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Abstract. The ordinary Bose and Fermi statistics and their generalizations
para-Bose and para-Fermi statistics are considered from an algebraic point of
view. It is indicated that they correspond to representations of Lie superalgebras
B(0|n) and Bn. Generalized statistics and nonstandard quantum systems asso-
ciated to the other basic classical Lie superalgebras are discussed. The Wigner
quantum oscillator corresponding to the Lie superalgebra osp(3|2) is consid-
ered.

PACS codes: 03.65.-w, 03.65.Fd, 02.20.-a

1 Introduction

Every known particle in the Standard model is either a fermion or a boson. How-
ever the model does not describe the known universe, actually it corresponds to
only a small percentage of the universe. A simple and natural generalization
of bosons and fermions are so called parabosons and parafermions introduced
in 1953 by Green [1]. The absence of empirical data for the existence of para-
particles could be because of their big masses, weak scale couplings, and lack of
gauge couplings as indicated in [2]. Furthermore parabosons and parafermions,
corresponding to order of statistics p = 2 are candidates for particles of dark
matter and energy (see [2] for details).

A set of n pairs of parafermion operators F ξi (ξ = ± and i = 1, . . . , n), are de-
fined by the following trilinear relations (ξ, η, ε = ± or ±1; j, k, l = 1, . . . , n):

[[F ξj , F
η
k ], F εl ] =

1

2
(ε− η)2δklF

ξ
j −

1

2
(ε− ξ)2δjlF

η
k , (1)
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instead of the bilinear anticommutators for fermions f±i

{f−i , f+
j } = δij , {f−i , f−j } = {f+

i , f
+
j } = 0. (2)

However, applying the formula

[AB,C] = A{B,C} − {A,C}B, (3)

it is straightforward to see that fermions satisfy the parafermions relations (1).
Therefore Fermi-Dirac statistics is a particular case of parafermion statistics.
About ten years after the introduction of parafermion relations (1) by Green, it
was proved that they are associated with the orthogonal Lie algebra so(2n +
1) ≡ Bn [3, 4]. For general parafermion statistics, a class of finite dimensional
so(2n+ 1) representations (of Fock type) needs to be investigated (this is done
in [5]), and a certain representation of so(2n + 1) corresponds to the classical
Fermi relations (2).

Similarly, n pairs of paraboson operators Bξi (ξ = ± and i = 1, . . . , n), are
defined by the trilinear relations (ξ, η, ε = ± or ± 1; j, k, l = 1, . . . , n)

[{Bξj , Bηk}, Bεl ] = (ε− ξ)δjlBηk + (ε− η)δklB
ξ
j , (4)

instead of the bilinear commutators for bosons b±i

[b−i , b
+
j ] = δij , [b−i , b

−
j ] = [b+i , b

+
j ] = 0. (5)

Now applying the formula

[AB,C] = A[B,C] + [A,C]B, (6)

it is easy to see that bosons satisfy the paraboson relations (4). Twenty years af-
ter the connection between parafermion statistics and the Lie algebra so(2n+1),
a new connection, between paraboson statistics and the orthosymplectic Lie su-
peralgebra B(0|n) ≡ osp(1|2n) [6] was discovered [7]. The Lie superalgebra
generated by 2n odd elements Bξi , with ξ = ± and i = 1, . . . , n, subject to the
triple relations (4), is osp(1|2n). A certain representation of osp(1|2n) corre-
sponds to Bose-Einstein statistics. For more general paraboson statistics, a class
of infinite dimensional osp(1|2n) representations needs to be investigated [8].

The above considerations show that it makes sense to investigate whether one
can define generalized quantum statistics based on the other basic classical Lie
superalgebras and this was done in [9]. Each such statistics is determined by
M creation operators y+

i (i = 1, . . . ,M ) and M annihilation operators y−i (i =
1, . . . ,M ), which generate the corresponding superalgebra G subject to certain
triple relationsR. This leads to a Z-grading of the algebra G of the form

G = G−2 ⊕G−1 ⊕G0 ⊕G+1 ⊕G+2, (7)
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with G±1 = span{y±i , i = 1, . . . ,M} and Gj+k = [[Gj , Gk]]. One of the
possible applications of the results in [9] is that generalized quantum statistics
with only odd creation and annihilation operators are candidates for solutions of
Wigner quantum systems [10]. The latter differ from a canonical quantum sys-
tem only by the replacement of the postulate on canonical commutation relations
by a new postulate, namely that Hamilton’s equations and the Heisenberg equa-
tions hold and are identical (as operator equations) in the state space W of the
system under consideration. In the present paper we will apply the results for a
generalized quantum statistics with only odd creation and annihilation operators
corresponding to the Lie superalgebra B(m|n) for the simplest case m = n = 1
and we will investigate a 3D harmonic oscillator as a Wigner quantum system.
In Section 2 we define the Lie superalgebra B(1|1) ≡ osp(3|2) and construct a
class of osp(3|2) infinite dimensional irreducible representations. Section 3 is
devoted to the osp(3|2) Wigner quantum oscillator.

2 The Lie Superalgebra osp(3|2) and a Class of
osp(3|2) Representations

The Lie superalgebra B(1|1) ≡ osp(3|2) [6] consists of matrices of the form
a 0 b x u
0 −a c y v
−c −b 0 z w
v u w d e
−y −x −z f −d

 , (8)

where the nonzero entries are arbitrary complex numbers. The even subalgebra
so(3)⊕sp(2) consists of all matrices (8), for which x = y = z = u = v = w =
0, whereas the odd subspace is obtained taking a = b = c = d = e = f = 0.
Let eij be a 5-by-5 matrix with 1 on the cross of the ith row and the jth column
and zero elsewhere. The Cartan subalgebra H of osp(3|2) is the subspace of
diagonal matrices with basis h1 = e11 − e22, h2 = e44 − e55. In terms of the
dual basis ε, δ of H∗, the even root vectors and corresponding roots of osp(3|2)
are given by

e13 − e32 ↔ ε, e45 ↔ 2δ,

e23 − e31 ↔ −ε, e54 ↔ −2δ,

and the odd ones by

a−1 = e14 − e52 ↔ ε− δ, a+
1 = e25 + e41 ↔ −ε+ δ,

a−2 = e34 − e53 ↔ −δ, a+
2 = e35 + e43 ↔ δ, (9)

a−3 = e24 − e51 ↔ −ε− δ, a+
3 = e15 + e42 ↔ ε+ δ .
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It is straightforward to check that the matrices aξi , ξ = ±, i = 1, 2, 3 satisfy the
following triple relations:

[{aξi , aξj}, aξk] = 0,

[{aξi , aξj}, a−ξk ] = −(−1)ξ2δ4,i+ja
ξ
4−k, (10)

[{a+
i , a

−
j }, aξk] =

(−1)ξδij(|i− k|+ δ6,i+j+k)aξk + δi,j+1(−1)i+kaξk+1 + δi+1,j(−1)i+kaξk−1.

Theorem 1. ( [9], Section IV) As a Lie superalgebra defined by generators and
relations, osp(3|2) is generated by elements a±j , j = 1, 2, 3 subject to the triple
relations (10).
Theorem 2. An orthonormal basis for a class of unitary irreducible osp(3|2)
modules V (p), p = 1, 2, . . . , is given by the vectors (µij ∈ Z+)

|µ) =

∣∣∣∣µ12, µ22

µ11

)
, for µ22 = 0 : µ12 = 0, 1 . . . , p;

for µ22 = 1, 2, . . . : µ12 = 1, 2, . . . , p;

µ12 − µ11 = θ ∈ {0, 1} (if µ12 = 0, θ = 0). (11)

The action of the Cartan algebra elements of osp(3|2) is

h1|µ) =
(
−p

2
+ µ11

)
|µ), h2|µ) =

(p
2

+ µ12 + µ22 − µ11

)
|µ). (12)

For the action of the operators a±j , j = 1, 2, 3 we have

a+
1

∣∣∣∣µ12, µ22

µ11

)
= (1− θ) (µ12 + µ22)

1
2

∣∣∣∣µ12, µ22

µ11 − 1

)
, (13)

a+
2

∣∣∣∣µ12, µ22

µ11

)
= (1− θ)

(
µ12(p− µ12)

2(µ12 + µ22 + 1−O1+µ22

)

) 1
2
∣∣∣∣µ12 + 1, µ22

µ11

)
+(−1)θ

(
(µ12 + µ22)(Oµ22

µ22 + 1)(E1+µ22
(p+ µ22) + 1)

2(µ11 + µ22 + 1)

) 1
2

×
( O1+µ22

(µ12 + µ22) + 1

E1+µ22
(µ12 + µ22 − 1) + 1

) 1
2
∣∣∣∣µ12, µ22 + 1
µ11

)
, (14)

a+
3

∣∣∣∣µ12, µ22

µ11

)
= −(−1)θEµ22

(
µ12(p− µ12)

(µ12 + µ22 + 2θ)

) 1
2
∣∣∣∣µ12 + 1, µ22 + 1
µ11 + 1

)
+θ

(
(µ22 + 1 + Eµ22

)(p+ µ22 + 1 + Eµ22
)

(µ12 + µ22 + 2Eµ22
)

) 1
2
∣∣∣∣µ12, µ22 + 2
µ11 + 1

)
, (15)
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a−1

∣∣∣∣µ12, µ22

µ11

)
= θ (µ12 + µ22)

1
2

∣∣∣∣µ12, µ22

µ11 + 1

)
, (16)

a−2

∣∣∣∣µ12, µ22

µ11

)
= θ

(
(µ12 − 1)(p− µ12 + 1)

2(µ12 + µ22 −O1+µ22

)

) 1
2
∣∣∣∣µ12 − 1, µ22

µ11

)
+(−1)θ

(
(O1+µ22(µ22 − 1) + 1)(Eµ22(p+ µ22 − 1) + 1)

2(µ11 + µ22)

) 1
2

×
(

(µ12 + µ22 − 1)(Oµ22(µ12 + µ22 − 1) + 1)

Eµ22
(µ12 + µ22 − 2) + 1

) 1
2
∣∣∣∣µ12, µ22 − 1
µ11

)
, (17)

a−3

∣∣∣∣µ12, µ22

µ11

)
= −(−1)θE1+µ22

(
(µ12 − 1)(p− µ12 + 1)

(µ12 + µ22 − 2 + 2θ)

) 1
2
∣∣∣∣µ12 − 1, µ22 − 1
µ11 − 1

)
+(1− θ)

(
(µ22 − 1 + Eµ22

)(p+ µ22 − 1 + Eµ22
)

(µ12 + µ22 − 2 + 2Eµ22
)

) 1
2
∣∣∣∣µ12, µ22 − 2
µ11 − 1

)
,

(18)

Ej = 1 if j is even and 0 otherwise, Oj = 1 if j is odd and 0 otherwise.
(19)

In order to prove that the explicit actions (13)-(18) give a representation of
osp(3|2) we have checked that (13)-(18) satisfy the defining osp(3|2) rela-
tions (10). The irreducibility follows from the fact that for any nonzero vec-
tor y ∈ V (p) there exists a polynomial P of osp(3|2) generators such that
Py = V (p).

Note that another way to get the actions of a±j , j = 1, 2, 3 is to express them in
terms of a pair of para-Fermi and a pair of para-Bose operators and apply the
results given in [11].

3 osp(3|2) Wigner Quantum Oscillator

Consider a three-dimensional harmonic oscillator

H =
p2

2m
+
mω2

2
r2 (20)

as a Wigner quantum system. Therefore we consider

r = (r1, r2, r3) and p = (p1, p2, p3),

as unknown operators and must find them such that Hamilton’s equations

ṗ = −mω2r, ṙ =
p

m
(21)
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and the Heisenberg equations

ṗ = − i
~

[p, H], ṙ = − i
~

[r, H], (22)

are identical (as operator equations) in the state space W , which is a Hilbert
space, of the oscillator. Moreover, we must define the projections of the angular
momentum M=(M1,M2,M3), so that M, r and p transform as vectors

[Mj , ck] = i

3∑
l=1

εjklcl, ck = Mk, rk, pk, j, k = 1, 2, 3. (23)

Consider a new set of unknown operators

A±k =

√
3mω

4~
rk ∓ i

3√
4mω~

pk, k = 1, 2, 3. (24)

In terms of A±k the Hamiltonian reads

H =
ω~
3

3∑
k=1

{A+
k , A

−
k }

and the compatibility conditions to be satisfied by the Wigner quantum system
yields (k = 1, 2, 3)

3∑
i=1

[{A+
i , A

−
i }, A±k ] = ±3A±k . (25)

As a solution to (25) one can choose the operators A±k as follows:

Aξ1 = − 1√
2

(aξ1 + aξ3), Aξ2 = −ξ i√
2

(aξ1 − aξ3), Aξ3 = aξ2, ξ = ±, (26)

where a±i satisfy the defining triple osp(3|2) relations (10). The projections
(M1,M2,M3) of the angular momentum can be defined as

M1 =
1√
2

({a+
1 , a

−
2 }+ {a+

2 , a
−
1 }),

M2 =
i√
2

({a+
1 , a

−
2 } − {a+

2 , a
−
1 }), (27)

M3 = {a+
1 , a

−
1 } − {a+

2 , a
−
2 }.

Let W be the osp(3|2) module V (p). In each such module (a−i )† = a+
i , i =

1, 2, 3. Therefore the position and the momentum operators are Hermitian op-
erators (hence also the Hamiltonian H , the square of the angular momentum
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M2 and its projections M1, M2, M3 are Hermitian operators). From (26) and
Theorem 2 one immediately derives that

H|µ) =
~ω
3

3∑
i=1

{a+
i , a

−
i }|µ) = ~ω(

p

2
+ µ22 + θ)|µ) (28)

Thus, the energy spectrum En, n = 0, 1, 2, . . . of the Wigner quantum oscillator
is given by

En = ~ω(n+
p

2
), n = 0, 1, 2, . . . . (29)

The case p = 1 corresponds to anticommuting pairs of Bose and Fermi opera-
tors and the energy spectrum is the same as for the one-dimensional canonical
harmonic oscillator.

The coordinates, the momenta and the angular momenta operators are on the
same footing: the different components do not commute with each other

[ri, rj ] 6= 0, [pi, pj ] 6= 0, [Mi,Mj ] 6= 0, i 6= j = 1, 2, 3. (30)

The geometry of the oscillator is noncommutative.

Each state |µ) is an eigenvector of M3

M3|µ) = (−p
2

+ µ11)|µ), µ11 = 0, 1, . . . , p. (31)

Consequently the Wigner oscillator has an angular momentum

M =
p

2
, p = 1, 2, . . . .

One of the outcomes of the present model is the possibility to have an oscillator
with a half-integer (for p odd) angular momentum M . Following the ideas of
Ref. [12] one can consider the oscillator as describing the internal motion of
two point particles interacting via a harmonic potential. To this end one has to
assume (something that always holds in canonical quantum mechanics) that the
operators of the coordinates and momenta of the center of mass commute with
the internal variables r and p. In this picture the osp(3|2) oscillator describes
the internal motion of two constituents. The angular momentum M is the spin
of the composite system. Restated in this way our result could be viewed as a
classical model of spin: two (nonrelativistic noncanonical) point particles are
curling around each other in such a way that the resulting angular momentum of
the composite system can take also half-integer values.
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