paper.

Definition 2.3. For any positive integer p ∈ N := {1, 2, 3, . . . } we let L(p) denote the simple lowest
weight module of osp(1|2n) with lowest weight vector v0 of weight (p2 , . . . ,

p
2).

For any weight µ ∈ h∗ with µi ∈ N0 := {0, 1, 2, . . . } and µ1 ≥ · · · ≥ µn, we let V (µ+ p
2) denote

the simple finite-dimensional highest weight module of gl(n) with highest weight vector ξµ of weight
µ+ p

2 := (µ1 +
p
2 , . . . , µn + p

2) ∈ h∗.

In the paper [6] it was observed that L(p) describes the Fock space of n parabosonic particles of
order p. In this context the generators B+

j and B−j of osp(1|2n) may be considered as parabosonic
creation and annihilation operators and v0 may be considered as the vacuum state |0⟩. In the
case p = 1, parabosons become usual bosons and L(1) becomes the usual boson Fock space. The
relations (2.1), satisfied by B+

j and B−j , originate from the initial papers on para-particles [8, 9].
The paper [2] presents a realization of L(p) as a space of Clifford algebra valued polynomials

on which B+
j and B−j act as p-dimensional vector variables and Dirac operators respectively. Com-

binatorial methods are used to construct a basis for this realization of L(p) whose elements are
expressed as polynomials in the B+

j -operators acting on the lowest weight vector v0. Other works
related to this realization of L(p) include [14, 15, 28].

In [17] the module L(p) is realized as a quotient of an induced lowest weight module of osp(1|2n).
This realization is used to obtain a character formula and Gel’fand-Zetlin (GZ) basis for L(p). In
Section 4.4, we will express the elements of the GZ-basis as monomials of operators in U(osp(1|2n))
acting on the lowest weight vector v0. Such expressions are hitherto unknown in the literature.

In this paper, the term Gel’fand-Zetlin basis of L(p) refers to a labelling of the basis vectors
according to the branching

osp(1|2n) ⊃ gl(n) ⊃ · · · ⊃ gl(1). (2.11)

Since each branching is multiplicity free (and well known), the highest weights appearing in each
step can be used to label the vectors of L(p) (up to a scalar factor). Thus a GZ-basis vector of L(p)
is characterized by a set of gl(k) highest weights, for k = n, n − 1, ..., 2, 1, leading to a triangular
pattern [17]. Gel’fand-Zetlin bases can also be defined for branching which are not multiplicity
free. For examples of this see [23].

Given a partition λ, that is, a non-increasing sequence (λ1, λ2, . . . ) of non-negative integers, we
let ℓ(λ) denote the length of λ. The length is the number of non-zero entries in λ. We let P denote
the set of partitions of length at most n. For any partition λ ∈ P it is thus only necessary to specify
the first n entries. For that reason we write λ = (λ1, . . . , λn), when λ ∈ P. We will denote the
conjugate partition of λ by λ′. Any partition can be uniquely described as a combinatorial object
known as a Young diagram. This is a collection of empty boxes organized into rows and columns.
The Young diagram of a partition λ has λi boxes in the i’th row (counted from top to bottom). As
an example consider the partition λ = (4, 3, 1). The corresponding Young diagrams for λ and for
its conjugate are then

λ = and λ′ = . (2.12)

See [20] for more information on partitions and Young diagrams.
It is known that the osp(1|2n)-module L(p) decomposes into a multiplicity free sum of simple

gl(n)-modules. This follows directly from the character fomula of L(p) obtained in [17].
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Theorem 2.4. Considered as gl(n)-module we have the following isomorphism

L(p) ∼=
⊕

λ∈P, ℓ(λ)≤p

V
(
λ+

p

2

)
. (2.13)

2.3 Semistandard Young tableaux and bases for V
(
λ+ p

2

)
and L(p)

The simplest way to obtain a basis for L(p) respecting the branching osp(1|2n) ⊃ gl(n) is to choose
a basis for each of the modules V (λ + p

2), for λ ∈ P with ℓ(λ) ≤ p. The union of these bases will
then be a basis for L(p). Doing this at each step of the branching osp(1|2n) ⊃ gl(n) ⊃ · · · ⊃ gl(1),
is essentially how one obtains a GZ-basis for L(p), see [17]. In particular, a GZ-basis for L(p) is a
union of GZ-bases for the modules V (λ+ p

2).
However, we will not at first be considering GZ-bases for the modules V (λ + p

2). In the
first part of this paper we will instead be working with a simpler basis for V (λ + p

2), namely a
Poincaré–Birkhoff–Witt (PBW) type basis, see Theorem 2.6. Later we will discuss how the two
bases for L(p) obtained from the GZ- and PBW-type bases for V (λ+ p

2) are related to each other,
see Theorem 4.11.

To introduce the PBW-type basis for V (λ + p
2) we need the combinatorial objects known as

semistandard (s.s.) Young tableaux. For a detailed reference see [20]. Most of the notations and
concepts that we shall use regarding s.s. Young tableaux appear there. The rest will be introduced
when needed. Let Y denote the set of s.s. Young tableaux with entries in {1, . . . , n}. Given A ∈ Y,
we let µA ∈ Nn

0 and λA ∈ P denote the weight and shape of A respectively. We furthermore let
Y(λ) denote the set of s.s. Young tableaux in Y of shape λ. That is,

Y(λ) := {A ∈ Y : λA = λ}. (2.14)

A s.s. Young tableau A ∈ Y can be regarded as a filling of the Young diagram λA with numbers
from {1, . . . , n} such that the entries are non-decreasing from left to right along each row and
strictly increasing from top to bottom along each column. The weight µA then determines the
number of times each entry appears, (µA)i being the number of i-entries. An example of a s.s.
Young tableau of shape λA = (4, 3, 1) and weight µA = (2, 1, 2, 3) is

A =
1 1 3 4
2 4 4
3

. (2.15)

We identify a partition λ with the set of coordinates of the boxes in the corresponding Young
diagram, letting the coordinate (k, l) refer to the box in the k’th row (counted top to bottom) and
in the l’th column (counted left to right). We then have

λ =
{
(k, l) : k ∈ {1, . . . ℓ(λ)}, l ∈ {1, . . . , λk}

}
. (2.16)

Given a s.s. Young tableau A ∈ Y(λ) we shall use the notation A(k, l), for (k, l) ∈ λ, to refer to
the entry of A in the k’th row and l’th column.

The subset Y(λ) of Y indexes any basis of the module V (λ+ p
2). This is because the character

of V (λ + p
2) is a Schur function sλ(x1, . . . , xn), and sλ has an expression in terms of s.s. Young

tableaux. In light of Theorem 2.4 this means that the set ∪λ∈P, ℓ(λ)≤pY(λ) indexes any basis of
L(p). The final piece of notation we shall need regarding s.s. Young tableaux is the exponent matrix.
Given A ∈ Y the exponent matrix γA ∈ Mnn(N0) of A is the n × n lower triangular non-negative
integer matrix with entries

(γA)ij := #{k ∈ {1, . . . , λj} : A(k, j) = i}
= #{ i’s in the j’th row of A },

(2.17)

for all i, j ∈ {1, . . . , n}. Exponent matrices satisfy the following uniqueness property.
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Lemma 2.5. Let A,B ∈ Y, then γA = γB if and only if A = B.

For any matrix γ ∈ Mnn(N0) we consider the following element in the universal enveloping
algebra U(t−) ⊂ U(gl(n)):

Eγ :=
→∏

k=2,...,n

(Eγk1
k1 · · ·Eγk,k−1

k,k−1 ), (2.18)

where the arrow refers to the ordering of the product (k = 2 is leftmost and k = n is rightmost).
With this notation in place we can now define the PBW-type bases for the modules V (λ+ p

2).
The following theorem comes from [25].

Theorem 2.6. The simple unitary module V (λ+ p
2) has basis{

EγAξλ : A ∈ Y(λ)
}
, (2.19)

where ξλ is a highest weight vector of V (λ+ p
2).

In the literature this basis can be found in [21, 25, 27]. In [25, 27] it appears as PBW
parametrization of the GZ-basis [7, 23] and of the canonical (crystal) basis [18, 19, 13].

Using Theorem 2.4 and Theorem 2.6 the following result gives a new basis for L(p) provided
one can characterize the gl(n)-highest weight vectors of L(p).

Corollary 2.7. The simple unitary module L(p) contains a unique (up to a scalar) gl(n)-highest
weight vector ξλ of weight λ+ p

2 , for each λ ∈ P with ℓ(λ) ≤ p. Consequently, L(p) has a basis{
EγAξλA

: A ∈ Y, ℓ(λA) ≤ p
}
. (2.20)

One should note that in the notation of Corollary 2.7 the gl(n)-highest weight vector ξ0 ∈ L(p),
with the index 0 referring to the empty s.s. Young tableau, is equal to the osp(1|2n)-lowest weight
vector v0 of L(p) up to a non-zero scalar factor.

3 Two explicit constructions of the new basis for L(p)

In this section we consider the basis {EγAξλA
} for L(p). We present two explicit constructions of

the elements of this basis in terms of polynomials of operators from U(osp(1|2n)) acting on the
lowest weight vector v0 of L(p).

We begin by constructing a set of vectors {ΩA} in L(p) that are defined as polynomials in the
positive generators B+

j of osp(1|2n) acting on v0. These vectors are indexed by the set E of Young
tableaux with entries in {1, . . . , n}. The set E of Young tableaux includes the set of Y of s.s. Young
tableaux. Among the vectors {ΩA} we identify (up to scalar multiples) the gl(n)-highest weight
vectors of L(p), which we denote Ωλ, for λ ∈ P with ℓ(λ) ≤ p. We then use this information to prove
the following identity which gives two explicit constructions of the elements of the basis {EγAξλA

}
for L(p) defined in Corollary 2.7.

EγAΩλA
=

(λA)1! . . . (λA)n!

(γA)11! · · · (γA)nn!
ΩA, (3.1)

for A ∈ Y with ℓ(λA) ≤ p.
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3.1 The vectors ΩA

Given λ ∈ P we let E denote the set of Young tableaux with entries in {1, . . . , n} and let E(λ)
denote the set of Young tableaux in E of shape λ. Like the s.s. Young tableaux in Y(λ), a Young
tableau A ∈ E(λ) can be defined as a filling of the Young diagram of shape λ by the numbers in
{1, . . . , n}, however contrary to the tableaux of Y(λ) we put no conditions on the placement of the
entries of A. The exponent matrix γA, shape λA and weight µA of a Young tableau is defined in
the same way as for a s.s. Young tableau. It should be noted that Y(λ) is a subset of E(λ).

To define the vectors ΩA, for A ∈ E(λ), we need a way to describe permutations of the rows
and columns of a tableau in E(λ). To this end we consider the group of permutations

Sλ := Sλ1 × · · · × Sλℓ(λ)
(3.2)

and let sgn(σ) := sgn(σ1) · · · sgn(σℓ(λ)) denote the sign of σ ∈ Sλ. The group Sλ is commonly
known as the Young subgroup corresponding to the partition λ. Young subgroups are widely used
in the classification of simple modules of the symmetric group, see [11].

The group Sλ acts on the set E(λ) by permuting the rows of Young tableaux. Given A ∈ E(λ)
and τ ∈ Sλ we define the row permuted Young tableau Aτ to be the Young tableau with entries

Aτ (k, l) := A(k, τk(l)),
(
(k, l) ∈ λ)

)
. (3.3)

Similarly the group Sλ′ acts on E(λ) by permuting the columns of Young tableaux. Given A ∈ E(λ)
and σ ∈ Sλ′ we define the column permuted Young tableau Aσ to be the Young tableau with entries

Aσ(k, l) := A(σl(k), l),
(
(k, l) ∈ λ)

)
. (3.4)

We can now define the vectors ΩA, for A ∈ E(λ). Let A ∈ E(λ) and consider the following
element in U(osp(1|2n))

B+
A :=

→∏
l=1,...,ℓ(λ′)

B+
A(1,l) · · ·B

+
A(λ′

l,l)
(3.5)

together with the vectors

ωA :=
∑
σ∈Sλ′

sgn(σ)B+
Aσ

v0 (3.6)

and
ΩA :=

∑
τ∈Sλ

ωAτ =
∑
τ∈Sλ

∑
σ∈Sλ′

sgn(σ)B+
(Aτ )σ

v0. (3.7)

The arrow in (3.5) refers to the ordering of the product (l = 1 is leftmost and l = ℓ(λ′) is rightmost).
The vectors ωA, for A ∈ Y with ℓ(λA) ≤ p, would form the basis for L(p) considered in [2] if

we had defined B+
A with the opposite multiplication order

∏←
l=1,...,ℓ(λ′)B

+
A(1,l) · · ·B

+
A(λ′

l,l)
. Repeating

the line of reasoning from that paper, it can be proven that the ωA’s defined here also provide a
basis for L(p). The basis {ωA : A ∈ Y, ℓ(λA) ≤ p} for L(p) does however not respect the branching
osp(1|2n) ⊃ gl(n). That is, an element of this basis is not in general an element of one of the simple
gl(n)-module components V (λ + p

2) of L(p), but is instead a linear combination of vectors from
multiple of these components.

On the other hand, the vectors ΩA, for A ∈ Y with ℓ(λA) ≤ p, turn out to be scalar multiples
of the vectors of the basis defined in Corollary 2.7.

It should meanwhile be noted that the vectors B+
Av0, for A ∈ Y with ℓ(λA) ≤ p, can be proven

not to form a basis for L(p) in general.
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3.2 Correspondence between the vectors ΩA and EγAξλA

Looking back at the definition of the elements of the basis {EγAξλA
} from Corollary 2.7 we see that

the exponent matrices γA play an essential role in their definition. To relate ΩA with EγAξλA
, we

are thus compelled to take a closer look at the dependence of ΩA on the exponent matrix γA.
We begin by noting that any two tableaux A,B ∈ E(λ) have the same exponent matrix, that

is, γA = γB, if and only if A = Bτ for some permutation τ ∈ Sλ. We write A ∼ B if this is the
case. This defines an equivalence relation on E(λ). We let [A] denote the equivalence class of A.

Consider a partition λ ∈ P and a matrix γ ∈ Mnn(N0) with column sum λ, that is, λj =
∑n

i=1 γij ,
for all j ∈ {1, . . . , n}. We then let D(γ) denote the unique tableau in E(λ) which has exactly γij
i-valued entries in its j’th row, for any i, j ∈ {1, . . . , n}, and whose entries are non-decreasing from
left to right along each row. For example, if

γ =

1 0 1
1 1 1
2 2 0

 , then D(γ) =
1 2 3 3
2 3 3
1 2

. (3.8)

The tableaux D(γ) give a complete set of representatives for the equivalence classes in E(λ).

Lemma 3.1. Let λ ∈ P, then the map γ 7→ [D(γ)] defines a bijection from the matrices in Mnn(N0)
with column sum λ to the equivalence classes of E(λ). Furthermore, ΩA = ΩD(γ), for all A ∈ [D(γ)].

At this point it is beneficial to remark some notational edge cases. Namely γD(γ) = γ for all
γ ∈ Mnn(N0) with column sum λ ∈ P, and D(γB) ∈ [B], for all B ∈ E(λ).

The point of Lemma 3.1 is that it lets us study ΩD(γA) in place of ΩA, since ΩD(γA) = ΩA. The
main benefit is the more explicit dependence on the exponent matrix γA.

As the following lemma illustrates, we can give a simple expression for the action of Eij on
ΩD(γ). Shortly explained the lemma tells us that Eii acts on ΩA with the scalar (p2 + (µA)i) and
that the action of Eij , for i ̸= j, on ΩA is a sum over the ΩB’s for which B can be obtained from
A by replacing a j-valued entry with an i-valued entry. For example,

E33Ω 2 2 3
3 3

= (
p

2
+ 3)Ω 2 2 3

3 3

(3.9)

and
E43Ω 2 2 3

3 3

= Ω 2 2 3
4 3

+Ω 2 2 3
3 4

+Ω 2 2 4
3 3

= 2Ω 2 2 3
3 4

+Ω 2 2 4
3 3

(3.10)

To state the lemma, we need to introduce notation for unit matrices. For any i, j ∈ {1, . . . , n}
we let eij ∈ Mnn(N0) denote the unit matrix with entries (eij)i′j′ := δii′δjj′ , for all i

′, j′ ∈ {1, . . . , n}.

Lemma 3.2. Let λ ∈ P and γ ∈ Mnn(N0) with column sum λ. Then

EijΩD(γ) = δij
p

2
ΩD(γ) +

n∑
k=1

γjkΩD(γ+eik−ejk), (3.11)

for all i, j ∈ {1, . . . , n}.

Proof. Let A be a tableau in the equivalence class [D(γ)]. Then A has shape λ and (3.6) tells us
that

ωA = [B+
A(1,1), . . . , B

+
A(λ′

1,1)
] · · · [B+

A(1,ℓ(λ′)), . . . , B
+
A(λ′

ℓ(λ′),ℓ(λ
′))]v0, (3.12)
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where we use the following notation:

[B+
i1
, . . . , B+

ik
] :=

∑
σ∈Sk

sgn(σ)B+
iσ(1)

. . . B+
iσ(k)

. (3.13)

Using the relation [Eij , B
+
k ] = δjkB

+
i repeatedly we get

[
Eij , [B

+
A(1,l), . . . , B

+
A(λ′

l,l)
]
]
=

λ′
l∑

k=1

δj,A(k,l)[B
+
A(1,l), . . . , B

+
A(k−1,l), B

+
i , B

+
A(k+1,l), . . . , B

+
A(λ′

l,l)
], (3.14)

for any l ∈ {1, . . . , ℓ(λ′)}. Keeping in mind that Eijv0 = δij
p
2v0 we get the following identity

through repeated use of (3.14)

EijωA = δij
p

2
ωA +

∑
(k,l)∈λ,
A(k,l)=j

ωA(k,l)→i
, (3.15)

where A(k,l)→i is the tableau obtained by replacing the entry of A at coordinate (k, l) with an i. In
particular, for any (s, t) ∈ λ,

A(k,l)→i(s, t) =

{
A(s, t), if (s, t) ̸= (k, l),

i, if (s, t) = (k, l).
(3.16)

Recalling the action of Sλ on E(λ) defined in (3.3) we note that

(A(k,l)→i)
τ = (Aτ )(k,τ−1

k (l))→i. (3.17)

A short calculation then implies

EijωAτ = δij
p

2
ωA +

∑
(k,l)∈λ,
A(k,l)=j

ω(A(k,l)→i)
τ . (3.18)

Using (3.7) we then get

EijΩA = δij
p

2
ΩA +

∑
(k,l)∈λ,
A(k,l)=j

ΩA(k,l)→i
. (3.19)

To get the lemma from this it is enough to recall that ΩA = ΩD(γ) by Lemma 3.1 and to realize
that if A(k, l) = j, then ΩA(k,l)→i

= ΩD(γ+eik−ejk).

An exciting consequence of Lemma 3.2 is that we can now identify the gl(n)-highest weight
vectors in L(p).

Given a partition λ ∈ P, we consider the diagonal matrix γλ ∈ Mnn(N0) whose entries are
(γλ)ij := λiδij , for all i, j ∈ {1, . . . , n}. Alternatively we can write γλ =

∑n
i=1 λieii. The tableau

D(γλ) is then the s.s. Young tableau in Y(λ) with all 1’s in the first row, all 2’s in the second row
and all k’s in the k’th row. We shall make use of the shorthand notation Ωλ := ΩD(γλ) and similarly
ωλ := ωD(γλ), noting here that Ωλ = (λ1! · · ·λn!)ωλ.

Proposition 3.3. Let λ ∈ P. If ℓ(λ) ≤ p, then the vector Ωλ is non-zero and a gl(n)-highest weight
vector in L(p) of weight p

2 +λ. If ℓ(λ) > p, then Ωλ = 0. This classifies all the gl(n)-highest weight
vectors in L(p), up to multiples by scalar factors.
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Proof. Consider first the case ℓ(λ) ≤ p. As remarked following (3.7) the set {ωA : A ∈ Y, ℓ(λA)} is
a basis for L(p). Since ωλ is an element of this basis it follows that ωλ ̸= 0. This in turn implies
that Ωλ ̸= 0. We need to check two things, namely that Ωλ has the right weight and that it is
annihilated by t+. Both follow directly from Lemma 3.2 when we recall that the positive root
vectors of gl(n) are the Eij ’s with i < j. So the vectors Ωλ with ℓ(λ) ≤ p are gl(n)-highest weight
vectors in L(p). By Theorem 2.4, any other gl(n)-highest weight vector in L(p) must be a scalar
multiple of one of these.

If ℓ(λ) > p, then Ωλ is annihilated by t+. By Theorem 2.4 no gl(n)-highest weight vector of
this weight exists in L(p). We conclude that Ωλ = 0.

Since we now have explicit constructions of the gl(n)-highest weight vectors in L(p) we can give
the first expression of the elements of the basis from Corollary 2.7 in terms of operators acting on
v0. Specifically the elements of this basis are EγAΩλA

, for A ∈ Y with ℓ(λA) ≤ p.
In the special case where all j-valued entries of D(γ) are located in the same row Lemma 3.2

can be made more precise.

Lemma 3.4. Let λ ∈ P and γ ∈ Mnn(N0) with column sum λ. Let j ∈ {1, . . . , n} and suppose
there exists k ∈ {1, . . . , n} such that γjk′ = 0 when k′ ̸= k. Then

Em
ijΩD(γ) =

γjk!

(γjk −m)!
ΩD(γ+m(eik−ejk)), (3.20)

for all i ̸= j, and m ≤ γjk. If m > γjk, then Em
ijΩD(γ) = 0.

We are now in a position to prove the main theorem of this section.

Theorem 3.5. Let A ∈ E(λ) and suppose γ = γA is lower triangular. Then

EγΩλ =
λ!

diag(γ)!
ΩD(γ) =

λ!

diag(γ)!
ΩA (3.21)

where diag(γ)! := γ11! · · · γnn! and λ! = λ1! · · ·λn!.

Proof. Note first that ΩA = ΩD(γ). Recall that Ωλ = ΩD(γλ), where γλ =
∑n

i=1 λieii. In a similar
way we can write

γ =

n∑
i=1

i∑
j=1

γijeij = γλ +

n∑
i=2

i−1∑
j=1

γij(eij − ejj). (3.22)

Proving the theorem is then a matter of consecutive application of the operators E
γij
ij in the

order given by the definition of Eγ in (2.18), noting at each successive step that the conditions of
Lemma 3.4 are satisfied. To this end it should be noted that γ has column sum λ since A ∈ E(λ).
In broad strokes we proceed as follows. First note that

Eγn1
n1 · · ·Eγn,n−1

n,n−1 ΩD(γλ) =
λn−1!

(λn−1 − γn,n−1)!
Eγn1

n1 · · ·Eγn,n−2

n,n−2 ΩD(γλ+γn,n−1(en,n−1−en−1,n−1))

=

n−1∏
j=1

λj !

(λj − γnj)!

ΩD(γλ+
∑n−1

j=1 γnj(enj−ejj)).

(3.23)
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Continuing in the same way we get

EγΩD(γλ) =
→∏

k=2,...,n

(Eγk1
k1 · · ·Eγk,k−1

k,k−1 )ΩD(γλ)

=

n−1∏
j=1

λj !

(λj − γnj)!

 →∏
k=2,...,n−1

(Eγk1
k1 · · ·Eγk,k−1

k,k−1 )ΩD(γλ+
∑n−1

j=1 γnj(enj−ejj))

=

n−1∏
j=1

λj !

(λj − γnj)!

(λj − γnj)!

(λj − γnj − γn−1,j)!
· · ·

(λj −
∑n

i=j+2 γij)!

λj −
∑n

i=j+1 γij)!

ΩD(γλ+
∑n

i=2

∑i−1
j=1 γij(eij−ejj))

=
λ!

diag(γ)!
ΩD(γ).

This proves the theorem.

In Proposition 3.3 we found gl(n)-highest weight vectors Ωλ, for λ ∈ P with ℓ(λ) ≤ p. This
observation together with Corollary 2.7 let us conclude that the vectors EγAΩλA

, for A ∈ Y with
ℓ(λA) ≤ p, form a basis for the osp(1|2n)-module L(p). With the help of Theorem 3.5 we can now
give a second expression for the elements in this basis as scalar multiples of vectors of the form ΩA.
Indeed Theorem 3.5 can be applied to a vector EγAΩλA

in the basis, since γA is lower triangular
for any A ∈ Y.

Corollary 3.6. The simple osp(1|2n)-module L(p) has a basis consisting of the elements

EγAΩλA
=

λA!

diag(γA)!
ΩA (3.24)

for all A ∈ Y with ℓ(λA) ≤ p.

The two expressions for the basis elements presented in Corollary 3.6 may be described as
follows. On the one hand the expression EγAΩλA

gives the basis elements as monomials in the
negative root vectors Eij , for i > j, of gl(n) acting on gl(n)-highest weight vectors in L(p). This
expression makes it clear how the basis behaves under the branching osp(1|2n) ⊃ gl(n). On
the other hand the expression λA!

diag(γA)!ΩA gives the basis elements as polynomials in the positive

generators B+
j of osp(1|2n) acting on the osp(1|2n)-lowest weight vector v0. Such expressions are

useful in the context of parastatistics where L(p) is identified with the paraboson Fock space, the
B+

j ’s are interpreted as creation operators and v0 as the vacuum. Using the second expression of
the basis we can then present any state in the paraboson Fock space as a polynomial of creation
operators acting on the vacuum.

An illustrative example of the expressions (3.24) can be found in Section 5 were we describe
the results of this paper in the case n = 3.

To end this section we present the necessary and sufficient conditions on γ for D(γ) to be a s.s.
Young tableau in Y(λ).

Lemma 3.7. The tableau D(γ) is a s.s. Young tableau in Y(λ) if and only if γ is a lower triangular
matrix in Mnn(N0) with column sum λ ∈ P and which satisfies

j∑
k=i

γki ≥
j+1∑

k=i+1

γk,i+1, (3.25)

for 1 ≤ i ≤ j ≤ n− 1.
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Proof. The tableau D(γ) has shape λ if and only if γ has column sum λ. By definition D(γ) only
has entries in the set {1, . . . , n} and the entries are non-decreasing from left to right along each
row. It only remains to check that (3.25) is a necessary and sufficient condition for the entries of
D(γ) to be increasing from top to bottom along each column. Since the entries are non-decreasing
along the rows, this is equivalent to requiring that for each pair (i, j) with 1 ≤ i < j ≤ n − 1,
the number of entries in the i’th row of D(γ) taking values 1, . . . , j is greater then the number of
entries in the (i + 1)’th row of D(γ) taking values 1, . . . , j + 1. Recalling the definition of D(γ),
this happens precisely if

j∑
k=1

γki ≥
j+1∑
k=1

γk,i+1. (3.26)

By apply the assumption that γ is lower triangular, we see that this is exactly the condition
(3.25).

4 Raising and lowering operators

In this section we study the branching osp(1|2n) ⊃ gl(n) in more detail. To do so, we will construct
raising and lowering operators z±j and z±ij , for 1 ≤ i ≤ j ≤ n, that act on the space spanned by
gl(n)-highest weight vectors of any given osp(1|2n)-module. These raising and lowering operators
generate an associative algebra Z(osp(1|2n), gl(n)) called the Mickelsson-Zhelobenko algebra. The
literature on the application of raising and lowering operators and Mickelsson-Zhelobenko algebras
to the theory of Lie superalgebras is limited and this work represents for the first time such con-
structions being applied to the branching osp(1|2n) ⊃ gl(n). In particular, the identities obtained
in Theorem 4.3 are entirely new. In the context of Lie algebras, abstract algebras of raising and
lowering operators where introduced by Mickelsson in [22]. These algebras are commonly known as
Mickelsson algebras. Zhelobenko expanded on the theory of Mickelsson algebras in [32, 33] using the
extremal projector p, introduced by Asherova, Smirnov and Tolstoy in [1], to construct generators
for the extension of the Mickelsson algebra by the field of fractions of the Cartan subalgebra. This
extension is called the extended Mickelsson algebra or the Mickelsson-Zhelobenko algebra. Many
aspects of this theory extend to Lie superalgebras, which is the situation we are dealing with in
this paper. Relevant papers on Lie superalgebraic applications include [24, 30]. Additionally, the
recent paper [26] on representations of the Yangian algebra Y (osp(1|2n)) is relevant due to various
connections between Yangians, Mickelsson-Zhelobenko algebras and basis construction for modules
of Lie (super)algebras, as illustrated in [23, 24].

We begin the section with a brief explanation of the aforementioned concepts. Following that
we present precise expressions of the operators z±j and z±ij that generate Z(osp(1|2n), gl(n)), see
Theorem 4.3. We then apply the raising and lowering operators to the osp(1|2n)-module L(p). By
using the expressions of z±j given in Theorem 4.3 we obtain formulas for the action of osp(1|2n)
on the vectors in L(p) of the form EγΩλ. We explain what these formulas yield about the matrix
elements of the action of osp(1|2n) on the elements of the basis {EγAΩλA

} for L(p).
Finally we use the raising and lowering operators to express the elements of the GZ-basis for

L(p) as monomials of operators acting on the osp(1|2n)-lowest weight vector v0 of L(p), something
that until now was missing in the literature. Using results from [25] we conclude that there is a
triangular transition matrix connecting the GZ-basis and the {EγAΩλA

} basis for L(p), see Theorem
4.11. We briefly mention how such a transition matrix can be used to express any vector in the
the GZ-basis as a polynomial in the generators B+

j of osp(1|2n), for j ∈ {1, . . . , n}, acting on v0.
The entries of this transition matrix are calculated explicitly in the case n = 3, this is done in
Proposition 5.2.
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4.1 The Mickelsson-Zhelobenko algebra Z(osp(1|2n), gl(n))

To keep the notation in this section manageable, we introduce the shorthand notation g := osp(1|2n)
and t := gl(n). We recall that t has triangular decomposition

t = t+ ⊕ h⊕ t−, (4.1)

where t+ and t− denote the subalgebras spanned by the positive and negative roots vectors of t
respectively, see (2.9) and (2.10). We denote by J = U(g)t+ the left ideal of U(g) generated by t+

and consider its normalizer Norm J as a subalgebra of U(g)

Norm J := {v ∈ U(g) : Jv ⊂ J}. (4.2)

The ideal J is then a two-sided ideal of Norm J and the Mickelsson algebra is defined as the quotient
algebra

S(g, t) := (Norm J)/J. (4.3)

The Mickelsson algebra can be considered as the subalgebra spanned by the t-highest weight vectors
in the quotient algebra

M(g, t) := U(g)/J, (4.4)

in the sense that S(g, t) consists exactly of the elements in M(g, t) that are annihilated by t+.
Letting R(h) denote the field of fractions of the commutative algebra U(h) we define the exten-

sion of S(g, t) by R(h) to be
Z(g, t) := S(g, t)⊗U(h) R(h). (4.5)

This extension is called the Mickelsson-Zhelobenko algebra or extended Mickelsson algebra. We
could equivalently have defined it as the quotient algebra (Norm J′)/J′, where J′ := U ′(g)t+ and
U ′(g) := U(g)⊗U(h) R(h). Similarly as to how we considered S(g, t) as a subalgebra of M(g, t), we
can consider Z(g, t) as a subalgebra of M ′(g, t) := M(g, t)⊗U(h) R(h).

To describe the elements and generators of the Mickelsson-Zhelobenko algebra Z(g, t) we need
the extremal projector of t. To define this extremal projector we need to construct an algebra of
formal series of monomials in the root vectors of t. To this end we let ∆+ = {α1, . . . , αm} denote
the set of positive roots of t and let Eα denote the root vectors of α ∈ ∆+. We consider for any
weight µ ∈ h∗ the vector space Fµ(t) over R(h) of formal series of monomials of weight µ, that is,
monomials of the form

Es1
−α1

· · ·Esm
−αm

Etm
αm

· · ·Et1
α1
, (4.6)

for which s1, t1, . . . , sm, tm ∈ N0 and

µ = (t1 − s1)α1 + · · ·+ (tm − sm)αm. (4.7)

This definition is independent of the choice of ordering of the elements in ∆+. We define the space
F (t) to be the direct sum of the spaces Fµ(t)

F (t) :=
⊕
µ∈h∗

Fµ(t). (4.8)

It can be proven that F (t) is an associative algebra with respect to multiplication of formal series,
see [33]. We equip F (t) with a Hermitian anti-involution given by E∗α := E−α and E∗ii := Eii.

Any element of F (t) can be considered as an operator acting on M ′(g, t). That is,

fu :=
∑
s,t

Es1
−α1

· · ·Esm
−αm

Etm
αm

· · ·Et1
α1
qs,tu, (4.9)
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for any u ∈ M ′(g, t) and f ∈ Fµ(t). Here we expressed f as a formal series of monomials (4.6)
with coefficients qs,t ∈ R(h). Due to the quotient by J′ in the definition of M ′(g, t) all but a finite
number of summands in (4.9) are congruent to zero modulo J′.

We can now define the extremal projector of t as an element in F (t) of weight zero. See [23] for
details on the extremal projector for t.

Theorem 4.1. The extremal projector p ∈ F (t) is the unique element (up to a factor in R(h)) for
which p∗ = p, p2 = p and

Eαp = pE−α = 0, (α ∈ ∆+). (4.10)

The extremal projector for t can be constructed explicitly as follows, see [23]. The positive roots
of t can be explicitly described as αij = ϵi − ϵj , for 1 ≤ i < j ≤ n, that is, ∆+ = {αij : 1 ≤ i <
j ≤ n}. The root vector corresponding to αij is then Eij . Consider for each root αij the element
pij ∈ F (t) defined as

pij :=

∞∑
k=0

(−1)k

k!
Ek

jiE
k
ij

1

(hi − hj + 1)k
, (4.11)

where hi := Eii − i + 1, for all i ∈ {1, . . . , n}, and where (x)k := x(x + 1) · · · (x + k − 1) is a
Pochhammer symbol. The extremal projector for t is defined as a product

p :=
∏

1≤i<j≤n
pij , (4.12)

where the multiplication is determined by a normal order on the roots in ∆+. The choice of order
does not matter as long as it is normal, meaning that for any composite root γ = α + β, with
α, β, γ ∈ ∆+, it must hold that α < γ < β or β < γ < α. We shall make use of the normal ordering
of ∆+ given by

α12 < α13 < α23 < · · · < α1n < · · · < αn−1,n. (4.13)

The extremal projector for t is then

p = p12p13p23 · · ·p1n · · ·pn−1,n. (4.14)

Following a similar process one can define extemal projectors for many types of Lie (su-
per)algebras, affine Kac-Moody (super)algebras and their quantum analogs, see [31].

The embedding t ⊂ g is reductive, so we can decompose g under the adjoint representation of t,
that is, g = t⊕V , where V is the complementary t-module having a basis consisting of the elements
B±j and {B±i , B

±
j }, for 1 ≤ i ≤ j ≤ n. We let D denote the vector space given by the linear span

over R(h) of the monomials in the basis elements of V . There is then a natural imbedding of D
into M ′(g, t) such that

M ′(g, t) = D ⊕ t−M ′(g, t). (4.15)

The following result is a direct translation from the standard Lie algebraic theory of extremal
projectors and Mickelsson-Zhelobenko algebras as presented in [33].

Theorem 4.2. Then extremal projector p is an isomorphism of vector spaces from D → Z(g, t),
whose inverse is the restriction to Z(g, t) ⊂ M ′(g, t) of the projection δ : M ′(g, t) → D parallel to
t−M ′(g, t).

This result tells us in particular that Z(g, t) is spanned by elements of the form pv, for v ∈ D.
As we shall see below in Corollary 4.4, Z(g, t) is in fact generated by the elements

pB±j and p{B±i , B
±
j }, (1 ≤ i ≤ j ≤ n). (4.16)
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We will now give explicit expressions for these elements. To do so, we need to introduce notation
for relevant index sets. For any i, j ∈ {1, . . . , n} and s ∈ N we define the set

Iij(s) :=
{
I = (i1, . . . , is) : i = i1 < i2 < · · · < is = j

}
, (4.17)

where Iii(1) = {(i)}. For any I ∈ Iij(s) we let I∁ denote the ordered complement of I in {i, . . . , j}.
That is, I∁ := (i′1, . . . , i

′
u) such that i′1 < · · · < i′u and {i′1, . . . , i′u} = {i, . . . , j}\{i1, . . . , is}. Consider

for each I ∈ Iij(s) the matrix in Mnn(N0) given by eI =
∑s−1

u=1 eiu+1,iu . The corresponding operator
in U(t−), as defined by (2.18), is then

EeI = Ei2i1 · · ·Eisis−1 . (4.18)

Theorem 4.3. The elements pB±j ∈ Z(g, t), for 1 ≤ j ≤ n, satisfy the following identities modulo
J′.

pB+
j =

j∑
i=1

j−i+1∑
s=1

∑
I∈Iij(s)

(−1)s−1EeIB+
i

∏
ℓ∈I∁(hℓ − hj − 1)∏j−1

ℓ=i (hℓ − hj)
, (4.19)

pB−j =
n∑

i=j

i−j+1∑
s=1

∑
I∈Iji(s)

EeIB−i
1∏

ℓ∈I,ℓ ̸=j(hj − hℓ)
, (4.20)

Similarly there exists H±IJ ∈ R(h) such that the elements p{B±i , B
±
j } ∈ Z(g, t), for 1 ≤ i ≤ j ≤ n,

satisfy the following identities modulo J′.

p{B+
i , B

+
j } =

i∑
k=1

i−k+1∑
s=1

∑
I∈Iki(s)

j∑
l=1

j−l+1∑
t=1

∑
J∈Ilj(t)

EeI+eJ{B+
k , B

+
l }H

+
IJ (4.21)

and

p{B−i , B
−
j } =

n∑
k=i

k−i+1∑
s=1

∑
I∈Iik(s)

n∑
l=j

l−j+1∑
t=1

∑
J∈Ijl(t)

EeI+eJ{B−k , B
−
l }H

−
IJ . (4.22)

Proof. The extremal projector p is an element of the weight zero subspace F0(t) of F (t). This
means that pB+

j has weight ϵj , is an element of Fϵj (t) and can be written as an infinite linear
combination over R(h)

pB+
j =

∑
s1,...,sm∈N0

Es1
−α1

· · ·Esm
−αm

E−smαm
· · ·E−s1α1

B+
j Hs1,...,sm , (4.23)

where Hs1,...,sm ∈ R(h). The extremal projector p may be considered as a map from M ′(g, t)
to Z(g, t), so by identifying B+

j with its isomorphism class in M ′(g, t) we may consider pB+
j as

an element of Z(g, t) which satisfies the identity (4.23) modulo J′. Since {α1, . . . , αm} = ∆+ =
{ϵk − ϵl : 1 ≤ k < l ≤ n} and Ekl = Eϵk−ϵl we know that, for any i ∈ {1, . . . ,m}, there exist
k, l ∈ {1, . . . , n} with k < l such that Eαi = Ekl. The relations (2.1) tell us that

[Ekl, B
+
j ] = δjlB

+
k , (4.24)

for any k, l ∈ {1, . . . , n} with k < l. These observations imply that the sum (4.23) can be rewritten
as follows modulo J′

pB+
j =

j∑
i=1

∑
s1,...,sm∈N0,

−s1α1−···−smαm+ϵi=ϵj

Es1
−α1

· · ·Esm
−αm

B+
i Ĥs1,...,sm(i), (4.25)
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where Ĥs1,...,sm(i) ∈ R(h). Observe now that the identity

− s1α1 − · · · − smαm + ϵi = ϵj (4.26)

is satisfied if and only if there exists I ∈ Iij(s) with s ∈ {1, . . . , j − i+ 1} such that

Es1
−α1

· · ·Esm
−αm

B+
i = Ei2i1 · · ·Eisis−1B

+
i = EeIB+

i . (4.27)

This means specifically that there exist elements H+
I ∈ R(h) such that (4.25) can be rewritten as

follows modulo J′

pB+
j =

j∑
i=1

j−i+1∑
s=1

∑
I∈Iij(s)

EeIB+
i H

+
I . (4.28)

To get (4.19) we need to determine the elements H+
I . By applying a positive root vector Ekl, with

k < l, to both sides of the identity (4.28) and using (4.10) we get

0 =

j∑
i=1

j−i+1∑
s=1

∑
I∈Iij(s)

EklE
eIB+

i H
+
I . (4.29)

By comparing the identities obtained for each positive root vector Ekl we get a set of linear equations
which can be solved for the coefficients H+

I . The identity (4.19) is then obtained by substituting
these solutions into (4.28). The remaining identities (4.20), (4.21) and (4.22) are proven in a similar
manner.

From the identities given in Theorem 4.3, we can conclude that the elements pB±j and p{B±i , B
±
j }

generate Z(g, t).

Corollary 4.4. The Mickelsson-Zhelobenko algebra Z(g, t) is generated by the elements pB±j and

p{B±i , B
±
j }, for 1 ≤ i ≤ j ≤ n.

Proof. By Theorem 4.2 any element of Z(g, t) is of the form pv, where v ∈ D. Any element v ∈ D is
a linear combination of the monomials in the elements B±j and {B±i , B

±
j }. By isolating these terms

in the identities from Theorem 4.3 we get recursive relations that upon repeated use will let us
expand the elements B±j and {B±i , B

±
j } as linear combinations of elements pB±j and p{B±i , B

±
j }.

For the elements B±j these expansions are

B+
j = pB+

j +

j−1∑
i=1

j−i+1∑
s=2

∑
I∈Iij(s)

EeIpB+
i

∏
ℓ∈I∁(hi − hℓ + 1)∏j
ℓ=i+1(hi − hℓ)

(4.30)

and

B−j = pB−j +

n∑
i=j+1

i−j+1∑
s=2

∑
I∈Iji(s)

EeIpB−i
1∏

ℓ∈I,ℓ ̸=i(hi − hℓ)
. (4.31)

Similar expansions can be obtained for the elements {B±i , B
±
j }. Using these relations we can write

pv as a linear combinations of monomials in the pB±j ’s and p{B±i , B
±
j }’s.

For application to the study of g-modules it is beneficial to consider certain normalizations of
the generators given in Corollary 4.4. We can consider any element x ∈ Z(g, t) as having coefficients
in the fraction field R(h). This means that we can find an element π ∈ U(h) that acts as a right
denominator for x in such a way that xπ has coefficients in U(h) instead of in R(h). It follows
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that xπ can be considered an element of the Mickelsson algebra S(g, t). Using such normalizations
we can obtain generators for S(g, t) from the generators of Z(g, t) given above. Specifically this is
done as follows.

z+j := pB+
j (h1 − hj) · · · (hj−1 − hj), (1 ≤ j ≤ n),

z−j := pB−j (hj − hj+1) · · · (hj − hn), (1 ≤ j ≤ n),

z+ij := p{B+
i , B

+
j }π

+
ij

z−ij := p{B−i , B
−
j }π

−
ij ,

(4.32)

where π±ij are appropriate elements in U(h) of which the explicit form is not needed in this paper.

The unital associative algebra generated by the elements z±j and z±ij is thus either Z(g, t) or
S(g, t) depending on whether it is considered as an algebra over R(h) or U(h). See (5.10) for explicit
calculation of the z±j ’s in the case n = 3.

4.2 Application to lowest weight modules of osp(1|2n)

The most obvious use for the raising and lowering operators z±j and z±ij is to study the t-highest
weight vectors in g-modules. This includes branching problems where one wants to describe the
structure of simple g-modules when they are viewed as t-modules. What follows is a collection of
general observations regarding the use of raising and lowering operators in the study of t-highest
weight vectors in g-modules.

Consider a simple lowest weight module L of g with lowest weight vector w0. Since Jw0 = {0}
it follows that the algebra M(g, t) has a natural action on L such that

M(g, t)w0 = U(g)w0 = L. (4.33)

We can additionally describe the space L+ spanned by all t-highest weight vectors in L as follows

L+ := {v ∈ L : t+v = 0} = S(g, t)w0 (4.34)

This means that S(g, t) has a natural action on L+ and that, for any x ∈ S(g, t), there exists an
element x̂ ∈ U(g) that is unique modulo J and for which xv = x̂v, for all v ∈ L+.

Let us denote by L+
µ the weight subspace of L+ corresponding to the weight µ ∈ h∗, that is,

L+
µ :=

{
v ∈ L+ : Eiiv = µiv, i ∈ {1, . . . , n}

}
. (4.35)

This lets us make the following observation regarding the generators of S(g, t).

Lemma 4.5. For any 1 ≤ i ≤ j ≤ n and µ ∈ h∗ we have

z±j L
+
µ ⊂ L+

µ±ϵj and z±ijL
+
µ ⊂ L+

µ±ϵi±ϵj . (4.36)

To apply these ideas in the context discussed in the rest of this paper we put L = L(p).
Proposition 3.3 tells us that L(p)+ has a basis consisting of the vectors Ωλ, for λ ∈ P with ℓ(λ) ≤ p.
In Corollary 4.7 we describe explicitly the actions of the raising and lowering operators z±j , for
j ∈ {1, . . . , n}, on the Ωλ’s and in (4.60) we express the Ωλ’s as monomials in the raising operators
z+j , for j ∈ {1, . . . , n}, acting on the osp(1|2n)-lowest weight vector v0 in L(p).
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4.3 The action of B±j on EγΩλ

We will now take a closer look at the problem of finding formulas for the actions of the operators
B±j on the vectors in L(p) of the form EγΩλ. We are able to express the resulting vectors B±j E

γΩλ

as linear combinations of vectors of the form Eγ′
Ωµ. However, such expansions are not in general

expansions into linear combinations of the vectors from the basis {EγAΩA} for L(p). The problem of
obtaining such basis expansions is discussed at the end of this section and is solved in Proposition 5.1
for the case n = 3.

In the following result we use the expressions for the raising and lowering operators pB±j given

in Theorem 4.3 to get expansions of the vectors B±j Ωλ.

Proposition 4.6. Let λ ∈ P and j ∈ {1, . . . , n}. Then

B+
j Ωλ =

j∑
i=1

j−i+1∑
s=1

∑
I∈Iij(s)

d+i (λ)

∏
ℓ∈I∁(λi − λℓ − i+ ℓ+ 1)∏j
ℓ=i+1(λi − λℓ − i+ ℓ)

EeIΩλ+ϵi (4.37)

and

B−j Ωλ =

n∑
i=j

i−j+1∑
s=1

∑
I∈Iji(s)

d−i (λ)
1∏

ℓ∈I,ℓ ̸=i(λi − λℓ − i+ ℓ)
EeIΩλ−ϵi , (4.38)

where Ωλ±ϵi := 0 if λ± ϵi /∈ P,

d+i (λ) =
(−1)

∑n
α=i(α+1)(λα−λα+1+δαi)

(λi + 1)i

( i−1∏
ℓ=1

λi − λℓ − i+ ℓ+ 1

λi − λℓ − i+ ℓ+ [λi − λℓ]2

)
(4.39)

and

d−i (λ) =
(λi + 1)i(λi + n− i+ [λi]2(p− n))

(−1)
∑n

α=i(α+1)(λα−λα+1)

( n∏
ℓ=i+1

λi − λℓ − i+ ℓ− 1

λi − λℓ − i+ ℓ− [λi − λℓ]2

)
. (4.40)

Proof. Recall that the weight of Ωλ is λ+ p
2 and that λ is a partition. Because of this one does not

run into the problem of dividing by zero when acting on Ωλ with operators of the form 1
hk−hℓ

, for

k ̸= ℓ, which appear in the expressions (4.19) and (4.20) of pB±j . These observations imply that

the action of pB±j on Ωλ is well defined. Together Proposition 3.3 and Lemma 4.5 imply that there

exist coefficients d±i (λ) ∈ C such that

(pB±i )Ωλ =

{
d±i (λ)Ωλ±ϵi , if λ± ϵi ∈ P and ℓ(λ± ϵi) ≤ p,

0, otherwise,
(4.41)

for any i ∈ {1, . . . , n}. Using the identities (4.30) and (4.31) together with (4.41) we immediately
get the expansions (4.37) and (4.38). The coefficients d±i (λ) are calculated in Appendix A.

As a consequence of observations made in the proof of Proposition 4.6 we get the following
corollary:

Corollary 4.7. Let j ∈ {1, . . . , n} and λ ∈ P with ℓ(λ) ≤ p, then

z+j Ωλ =

{
d+j (λ)

∏j−1
ℓ=1(λℓ − λj − ℓ+ j)Ωλ+ϵj , if λ+ ϵj ∈ P and ℓ(λ+ ϵj) ≤ p,

0, otherwise,
(4.42)

and

z−j Ωλ =

{
d−j (λ)

∏n
ℓ=j+1(λj − λℓ − j + ℓ)Ωλ−ϵj , if λ− ϵj ∈ P and ℓ(λ− ϵj) ≤ p,

0, otherwise.
(4.43)
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In order to give formulas for the actions of B±j on a vector EγΩλ in L(p) we will need the
following two technical lemmas in addition to Proposition 4.6. We forego giving explicit proofs of
these lemmas since they result from simple yet tedious calculations using the relations (2.1) and
(2.2).

Lemma 4.8. Let ℓ ∈ {1, . . . , n}, γ ∈ Mnn(N0) and λ ∈ P with ℓ(λ) ≤ p, then we have

B+
ℓ E

γΩλ =

n∑
j=ℓ

j−ℓ+1∑
t=1

∑
J∈Iℓj(t)

(−1)t−1
t−1∏
u=1

γju+1juE
γ−eJB+

j Ωλ, (4.44)

and

B−ℓ E
γΩλ =

ℓ∑
j=1

γ
1−δℓj
ℓj Eγ−eℓjB−j Ωλ (4.45)

Lemma 4.9. Let γ ∈ Mnn(N0) and I ∈ Iij(s). Then we have

EγEeI =
n∑

v2=i2

· · ·
n∑

vt=is

s∏
u=2

γ
(1−δvuiu )
vuiu

Eγ+
∑s

u=2 evuiu−1
−evuiu . (4.46)

Given ℓ ∈ {1, . . . , n}, γ ∈ Mnn(N0) and λ ∈ P with ℓ(λ) ≤ p we can use Lemma 4.8, Proposition
4.6 and Lemma 4.9, in that order, to obtain the following expansions.

B+
ℓ E

γΩλ =
∑

J∈Iℓj(t)

∑
I∈Iij(s)

n∑
v2=i2

· · ·
n∑

vt=is

(
(−1)t−1d+j (λ)

t−1∏
u=1

γju+1ju

s∏
u=2

(γ − eJ)
1−δvuiu
vuiu

)
×

× Eγ−eJ+
∑s

u=2 evuiu−1
−evuiuΩλ+ϵi ,

(4.47)

where we are implicitly also summing over j ∈ {ℓ, . . . , n}, t ∈ {1, . . . , j − ℓ+ 1}, i ∈ {1, . . . , j} and
s ∈ {1, . . . , j − i+ 1}, and

B−ℓ E
γΩλ =

ℓ∑
j=1

∑
I∈Iji(s)

n∑
v2=i2

· · ·
n∑

vt=is

(
γ
1−δℓj
ℓj d−j (λ)

s∏
u=2

(γ − eℓj)
1−δvuiu
vuiu

)
×

× Eγ−eℓj+
∑s

u=2 evuiu−1
−evuiuΩλ−ϵi ,

(4.48)

where we are implicitly also summing over i ∈ {j, . . . , n} and s ∈ {1, . . . , i− j + 1}. To discuss the
implications of these expansions we need to take a closer look at the vectors

Eγ−eJ+
∑s

u=2 evuiu−1
−evuiuΩλ+ϵi and Eγ−eℓj+

∑s
u=2 evuiu−1

−evuiuΩλ−ϵi . (4.49)

To determine whether or not these vectors are basis vectors, we need to analyse the exponent
matrices using Lemma 3.7. To this end we introduce the following shorthand notation

γ+ := γ − eJ +

s∑
u=2

evuiu−1 − evuiu (4.50)

and

γ− := γ − eℓj +

s∑
u=2

evuiu−1 − evuiu . (4.51)
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We can modify these matrices to get matrices γ̄± that are lower triangular and have column sums
λ± ϵi as follows

γ̄±kl :=


γ±kl, if k > l,

λl ± δil −
∑l−1

m=1 γ
±
ml, if k = l,

0 if k < l,

(4.52)

for all k, l ∈ {1, . . . , n}. If γ̄± has a negative diagonal entry, then Eγ±
Ωλ±ϵi = 0, if not, then γ̄± is

a lower triangular matrix in Mnn(N0) with column sum λ ± ϵi. Using (2.18) and Theorem 3.5 we
get

Eγ±
Ωλ±ϵi = Eγ̄±

Ωλ±ϵi =
(λ± ϵi)!

diag(γ̄±)!
ΩD(γ̄±), (4.53)

where D(γ̄±) ∈ E(λ ± ϵi). To determine whether or not Eγ̄±
Ωλ±ϵi is an element of the basis

{EγAΩλA
} for L(p), we need to check if D(γ̄±) is a s.s. Young tableau in Y(λ±ϵi) and ℓ(λ±ϵi) ≤ p.

The necessary and sufficient conditions for this are given in Lemma 3.7.
It is unfortunately not generally the case that D(γ̄±) satisfies the conditions to be a s.s. Young

tableau in Y(λ ± ϵi), even if γ = γA, for some A ∈ Y(λ). If this was the case then the identities
(4.47) and (4.48) would completely describe matrix elements of the action of osp(1|2n) on the basis
{EγAΩλA

} for L(p). Since this is not the case a different strategy is needed in order to obtain these
matrix elements from (4.47) and (4.48). One possible strategy would be to work out how the vectors
Eγ̄±

Ωλ±ϵi expand into linear combinations of the vectors EγBΩλ±ϵi , for B ∈ Y(λ± ϵi), which form
the PBW-type basis for the gl(n)-module V (λ ± ϵi +

p
2) defined in Theorem 2.6. Knowing these

expansions is essentially equivalent to knowing the matrix elements of the action of gl(n) on the
PBW-type basis for V (λ± ϵi+

p
2). Such knowledge is unfortunately missing from the literature. In

fact, the only basis for V (λ± ϵi +
p
2) for which matrix elements are known is a GZ-basis, see [23].

In conclusion, the identities (4.47) and (4.48) do not give us the matrix elements of the action of
osp(1|2n) on the basis {EγAΩλA

} for L(p). They do however connect this problem with the problem
of finding such matrix elements for the action of gl(n) on the PBW-type basis for V (λ± ϵi +

p
2).

4.4 Raising operators and the Gel’fand-Zetlin-basis for L(p)

The first basis that was obtained for the osp(1|2n)-module L(p) was a GZ-basis related to the
branching

osp(1|2n) ⊃ gl(n) ⊃ · · · ⊃ gl(1). (4.54)

This is the only basis for L(p) for which the matrix elements of the action of osp(1|2n) on the basis
are known explicitly, see [17]. The main disadvantage of this basis is that no expression is known
for the basis elements in terms of operators from U(g) acting on the lowest weight vector v0 of
L(p). In this section we will use raising operators to obtain such expressions. In Section 5 we will
express the vectors of the GZ-basis as polynomials in the B+

j ’s acting on v0 for the case n = 3.
This is done using Proposition 5.2 which explicitly expands the vectors of the GZ-basis as linear
combinations of the vector from the basis {EγAΩλA

}.
A GZ-basis for L(p) is a union of GZ-bases for the highest weight gl(n)-modules V (λ+ p

2), for
λ ∈ P with ℓ(λ) ≤ p, each respecting the branching gl(n) ⊃ · · · ⊃ gl(1). In [23] such GZ-bases for
the gl(n)-modules V (λ+ p

2) are constructed with the basis vectors being expressed using lowering
operators from the Mickelsson-Zhelobenko algebras Z(gl(m), gl(m − 1)), for m ∈ {2, . . . , n}. We
briefly sketch this construction.

The extremal projector of gl(m) is given by the formulas (4.11) and (4.12) where the index n
is exchanged for m− 1. The Mickelsson-Zhelobenko algebra Z(gl(m), gl(m− 1)) is then generated
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by the raising operators

pEjm = Ejm +

j−1∑
i=1

j−i+1∑
s=2

∑
I∈Iij(s)

Eisis−1 · · ·Ei2i1Ei1m
1∏

ℓ∈I,ℓ ̸=j(hj − hℓ)
(4.55)

and lowering operators

pEmj = Emj +
m−1∑
i=j+1

i−j+1∑
s=2

∑
I∈Iji(s)

Ei2i1 · · ·Eisis−1Emis

1∏
ℓ∈I,ℓ ̸=j(hj − hℓ)

, (4.56)

for j ∈ {1, . . . ,m − 1}. Similarly to the identities given in Theorem 4.3 these identities hold only
modulo the ideal in Z(gl(m), gl(m − 1)) corresponding to the ideal J′ in Z(osp(1|2n), gl(n)). For
more details, see [23].

By multiplications with the right denominators we can obtain raising and lowering operators
in the Mickelsson algebra S(gl(m), gl(m− 1)):

yjm = pEjm(hj − h1) · · · (hj − hj−1)

ymj = pEmj(hj − hj+1) · · · (hj − hm−1),
(4.57)

for j ∈ {1, . . . ,m−1}. The elements of the GZ-basis for V (λ+ p
2) constructed in [23] can be indexed

by s.s. Young tableaux A ∈ Y(λ) with ℓ(λA) ≤ p. The basis element corresponding to A is then

→∏
k=2,...,n

(
y
(γA)k1
k1 · · · y(γA)k,k−1

k,k−1

)
ξλ, (4.58)

where ξλ is a fixed highest weight vector of V (λ + p
2). The arrow refers to the ordering of the

product (k = 2 is leftmost and k = n is rightmost). We can now construct a GZ-basis for L(p).

Theorem 4.10. Let v0 denote the lowest weight vector of L(p). Then L(p) has a GZ-basis con-
sisting of the vectors

vA :=
→∏

k=2,...,n

(
y
(γA)k1
k1 · · · y(γA)k,k−1

k,k−1

)
(z+n )

λn · · · (z+1 )
λ1v0, (4.59)

for all A ∈ Y(λ) and λ ∈ P with ℓ(λ) ≤ p. Furthermore, the vector (z+n )
λn · · · (z+1 )λ1v0 is a

gl(n)-highest weight vector of weight λ+ p
2 .

Using Corollary 4.7 we can state the relationship between (z+n )
λn · · · (z+1 )λ1v0 and Ωλ as follows.

(z+n )
λn · · · (z+1 )

λ1v0 =

 n∏
j=1

(−1)
λj(λj+1)

2

λj !jλj

λj−1∏
k=0

j−1∏
ℓ=1

(k − λℓ − j + ℓ+ 1− [k − λℓ]2)

Ωλ. (4.60)

The GZ-basis for L(p) constructed in Theorem 4.10 differs from the one obtained in [17] by a scalar
factor on each basis vector. These scalars can be obtained by making L(p) a Hilbert space. This is
done using the Hermitian inner product ⟨·, ·⟩ defined by the relations

⟨v0, v0⟩ = 1 and ⟨B±j vA, vB⟩ = ⟨vA, B∓j vB⟩, (4.61)

for all j ∈ {1, . . . , n} and A,B ∈ Y(λ) with λ ∈ P and ℓ(λ) ≤ p. The GZ-basis constructed in [17]
is then an orthonormal basis for L(p) with respect to ⟨·, ·⟩ and the elements of this basis are given
by

|mA) :=
1√

⟨vA, vA⟩
vA, (4.62)
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for all A ∈ Y(λ) with λ ∈ P and ℓ(λ) ≤ p. Of course these observations mean that the GZ-basis
obtained in Theorem 4.10 is orthogonal with respect to ⟨·, ·⟩. In [17] the basis elements |mA) are
parametrized by GZ-patterns and not s.s. Young tableaux. These parametrizations are equivalent
and the entries mij of the GZ-pattern corresponding to |mA) can be calculated as follows using the
exponent matrix γA.

mij =

j∑
k=i

(γA)ki, (1 ≤ i ≤ j ≤ n). (4.63)

We end this section by presenting a result that relate the basis {EγAΩλA
} with the GZ-basis

constructed in Theorem 4.10. This result is an extrapolation of Theorem A from [25] which relates
the PBW-type basis for V (λ+ p

2) with the GZ-basis for V (λ+ p
2). Recall that these bases are given

in Theorem 2.6 and (4.58) respectively.

Theorem 4.11. There exists a total order > on the index set {A ∈ Y(λ) : λ ∈ P, ℓ(λ) ≤ p}, such
that

vA =
∑
B≥A

TABE
γBΩλB

, (4.64)

TAB ∈ C and TAA ̸= 0, for all A ∈ Y(λ) and λ ∈ P with ℓ(λ) ≤ p.

Theorem 4.11 tells us that there is a upper triangular transition matrix between the two bases.
Details regarding the ordering < of {A ∈ Y(λ) : λ ∈ P, ℓ(λ) ≤ p} can be found in [25]. The
coefficients TAB are calculated explicitly in Proposition 5.2 for n = 3.

Together Theorem 4.11, Corollary 3.6 and (3.7) present a way to express any GZ-basis vector
vA as a polynomial in the B+

j ’s acting on the osp(1|2n)-lowest weight vector v0. Recall here that

the B+
j ’s represent parabosonic creation operators in the context of parabosonic field theories.

5 Example: The case n = 3

We will now study the case n = 3 as an illustrative example of the results obtained in this paper. In
this section we will emphasize the connections with the theory of parabosons which has been noted
at various points throughout the paper. From this perspective osp(1|6) is the Lie superalgebra
generated by the parabosonic creation and annihilation operators B+

1 , B
+
2 , B

+
3 , B

−
1 , B

−
2 and B−3 ,

L(p) is the Fock space of 3 parabosonic particles of order p and v0 is the vacuum state in L(p).
In Sections 2 and 3 we constructed a new basis for the Fock space L(p) consisting of the vectors

EγAΩλA
=

λA!

diag(γA)!
ΩA (5.1)

for all A ∈ Y with ℓ(λA) ≤ p, that is, for all s.s. Young tableaux with at most p rows. When n = 3
and p ≥ 3 any such tableau A takes either of the follows two forms

A = 1
2
3

· · · 1
2
3︸ ︷︷ ︸

k123

1
2
· · · 1

2︸ ︷︷ ︸
k12

1
3
· · · 1

3︸ ︷︷ ︸
k13

1 · · · 1︸ ︷︷ ︸
k1

2 · · · 2︸ ︷︷ ︸
k2

3 · · · 3︸ ︷︷ ︸
k3

(5.2)

or
A = 1

2
3

· · · 1
2
3︸ ︷︷ ︸

k123

1
2
· · · 1

2︸ ︷︷ ︸
k12

1
3
· · · 1

3︸ ︷︷ ︸
k13

2
3
· · · 2

3︸ ︷︷ ︸
k23

2 · · · 2︸ ︷︷ ︸
k2

3 · · · 3︸ ︷︷ ︸
k3

, (5.3)
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where ki1,...,is ∈ N0, for s ∈ {1, 2, 3} and 1 ≤ i1 < · · · < is ≤ 3, is the number of columns in A with
entries i1, . . . , is.

The description of the basis elements of L(p) as given by the identity (5.1) comes from Corol-
lary 3.6. The first expression EγAΩλA

illustrates the relationship of the basis with the branching
osp(1|6) ⊃ gl(3). Here Ωλ is a gl(3)-highest weight vector in L(p), EγA is a monomial in the
gl(3)-positive root vectors Eij , for 1 ≤ j < i ≤ 3, and γA is the exponent matrix of A which has
entries

(γA)ij = #{i’s in the j’th row of A}. (5.4)

Using the shorthand λ = λA and γ = γA we can write the vector EγAΩλA
in terms of the paraboson

creation and annihilation operators using the identities Ωλ = λ!ωλ and Eij =
1
2{B

+
i , B

−
j } together

with (2.18), (3.6) and (3.13)

EγΩλ = Eγ21
21 Eγ31

31 Eγ32
32 Ωλ =

λ1!λ2!λ3!

2γ21+γ31+γ32
{B+

2 , B
−
1 }

γ21{B+
3 , B

−
1 }

γ31{B+
3 , B

−
2 }

γ32×

× [B+
1 , B

+
2 , B

+
3 ]

λ3 [B+
1 , B

+
2 ]

λ2−λ3(B+
1 )

λ1−λ2v0.
(5.5)

The second expression given in (5.1) gives a basis element corresponding to the tableau A as a
polynomial in the parabosonic creation operators B+

j , for j ∈ {1, 2, 3}, acting on the vacuum
vector v0 ∈ L(p). To make this explicit we keep the shorthand λ = λA and use (3.6), (3.7) and
(3.13) to write

ΩA =
∑
τ∈Sλ

ωAτ

=
∑
τ∈Sλ

[B+
Aτ (1,1), . . . , B

+
Aτ (λ′

1,1)
] · · · [B+

Aτ (1,ℓ(λ′)), . . . , B
+
Aτ (λ′

ℓ(λ′),ℓ(λ
′))]v0.

(5.6)

Here Aτ is the row-permuted Young tableau obtained by permuting A with τ and Aτ (k, l) is the
entry of Aτ in the k’th row and l’th column.

To illustrate the formulas (5.5) and (5.6) we consider the following example. If

A =
1 1 3 3
2 2

, then γA :=

2 0 0
0 2 0
2 0 0

 and λA = (4, 2, 0). (5.7)

Furthermore,
EγAΩλA

= E2
31Ω(4,2,0) = 12{B+

3 , B
−
1 }

2[B+
1 , B

+
2 ]

2(B+
1 )

2v0 (5.8)

and

ΩA =
∑

τ∈S(4,2,0)

ωAτ

= 8ω 1 1 3 3
2 2

+ 8ω 1 3 1 3
2 2

+ 8ω 3 1 1 3
2 2

+ 8ω 1 3 3 1
2 2

+ 8ω 3 1 3 1
2 2

+ 8ω 3 3 1 1
2 2

= 8[B+
1 , B

+
2 ]

2(B+
3 )

2v0 + 8[B+
1 , B

+
2 ][B

+
3 , B

+
2 ]B

+
1 B

+
3 v0

+ 8[B+
3 , B

+
2 ][B

+
1 , B

+
2 ]B

+
1 B

+
3 v0 + 8[B+

1 , B
+
2 ][B

+
3 , B

+
2 ]B

+
3 B

+
1 v0

+ 8[B+
3 , B

+
2 ][B

+
1 , B

+
2 ]B

+
3 B

+
1 v0 + 8[B+

3 , B
+
2 ]

2(B+
1 )

2v0.

(5.9)

In Section 4 we studied the Mickelsson-Zhelobenko algebra Z(osp(1|2n), gl(n)), which is Z(osp(1|6), gl(3))
when n = 3. According to Theorem 4.3 and (4.32) this algebra is generated by the raising and
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lowering operators z±j and z±ij , for 1 ≤ i ≤ j ≤ 3. The raising and lowering operators z+1 , z
+
2 , z

+
3 ,

z−1 , z
−
2 and z−3 can be written explicitly as follows modulo the ideal J′.

z+1 = B+
1

z+2 = B+
2 (h1 − h2)− E21B

+
1

z+3 = B+
3 (h1 − h3)(h2 − h3)− E32B

+
2 (h1 − h3)− E31B

+
1 (h2 − h3 − 1) + E21E32B

+
1

z−1 = B−1 (h1 − h2)(h1 − h3) + E21B
−
2 (h1 − h3) + E31B

−
3 (h1 − h2) + E21E32B

−
3

z−2 = B−2 (h2 − h3) + E32B
−
3

z−3 = B−3

(5.10)

In Section 4.3 we used these raising and lowering operators in the proof of Proposition 4.6,
which gives the actions of the paraboson creation and annihilation operators B±j on any gl(n)-
highest weight vector Ωλ as a linear combination of vectors of the form EeIΩλ±ϵi . It was noted
that these linear combinations are not in general expansions of B±j Ωλ into linear combinations of
the vectors from the basis {EγAΩλA

: A ∈ Y, ℓ(λA) ≤ p}. The reasons for this were discussed
in detail at the end of Section 4.3. When n = 3 we may apply some small modifications to the
expansions from Proposition 4.6 to get proper basis expansions of the vectors B±j Ωλ.

Proposition 5.1. Let n = 3 and λ ∈ P. Then the vectors B±j Ωλ have the following expansions
into linear combinations of the vectors from the basis {EγAΩλA

: A ∈ Y, ℓ(λA) ≤ p} for L(p).

B+
1 Ωλ = d+1 (λ)Ωλ+ϵ1

B+
2 Ωλ = d+2 (λ)Ωλ+ϵ2 +

d+1 (λ)

λ1 − λ2 + 1
E21Ωλ+ϵ1

B+
3 Ωλ = d+3 (λ)Ωλ+ϵ3 +

d+2 (λ)

λ2 − λ3 + 1
E32Ωλ+ϵ2 +

d+1 (λ)(λ1 − λ2 + 2)

(λ1 − λ2 + 1)(λ1 − λ3 + 2)
E31Ωλ+ϵ1

+
d+1 (λ)

(λ1 − λ2 + 1)(λ1 − λ3 + 2)
E21E32Ωλ+ϵ1

B−1 Ωλ = d−1 (λ)Ωλ−ϵ1 −
d−2 (λ)

λ1 − λ2 + 1
E21Ωλ−ϵ2 −

(1− δλ1λ2)d
−
3 (λ)

λ1 − λ3 + 2
E31Ωλ−ϵ3

+
d−3 (λ)(1 + δλ1λ2(λ1 − λ2 + 1))

(λ1 − λ2 + 1)(λ1 − λ3 + 2)
E21E32Ωλ−ϵ3

B−2 Ωλ = d2(λ)Ωλ−ϵ2 −
d−3 (λ)

λ2 − λ3 + 1
E32Ωλ−ϵ3

B−3 Ωλ = d−3 (λ)Ωλ−ϵ3 .

(5.11)

Here Ωλ±ϵi := 0 if λ± ϵi /∈ P.

Proof. The only difference between these expansions and those in Proposition 4.6 appear in the
expansion of B−1 Ωλ. To obtain the one from the other it is sufficient to note that if λ1 = λ2, then

E31Ωλ−ϵ3 = E32E21Ωλ−ϵ3 − E21E32Ωλ−ϵ3 = −E21E32Ωλ−ϵ3 . (5.12)

Here we got the second identity in (5.12) by noting the following identities are satisfied by any
gl(n)-highest weight vector Ωµ.

E
µi−µi+1+1
i+1,i Ωµ = 0, (1 ≤ i ≤ n− 1). (5.13)
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With this we have proven that the expansions in (5.11) are satisfied. It only remains to be proven
that the expansions are linear combinations of the vectors from the basis {EγAΩλA

: A ∈ Y, ℓ(λA) ≤
p}. This is done using Lemma 3.7. Consider for example the term

− (1− δλ1λ2)d
−
3 (λ)

λ1 − λ3 + 2
E31Ωλ−ϵ3 (5.14)

in the expansion of B−1 Ωλ. The coefficient in this term is zero when λ1 = λ2, so we only need to
prove that E31Ωλ−ϵ3 is a basis vector when λ1 > λ2. By noting that

E31Ωλ−ϵ3 = E(λ1−1)e11+λ2e22+(λ3−1)e33+e31Ωλ−ϵ3 (5.15)

we can apply Lemma 3.7 to the matrix γ = (λ1− 1)e11+λ2e22+(λ3− 1)e33+ e31. Lemma 3.7 tells
us that D(γ) is a s.s. Young tableau of shape λ− ϵ3 when λ1 > λ2. Consequently, the term (5.14)
is zero or a scalar multiple of a basis vector. A similar line of reasoning can be applied to each
term in the expansions (5.11). This proves that the expansions are indeed linear combinations of
basis vectors.

In Section 4.4 we constructed a GZ-basis for the module L(p) and described properties of the
transition matrix relating it to the basis {EγAΩλA

: A ∈ Y, ℓ(λA) ≤ p}, see Theorem 4.10 and
Theorem 4.11. The elements of the GZ-basis were expressed using the raising operators z+j from
the Mickelsson-Zhelobenko algebra Z(osp(1|2n), gl(n)) together with the lowering operators ymj

from the Mickelsson-Zhelobenko algebras Z(gl(m), gl(m− 1)), for m ∈ {2, . . . , n}. The raising and
lowering operators generating the algebras Z(gl(2), gl(1)) and Z(gl(3), gl(2)) can be expressed as
follows using (4.55), (4.56) and (4.57).

y12 = E12

y13 = E13

y23 = E23(h2 − h1) + E21E13

y21 = E21

y31 = E31(h1 − h2) + E21E32

y32 = E32.

(5.16)

It is important to note that these identities hold only modulo an appropriate ideal given in the
definition of Z(gl(m), gl(m−1)). The appearance of this ideal may be disregarded when we interpret
the elements of Z(gl(m), gl(m−1)) as operators acting on the space spanned by the gl(m−1)-highest
weight vectors in L(p). This is because the elements of the ideal act as the zero operator.

When n = 3, the vectors of the GZ-basis for L(p) defined in Theorem 4.10 are given by

vA := yγ2121 yγ3131 yγ3232 (z+3 )
λ3(z+2 )

λ2(z+1 )
λ1v0, (5.17)

for A ∈ Y with ℓ(λA) ≤ p. Here we have used the shorthand notations γ = γA and λ = λA.
We can now make two important observations regarding the vectors in the GZ-basis for L(p).

These are stated in Proposition 5.2. Firstly, we can use the identities in (5.16) to give explicitly the
expansion of the any GZ-basis vector as a linear combination of vectors from the basis {EγAΩλA

:
A ∈ Y, ℓ(λA) ≤ p}. Secondly, we can use this expansion together with Corollary 3.6 to explicitly
express any GZ-basis vector as a linear combination of the vectors ΩA. Since each vector ΩA is
defined in (3.7) as a polynomial of parabosonic creation operators B+

j acting on the vacuum v0,
then the second statement in Proposition 5.2 gives explicit descriptions of the GZ-basis vectors as
polynomials of parabosonic creation operators B+

j acting on the vacuum v0.
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Proposition 5.2. Let n = 3 and A ∈ Y with ℓ(λA) ≤ p. Then

vA =

γ31∑
ℓ=0

d(λ)

(
γ31
ℓ

)
(λ1 − λ2 + 2− γ31 + γ32 + ℓ)γ31−ℓE

γ(ℓ)Ωλ (5.18)

=

γ31∑
ℓ=0

d(λ)λ!

diag(γ(ℓ))!

(
γ31
ℓ

)
(λ1 − λ2 + 2− γ31 + γ32 + ℓ)γ31−ℓΩD(γ(ℓ)), (5.19)

where γ(ℓ) := γ + ℓ(e21 − e31 + e32 − e22) and

d(λ) :=
3∏

j=1

(−1)
λj(λj+1)

2

λj !jλj

λj−1∏
k=0

j−1∏
ℓ=1

(k − λℓ − j + ℓ+ 1− [k − λℓ]2). (5.20)

Here D(γ(ℓ)) ∈ Y(λ) when ℓ ≤ λ2 − λ3 − γ32 and Eγ(ℓ)Ωλ = 0 = ΩD(γ(ℓ)) when ℓ > λ2 − λ3 − γ32.

Proof. To obtain this result we use (4.60) together with (5.16) and Corollary 3.6 to make the
following calculation.

vA = d(λ)yγ2121 yγ3131 yγ3232 Ωλ (5.21)

= d(λ)Eγ21
21 (E31(h1 − h2) + E21E32)

γ31Eγ32
32 Ωλ (5.22)

=

γ31∑
ℓ=0

d(λ)

(
γ31
ℓ

)
(λ1 − λ2 + 2− γ31 + γ32 + ℓ)γ31−ℓE

γ(ℓ)Ωλ (5.23)

=

γ31∑
ℓ=0

d(λ)λ!

diag(γ)!

(
γ31
ℓ

)
(λ1 − λ2 + 2− γ31 + γ32 + ℓ)γ31−ℓΩD(γ(ℓ)). (5.24)

Using Lemma 3.7 we can show that D(γ(ℓ)) ∈ Y(λ) when ℓ ≤ γ22 − γ33 = λ2 − λ3 − γ32. Since
Ωλ is a gl(3)-highest weight vector, we know that Ek

32Ωλ = 0 when λ2 − λ3 < k. This implies that
Eγ(ℓ)Ωλ = 0 when λ2 − λ3 < (γ(ℓ))32 = γ32 + ℓ, so when ℓ > λ2 − λ3 − γ32. Since Eγ(ℓ)Ωλ and
ΩD(γ(ℓ)) are proportional we can conclude that ΩD(γ(ℓ)) = 0 when ℓ > λ2 − λ3 − γ32.

This theorem gives explicitly the coefficients TAB appearing in Theorem 4.11. To illustrate
Proposition 5.2 we apply it to the vectors corresponding to the s.s. Young tableaux of shape
λ = (4, 2, 0) and weight µ = (2, 2, 2). These tableaux are

A(1) =
1 1 3 3
2 2

, A(2) =
1 1 2 3
2 3

and A(3) =
1 1 2 2
3 3

. (5.25)

Using (5.18) we can express the GZ-basis vectors vA(1), vA(2) and vA(3) as linear combinations of
the basis vectors EγA(1)Ωλ, E

γA(2)Ωλ and EγA(3)Ωλ:

vA(1) = −1

2
EγA(1)Ωλ − 1

2
EγA(2)Ωλ − 1

12
EγA(3)Ωλ

vA(2) = −1

3
EγA(2)Ωλ − 1

12
EγA(3)Ωλ

vA(3) = − 1

12
EγA(3)Ωλ.

(5.26)

Using these identities we obtain the following expansions describing the inverse basis transition:

EγA(1)Ωλ = −2vA(1) + 3vA(2) − vA(3)

EγA(2)Ωλ = −3vA(2) + 3vA(3)

EγA(3)Ωλ = −12vA(3).

(5.27)
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Using (5.19) together with (3.7) we can express the GZ-basis vectors vA(1), vA(2) and vA(3) as
polynomials of parabosonic creation operators acting on the vacuum v0:

vA(1) = −6ΩA(1) − ΩA(2) − 2ΩA(3)

= −48[B+
1 , B

+
2 ]

2(B+
3 )

2v0 − 16[B+
1 , B

+
3 ]

2(B+
2 )

2v0 − 16[B+
2 , B

+
3 ]

2(B+
1 )

2v0

− 24[B+
1 , B

+
2 ][B

+
1 , B

+
3 ]B

+
2 B

+
3 v0 − 24[B+

1 , B
+
2 ][B

+
1 , B

+
3 ]B

+
3 B

+
2 v0

+ 24[B+
1 , B

+
2 ][B

+
2 , B

+
3 ]B

+
1 B

+
3 v0 + 24[B+

1 , B
+
2 ][B

+
2 , B

+
3 ]B

+
3 B

+
1 v0

− 24[B+
1 , B

+
3 ][B

+
1 , B

+
2 ]B

+
2 B

+
3 v0 − 24[B+

1 , B
+
3 ][B

+
1 , B

+
2 ]B

+
3 B

+
2 v0

+ 8[B+
1 , B

+
3 ][B

+
2 , B

+
3 ]B

+
1 B

+
2 v0 + 8[B+

1 , B
+
3 ][B

+
2 , B

+
3 ]B

+
2 B

+
1 v0

+ 24[B+
2 , B

+
3 ][B

+
1 , B

+
2 ]B

+
1 B

+
3 v0 + 24[B+

2 , B
+
3 ][B

+
1 , B

+
2 ]B

+
3 B

+
1 v0

+ 8[B+
2 , B

+
3 ][B

+
1 , B

+
3 ]B

+
1 B

+
2 v0 + 8[B+

2 , B
+
3 ][B

+
1 , B

+
3 ]B

+
2 B

+
1 v0.

(5.28)

vA(2) = −8ΩA(2) − 2ΩA(3)

= −16[B+
1 , B

+
3 ]

2(B+
2 )

2v0 + 16[B+
2 , B

+
3 ]

2(B+
1 )

2v0

− 16[B+
1 , B

+
2 ][B

+
1 , B

+
3 ]B

+
2 B

+
3 v0 − 16[B+

1 , B
+
2 ][B

+
1 , B

+
3 ]B

+
3 B

+
2 v0

− 16[B+
1 , B

+
2 ][B

+
2 , B

+
3 ]B

+
1 B

+
3 v0 − 16[B+

1 , B
+
2 ][B

+
2 , B

+
3 ]B

+
3 B

+
1 v0

− 16[B+
1 , B

+
3 ][B

+
1 , B

+
2 ]B

+
2 B

+
3 v0 − 16[B+

1 , B
+
3 ][B

+
1 , B

+
2 ]B

+
3 B

+
2 v0

− 16[B+
2 , B

+
3 ][B

+
1 , B

+
2 ]B

+
1 B

+
3 v0 − 16[B+

2 , B
+
3 ][B

+
1 , B

+
2 ]B

+
3 B

+
1 v0.

(5.29)

vA(3) = −2ΩA(3)

= −16[B+
1 , B

+
3 ]

2(B+
2 )

2v0 − 16[B+
2 , B

+
3 ]

2(B+
1 )

2v0

− 16[B+
1 , B

+
3 ][B

+
2 , B

+
3 ]B

+
1 B

+
2 v0 − 16[B+

1 , B
+
3 ][B

+
2 , B

+
3 ]B

+
2 B

+
1 v0

− 16[B+
2 , B

+
3 ][B

+
1 , B

+
3 ]B

+
1 B

+
2 v0 − 16[B+

2 , B
+
3 ][B

+
1 , B

+
3 ]B

+
2 B

+
1 v0.

(5.30)
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A Appendix

In this appendix we present the calculation of the coefficients d±j (λ) appearing in Proposition 4.6.
To do this calculation we shall make use of the following technical lemma which gives certain useful
identities in U(osp(1|2n)).
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Lemma A.1. For any i1, . . . , ik ∈ {1, . . . , n} write, following (3.13),

[B+
i1
, . . . , B+

ik
] :=

∑
σ∈Sk

sgn(σ)B+
iσ(1)

. . . B+
iσ(k)

. (A.1)

Then the following identities hold in U(osp(1|2n)).

Eij [B
+
i1
, . . . , B+

ik
] = [B+

i1
, . . . , B+

ik
]Eij +

k∑
t=1

δi,it [B
+
i1
, . . . , B+

it−1
, B+

i , B
+
it−1

, . . . , B+
ik
], (A.2)

B+
i [B

+
i1
, . . . , B+

ik
] = (−1)k+1[B+

i1
, . . . , B+

ik
]B+

i + (−1)k
2

k + 1
[B+

i1
, . . . , B+

ik
, B+

i ] (A.3)

B−i [B
+
i1
, . . . , B+

ik
] = (−1)k[B+

i1
, . . . , B+

ik
]B−i

+

k∑
t=1

(−1)t−12k[B+
i1
, . . . , B+

it−1
, B+

it+1
, . . . , B+

ik
]Eiti (A.4)

+
k∑

t=1

δiit(−1)tk(k − 1)[B+
i1
, . . . , B+

it−1
, B+

it+1
, . . . , B+

ik
].

Proposition A.2. Let λ ∈ P with ℓ(λ) ≤ p and j ∈ {1, . . . , n}, then

d+j (λ) =
(−1)

∑n
α=j(α+1)(λα−λα+1+δαj)

(λj + 1)j

( j−1∏
ℓ=1

λj − λℓ − j + ℓ+ 1

λj − λℓ − j + ℓ+ [λj − λℓ]2

)
(A.5)

and

d−j (λ) =
(λj + 1)j(λj + n− j + [λj ]2(p− n))

(−1)
∑n

α=j(α+1)(λα−λα+1)

( n∏
ℓ=j+1

λj − λℓ − j + ℓ− 1

λj − λℓ − j + ℓ− [λj − λℓ]2

)
. (A.6)

Proof. The paper [17] presents a GZ-basis for the osp(1|2n)-module L(p). In this basis the gl(n)-
highest weight vectors are scalar multiples of the basis vectors |mλ), for λ ∈ P with ℓ(λ) ≤ p, whose
corresponding GZ-pattern has entries

mij = λi, (1 ≤ i ≤ j ≤ n), (A.7)

in the notation of the paper.
For any λ ∈ P with ℓ(λ) ≤ p, the vector |mλ) is non-zero and has weight λ+ p

2 , so by Proposition
3.3 there must exist a non-zero coefficient κ(λ) ∈ C such that

Ωλ = κ(λ)|mλ), (λ ∈ P, ℓ(λ) ≤ p). (A.8)

Making the choice |m0) = 1 = v0, it follows that κ(0) = 1. Here 0 ∈ P is the empty partition.
For any j ∈ {1, . . . , n} we denote the coefficients of the vectors |mλ±ϵj ) in the GZ-basis expan-

sions of B±j |mλ) by c±j (λ). On the other hand, by using the expansions (4.37) and (4.38) we can

see that the result of applying the projection L(p) → L(p)+ to B±j Ωλ is d±j (λ)Ωλ±ϵj . Here L(p)+

is defined as in Section 4.2. This implies that d±j (λ) is the coefficient of Ωλ±ϵj in the expansion of

B±j Ωλ into a linear combination of elements of the basis {EγAΩλA
}. From this it follows that

d±j (λ) =
κ(λ)

κ(λ± ϵj)
c±j (λ), (A.9)
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for all j ∈ {1, . . . , n} and λ ∈ P with ℓ(λ) ≤ p.
Using the matrix elements calculated in [17], we get for any j ∈ {1, . . . , n} and λ ∈ P with

ℓ(λ) ≤ p, that

c+j (λ) =

( j−1∏
ℓ=1

λj − λℓ − j + ℓ+ 1

λj − λℓ − j + ℓ

) 1
2

Fj(λ1, . . . , λn) (A.10)

and

c−j (λ) =

( j−1∏
ℓ=1

λj − λℓ − j + ℓ

λj − λℓ − j + ℓ− 1

) 1
2

Fj(λ1, . . . , λj−1, λj − 1, λj+1 . . . , λn), (A.11)

where

Fj(λ1, . . . , λn) = (−1)λj+1+···+λn(λj+n+1−j+[λj+1]2(p−n))
1
2

( n∏
ℓ=1,
ℓ̸=i

λj − λℓ − j + ℓ

λj − λℓ − j + ℓ+ [λj − λℓ]2

) 1
2

.

(A.12)
At this point we note that c−j (λ) = c+j (λ− ϵj). This observation will be valuable later on. For now

we begin the initial steps in the calculation of d+j (λ). To help with these calculation we introduce
the partition

µ :=

j−1∑
ℓ=1

(λℓ − λj)ϵℓ. (A.13)

Recall that Ωλ = λ!ωλ = λ!ωD(γλ), where D(γλ) is the s.s. Young tableau of shape λ with
entries (D(γλ))(k, l) = k, for (k, l) ∈ λ. Together (3.6) and (A.1) then imply that

Ωλ = λ!ωλ = λ![B+
1 , . . . , B

+
n ]

λn−λn+1 · · · [B+
1 , B

+
2 ]

λ2−λ3(B+
1 )

λ1−λ2v0

=
λ!

µ!
[B+

1 , . . . , B
+
n ]

λn−λn+1 · · · [B+
1 , . . . , B

+
j ]

λj−λj+1Ωµ.
(A.14)

Using the expression for B+
j Ωλ given in Proposition 4.6 together with the identity (A.14) and

the formula (A.3) one can obtain the following identity

B+
j Ωλ =

j∑
i=1

j−i+1∑
s=1

∑
I∈Iij(s)

(−1)
∑n

α=j(α+1)(λα−λα+1)λi − λj + 1

λi + 1
d+I (µ)Ωλ+ϵi , (A.15)

where

d+I (µ) = d+i (µ)

∏
ℓ∈I∁(µi − µℓ − i+ ℓ+ 1)∏j
ℓ=i+1(µi − µℓ − i+ ℓ)

. (A.16)

This means in particular that

d+j (λ) =
(−1)

∑n
α=j(α+1)(λα−λα+1)

λj + 1
d+j (µ). (A.17)

To calculate d+j (λ) it is therefore enough to calculate d+j (µ). Recalling (A.9) and using that

c−j (µ+ ϵj) = c+j (µ) we get

d+j (µ) =
κ(µ)

κ(µ+ ϵj)
c+j (µ) =

c−j (µ+ ϵj)

d−j (µ+ ϵj)
c+j (µ) =

c+j (µ)
2

d−j (µ+ ϵj)
(A.18)

29



Using (A.4) the following calculation gives us d−j (µ+ ϵj):

B−j Ωµ+ϵj = (µ+ ϵj)!B
−
j [B

+
1 , . . . , B

+
j ][B

+
1 , . . . , B

+
j−1]

(µ+ϵj)j−1−(µ+ϵj)j · · · (B+
1 )

(µ+ϵj)1−(µ+ϵj)2v0

= (µ+ ϵj)!(−1)j+1j(p− j + 1)[B+
1 , . . . , B

+
j−1]

µj−1−µj · · · (B+
1 )

µ1−µ2v0

=
(µ+ ϵj)!

µ!
(−1)j+1j(p− j + 1)Ωµ

= (−1)j+1j(p− j + 1)Ωµ,

(A.19)

so
d−j (µ+ ϵj) = (−1)j+1j(p− j + 1). (A.20)

We now have everything we need to calculate d+j (λ):

d+j (λ) =
(−1)

∑n
α=j(α+1)(λα−λα+1)

λj + 1
d+j (µ)

=
(−1)

∑n
α=j(α+1)(λα−λα+1)

λj + 1

c+j (µ)
2

d−j (µ+ ϵj)

=
(−1)

∑n
α=j(α+1)(λα−λα+1+δαj)

(λj + 1)j(p− j + 1)
c+j (µ)

2

=
(−1)

∑n
α=j(α+1)(λα−λα+1+δαj)

(λj + 1)j(p− j + 1)

( j−1∏
ℓ=1

µj − µℓ − j + ℓ+ 1

µj − µℓ − j + ℓ

)
×

× (µj + n+ 1− j + [µj + 1]2(p− n))
1
2

( n∏
ℓ=1,
ℓ̸=j

µj − µℓ − j + ℓ

µj − µℓ − j + ℓ+ [µj − µℓ]2

)

=
(−1)

∑n
α=j(α+1)(λα−λα+1+δαj)

(λj + 1)j

( j−1∏
ℓ=1

λj − λℓ − j + ℓ+ 1

λj − λℓ − j + ℓ+ [λj − λℓ]2

)
.

(A.21)

Similarly we can calculate d−j (λ) as

d−j (λ) =
c−j (λ)

2

d+j (λ− ϵj)

=
(λj + 1)j(λj + n− j + [λj ]2(p− n))

(−1)
∑n

α=j(α+1)(λα−λα+1)

( n∏
ℓ=j+1

λj − λℓ − j + ℓ− 1

λj − λℓ − j + ℓ− [λj − λℓ]2

)
.

(A.22)
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