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Abstract In 1982 Palev showed that the algebraic structure generated by
the creation and annihilation operators of a system of m parafermions and
n parabosons, satisfying the mutual parafermion relations, is the Lie super-
algebra osp(2m + 1|2n). The “parastatistics Fock spaces” of order p of such
systems are then certain lowest weight representations of osp(2m+1|2n). We
investigate now the situation when the number of parafermions and para-
bosons becomes infinite, which is of interest not only in a physics context
but also from the mathematical point of view. In this contribution, we will
discuss the various steps that are needed to understand the infinite-rank
case. First, we will introduce appropriate bases and Dynkin diagrams for
B(n, n) = osp(2n + 1|2n) that allow us to extend n → ∞. Then we will de-
velop a new matrix form for B(n, n) = osp(2n+ 1|2n), because the standard
one is not appropriate for taking this limit. Following this, we construct a
new Gelfand-Zetlin basis of the parastatistics Fock spaces in the finite rank
case (in correspondence with this new matrix form). The new structures,
related to a non-distinguished simple root system, allow the extension to
n→∞. This leads to the definition of the algebra B(∞,∞) as a Lie superal-
gebra generated by an infinite number of creation and annihilation operators
(subject to certain relations), or as an algebra of certain infinite-dimensional
matrices. We study the parastatistics Fock spaces, as certain lowest weight
representations of B(∞,∞). In particular, we construct a basis consisting of
well-described row-stable Gelfand-Zetlin patterns.
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1 Introduction

Throughout this paper we will use square brackets for a commutator, [A,B] =
AB − BA; curly brackets for an anti-commutator: {A,B} = AB + BA; and
double brackets if we are dealing with operators from a Z2 graded algebra:
JA,BK = AB − (−1)〈A〉〈B〉BA, where 〈A〉 = deg(A) ∈ {0, 1} is the degree of
A.

In this contribution we will consider Fock spaces for bosons, fermions, para-
bosons, parafermions, and combined systems of parabosons and parafermions.
The emphasis is on algebraic structures behind these systems, on identifying
Fock spaces with a class of representations of these algebras, and on con-
structing a basis for these representations.

For a system described by n pairs of boson (creation and annihilation)
operators B±i (i = 1, . . . , n), satisfying

[B−i , B
+
j ] = δij (1)

and all other commutators zero, the Fock space with vacuum vector |0〉 char-
acterized by (B±i )† = B∓i and B−i |0〉 = 0 has a very simple (orthonormal)
basis:

|k1, . . . , kn〉 =
(B+

1 )k1 · · · (B+
n )kn√

k1! · · · kn!
|0〉 (2)

with ki ∈ {0, 1, 2, . . .}. Similarly, a system described by m pairs of fermion
operators F±i (i = 1, . . . ,m), with

{F−i , F
+
j } = δij (3)

and all other anti-commutators zero, the Fock space is characterized by
(F±i )† = F∓i and F−i |0〉 = 0, and has a basis similar to (2) but with all
ki ∈ {0, 1}.

More interesting structures are provided by parabosons and parafermions,
especially from the algebraic point of view. These were first introduced by
Green [1] and their Fock spaces were first studied by Greenberg and Mes-
siah [2].

A system of n pairs of parabosons b±j (j = 1, . . . , n) is defined by means
of triple relations:

[{bξj , b
η
k}, b

ε
l ] = (ε− ξ)δjlbηk + (ε− η)δklb

ξ
j , (4)

where j, k, l ∈ {1, 2, . . . , n} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and
−1 in the algebraic expressions ε − ξ and ε − η). In this case, there is not a
unique Fock space, but for every positive integer p (referred to as the order of
statistics) there is a Fock space V(p) characterized by (b±j )† = b∓j , b−j |0〉 = 0
and

{b−j , b
+
k }|0〉 = p δjk |0〉. (5)
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Similarly, a system of m pairs of parafermions f±j (j = 1, . . . ,m) is defined
by the triple relations

[[fξj , f
η
k ], f εl ] = |ε− η|δklfξj − |ε− ξ|δjlf

η
k . (6)

Their Fock spacesW(p), also labelled by a positive integer p, are characterized
by (f±j )† = f∓j , f−j |0〉 = 0 and

[f−j , f
+
k ]|0〉 = p δjk |0〉. (7)

These cubic or triple relations involve nested (anti-)commutators, just like
the Jacobi identity of Lie (super)algebras. It was indeed shown later [3, 4]
that the parafermionic algebra generated by 2m elements f±i subject to (6)
is the orthogonal Lie algebra so(2m+1). The Fock spaceW(p) is the unitary
irreducible representation of so(2m+1) with lowest weight (−p2 ,−

p
2 , . . . ,−

p
2 )

in the standard basis.
Many years later, it was shown that the parabosonic algebra generated

by 2n odd elements b±i subject to (4) is the orthosymplectic Lie superalge-
bra osp(1|2n) [5]. In this case the Fock space V(p) is the unitary irreducible
osp(1|2n) representation with lowest weight (p2 ,

p
2 , . . . ,

p
2 ) in the standard ba-

sis.
For p = 1, V(p) becomes the ordinary boson Fock space andW(p) becomes

the ordinary fermion Fock space.
Already in their first paper, Greenberg and Messiah [2] considered com-

bined systems of parafermions and parabosons. In combined systems, it will
be convenient to use negative indices for parafermions and positive indices
for parabosons, and to use the common operator notation c±i :

c±j = f±j (−m ≤ j ≤ −1); c±i = b±i (1 ≤ i ≤ n). (8)

Apart from two trivial combinations, there are two non-trivial relative com-
mutation relations between parafermions and parabosons, also expressed by
means of triple relations. The case considered here is the so-called “relative
parafermion relation” and is determined by the parastatistics relations

JJc+j , c
−
k K, c+l K = 2δklc

+
j , JJc+j , c

+
k K, c+l K = 0, (9)

Jc−j , Jc
+
k , c
−
l KK = 2δjkc

−
l , JJc−j , c

−
k K, c−l K = 0. (10)

The complete set of relations can also be written in the somewhat complicated
form

JJcξj , c
η
kK, c

ε
l K = −2δjlδε,−ξε

〈l〉(−1)〈k〉〈l〉cηk + 2ε〈l〉δklδε,−ηc
ξ
j , (11)

where 〈k〉 refers to the grading of c±k , and thus is 0 for negative k and 1 for
positive k, following (8).

It was shown by Palev [6] that the Lie superalgebra (LSA) generated by 2m
even elements f±j and 2n odd elements b±j subject to the above relations (11)
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is B(m,n) = osp(2m + 1|2n). The Fock spaces, denoted by V (p) and la-
belled by a positive integer p, are characterized by (c±j )† = c∓j , c−j |0〉 = 0

and Jc−j , c
+
k K|0〉 = p δjk |0〉. V (p) is the unitary irreducible representation of

osp(2m + 1|2n) with lowest weight (−p2 , . . . ,−
p
2 |
p
2 , . . . ,

p
2 ) in the standard

basis. These are referred to as the parastatistics Fock spaces.
Understanding the algebraic structure behind such systems of parabosons

/ parafermions is one step. But understanding the structure of the corre-
sponding Fock spaces is another important step. A major contribution here
is the so-called Green ansatz, where one considers the p-fold tensor product
of an ordinary boson/fermion Fock space and extracts an irreducible com-
ponent herein. This is far from trivial, and computing matrix elements for
generators remains a difficult problem in this approach [7,8]. For the case of
parabosons (osp(1|2n) representations V(p)), a complete basis with all matrix
elements was given for the first time in [9]. The same type of construction
was given for parafermions (so(2m+ 1) representations W(p)) in [10]. Inter-
esting character formulas for these representations were also given, and these
could be extended to characters of the parastatistics representations V (p) of
osp(2m + 1|2n) [11]. An actual basis of the parastatistics Fock spaces was
constructed in [12], where again all matrix elements of the generators could
be computed.

All the above constructions of basis vectors rely on the development of an
appropriate Gelfand-Zetlin (GZ) basis, which in turn depends on an appro-
priate chain of subalgebras under which the reduction of V (p) is multiplicity
free at every step of the chain. For the parastatistics case, this subalgebra
chain is

osp(2m+ 1|2n) ⊃ gl(m|n) ⊃ gl(m|n− 1) ⊃ gl(m|n− 2) ⊃ · · ·
⊃ gl(m|1) ⊃ gl(m) ⊃ gl(m− 1) ⊃ · · · ⊃ gl(2) ⊃ gl(1). (12)

Since it follows from the character formula [12] that the decomposition of
V (p) in the chain osp(2m + 1|2n) ⊃ gl(m|n) is easy and multiplicity free,
the GZ-basis consists of a (triangular) pattern with m + n rows, each row
corresponding to a highest of a gl algebra in the chain (12).

In the present contribution, we consider the case for which m and n become
infinite. If one tries to extend the above mentioned GZ-patterns to infinite
patterns, starting from the bottom row corresponding to gl(1) and gradually
increasing the rank of the algebra, it is obvious that one cannot let both m
and n go to infinity.

In the next paragraph, we shall explain how the introduction of an “odd
GZ-basis” can overcome this problem, however only in the case m = n. This
will lead to a new basis for the Fock spaces of B(n, n) = osp(2n+1|2n). This
new basis was constructed in [13], to which we refer for further details. The
current contribution summarizes some of the main results in [13] and it is
inevitable to have some overlap with [13]. Here, we first give a justification
for the necessity of a new GZ-basis. Then we will proceed to a new matrix
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realization of B(n, n), and give the parastatistics generators in this new basis.
The parastatistics Fock representations are then described in the new GZ-
basis. We also include an example (given in the Appendix) to illustrate the
various notions. Finally, it is shown how to extend this to the case when
n → ∞, where so-called row-stable GZ-patters are of importance. For some
details and explicit formulas, the reader will be referred to [13].

2 Introducing an odd GZ-basis

Looking back at the original idea of a Gelfand-Zeltin basis, for the case of
the Lie algebra gl(n), the construction of the basis is according to the chain
of subalgebras

gl(n) ⊃ gl(n− 1) ⊃ · · · ⊃ gl(2) ⊃ gl(1). (13)

Every row of a GZ-basis vector consist of a highest weight of gl(k), the top row
(“row n”) corresponding to gl(n) and the bottom row (“row 1”) to gl(1). Such
GZ-patterns can easily be extended to the infinite rank case by introducing
infinitely large GZ-patterns according to

gl(1) ⊂ gl(2) ⊂ · · · ⊂ gl(n− 1) ⊂ gl(n) ⊂ · · · . (14)

In order to label basis vectors of an irreducible gl(∞) representation, with
locally finite action of gl(∞) generators, one should require certain stability
properties of the infinite GZ-patterns. The main idea is however that one
can reverse the chain (13) to (14) allowing the limit n → ∞. Also in terms
of Dynkin diagrams, this process of letting n increase to infinity is somehow
clear from the Dynkin diagram of gl(n),

j j j jε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn

and its extension as n increases:

j j j j jε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn εn − εn+1

For the Lie superalgebra gl(m|n), one can also construct (at least for a
class of representations) a GZ-basis [14] according to the chain

gl(m|n) ⊃ gl(m|n− 1) ⊃ gl(m|n− 2) ⊃ · · ·
⊃ gl(m|1) ⊃ gl(m) ⊃ gl(m− 1) ⊃ · · · ⊃ gl(2) ⊃ gl(1). (15)
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In an attempt to let m and n increase to infinity, the GZ-patterns correspond-
ing to the above chain are no longer appropriate. Indeed, if one reverses the
chain (15) in which m grows to infinity,

gl(1) ⊂ gl(2) ⊂ · · · ⊂ gl(m− 1) ⊂ gl(m) ⊂ gl(m+ 1) ⊂ · · · (16)

one somehow never reaches the point where a Lie superalgebra can be in-
cluded, and there is no way of having also n→∞.

In a previous paper [15], this was solved by introducing the so-called odd
GZ-basis for gl(n|n) (m and n must be equal). This arises from the chain of
superalgebras

gl(n|n) ⊃ gl(n|n− 1) ⊃ gl(n− 1|n− 1) ⊃ · · ·
· · · ⊃ gl(2|2) ⊃ gl(2|1) ⊃ gl(1|1) ⊃ gl(1). (17)

This chain can easily be reversed and continued to infinity,

gl(1) ⊂ gl(1|1) ⊂ gl(2|1) ⊂ gl(2|2) ⊂ · · ·
⊂ gl(n− 1|n− 1) ⊂ gl(n|n− 1) ⊂ gl(n|n) ⊂ · · · (18)

leading to an appropriate GZ-basis for gl(∞|∞) representations [15], in
which each row of the infinite GZ-pattern corresponds to a highest weight
in the chain (18) (with certain stability requirements). Note that such a
chain corresponds to a consecutive inclusion of Dynkin diagrams of Lie su-
peralgebras of type gl with odd simple roots only. In a convenient basis
(. . . , ε−3, ε−2, ε−1; ε1, ε2, ε3, . . .), the Dynkin diagram is

j jε−n − εn εn − ε−n+1 k k kε−2 − ε2 ε2 − ε−1 ε−1 − ε1

Hence, starting from the right and extending each time by one node to the
left, one finds consecutively the Dynkin diagrams of gl(1|1), gl(1|2), gl(2|2),
etc. This process can continue to the left basically up to infinity.

It is in this context that the convenient GZ-basis and Dynkin diagrams
for B(n, n) = osp(2n + 1|2n) are introduced. Adding the extra odd root ε1
to the right, one finds by extending to the left consecutive Dynkin diagrams
of B(n, n) or B(n, n+ 1).

j jε−n − εn εn − ε−n+1 k k kε−2 − ε2 ε2 − ε−1 ε−1 − ε1 {ε1
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3 New matrix realization of B(n, n)

Following the previous remarks, it is convenient to work in a new matrix
realization of B(n, n). Rows and columns, and indices of other objects, will
be labelled by both negative and positive numbers. For non-negative integers
m and n we will use the following notation for ordered sets:

[−m,n] = {−m, . . . ,−2,−1, 0, 1, 2, . . . , n},
[−m,n]∗ = {−m, . . . ,−2,−1, 1, 2, . . . , n}. (19)

When more convenient, we write the minus sign of an index as an overlined
number, e.g. [2̄, 3]∗ = {2̄, 1̄, 1, 2, 3}. We will also use Z∗ = Z \ {0}, Z+ =
{0, 1, 2, . . .}, Z∗+ = {1, 2, 3, . . .}.

Let I and J be the (2× 2)-matrices

I :=

(
0 1
1 0

)
, J :=

(
0 1
−1 0

)
, (20)

and let B be the (4n+ 1)× (4n+ 1)-matrix, with indices in [−2n, 2n], given
by B = I ⊕ · · · ⊕ I ⊕ 1⊕ J ⊕ · · · ⊕ J , or, written in block form:

B :=



I 0

0
. . . 0
0 I

1

J 0

0
. . . 0
0 J


. (21)

Herein, 0 stands for the zero (2× 2)-matrix, the entry 1 is at position (0, 0),
and the empty parts of the matrix consist of zeros.

The matrices X of the Lie superalgebra B(n, n) will have the following
block form:

X :=



Xn̄,n̄ · · · Xn̄,1̄ Xn̄,0 Xn̄,1 · · · Xn̄,n

...
. . .

...
...

...
. . .

...
X1̄,n̄ · · · X1̄,1̄ X1̄,0 X1̄,1 · · · X1̄,n

X0,n̄ · · · X0,1̄ 0 X0,1 · · · X0,n

X1,n̄ · · · X1,1̄ X1,0 X1,1 · · · X1,n

...
. . .

...
...

...
. . .

...
Xn,n̄ · · · Xn,1̄ Xn,0 Xn,1 · · · Xn,n


. (22)

Herein, any matrix of the form Xij with i, j ∈ [n̄, n]∗ is a (2×2)-matrix, X0,i

is a (1× 2)-matrix and Xi,0 a (2× 1)-matrix.
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The Lie superalgebra B(n, n) = osp(2n + 1|2n) is Z2-graded and its ho-
mogeneous elements are referred to as even and odd elements, with the de-
gree denoted by deg(X). The even matrices X will have zeros in the up-
per right and bottom left blocks, i.e. Xij = 0 for all (i, j) ∈ [n̄, 0] × [1, n]
and (i, j) ∈ [1, n] × [n̄, 0]. The odd matrices X will have zeros in the upper
left and bottom right blocks, i.e. Xij = 0 for all (i, j) ∈ [n̄, 0] × [n̄, 0] and
(i, j) ∈ [1, n]× [1, n].

The actual definition, derived from [16], is then as follows: B(n, n)0 con-
sists of all even matrices X of the form (22) such that

XTB +BX = 0;

B(n, n)1 consists of all odd matrices X of the form (22) such that

XSTB −BX = 0.

Herein XT is the ordinary transpose of X and XST is the supertranspose
of X [13, 16]. For homogeneous elements of type (22), the Lie superalgebra
bracket is

JX,Y K = XY − (−1)deg(X) deg(Y )Y X,

with ordinary matrix multiplication in the right hand side.
Denote, as usual, by eij the matrix with zeros everywhere except a 1 on

position (i, j), where the row and column indices run from −2n to 2n. A
basis of the Cartan subalgebra h of B(n, n) consists of the elements hi =
e2i−1,2i−1 − e2i,2i (i ∈ [1, n]) and hi = e2i,2i − e2i+1,2i+1 (i ∈ [n̄, 1̄]). The
corresponding dual basis of h∗ will be denoted by εi (i ∈ [n̄, n]∗). The following
elements are even root vectors with roots ε−i and −ε−i respectively (i ∈
[1, n]):

c+−i ≡ f
+
−i =

√
2(e−2i,0 − e0,−2i+1),

c−−i ≡ f
−
−i =

√
2(e0,−2i − e−2i+1,0), (23)

and odd root vectors with roots εi and −εi respectively (i ∈ [1, n]) are given
by:

c+i ≡ b
+
i =
√

2(e0,2i + e2i−1,0),

c−i ≡ b
−
i =

√
2(e0,2i−1 − e2i,0). (24)

The remaining root vectors of B(n, n) are given by elements of the form

Jcξi , c
η
j K. The matrices (23)-(24) satisfy the triple relations (11), hence they

realize the parastatistics operators.
In our development, it is also important to note that the 4n2 elements

Jc+i , c
−
j K (i, j ∈ [n̄, n]∗) (25)
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are a basis of the subalgebra gl(n|n). Observe also that

[c+i , c
−
i ] = 2hi (i ∈ [n̄, 1̄]), {c+i , c

−
i } = 2hi (i ∈ [1, n]). (26)

Hence h = span{hi, i ∈ [n̄, n]∗}, the Cartan subalgebra of B(n, n), is also
the Cartan subalgebra of gl(n|n).

4 The Fock representations V (p) of B(n, n)

The Fock representation V (p) of B(n, n) was already introduced in the first
section. Note that the condition Jc−j , c

+
k K|0〉 = pδjk |0〉 implies that we are

dealing with a lowest weight representation of B(n, n), with lowest weight
(−p2 , . . . ,−

p
2 |
p
2 , . . . ,

p
2 ) in the basis {ε−n, . . . , ε−1; ε1, . . . , εn}. These represen-

tations have been analyzed in [12]. The main result is the decomposition with
respect to the subalgebra chain B(n, n) ⊃ gl(n|n), because then the Gelfand-
Zetlin basis of the gl(n|n) representations can be used to label the vectors of
V (p). In the decomposition of V (p) with respect to B(n, n) ⊃ gl(n|n), all co-
variant representations of gl(n|n) labelled by a partition λ = (λ1, λ2, . . .)
appear with multiplicity 1, subject to λ1 ≤ p and λn+1 ≤ n. For each
gl(n|n) covariant representation labelled by λ, the highest weight can be
determined [17], and is given by an array of 2n integers denoted by

[m]2n = [mn̄,2n, . . . ,m2̄,2n,m1̄,2n;m1,2n,m2,2n, . . . ,mn,2n] (27)

satisfying certain conditions. Next, one can follow the chain (17), leading in
each step to the highest weight of the subalgebra, and thus yielding a labelling
with 2n rows for the corresponding vectors. This is the actual odd GZ-basis
for the Fock representation V (p) of B(n, n).

Explicitly, it is described as follows. For any positive integer p, a basis of
the Fock representation V (p) of B(n, n) is given by the set of vectors of the
following form:

|p;m)2n ≡ |m)2n =

∣∣∣∣∣ [m]2n

|m)2n−1

)
= (28)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mn̄,2n m
n−1,2n

· · · m2̄,2n m1̄,2n m1,2n m2,2n · · · mn−2,2n mn−1,2n mn,2n

↑ ↑ · · · ↑ ↑
mn̄,2n−1 m

n−1,2n−1
· · · m2̄,2n−1 m1̄,2n−1 m1,2n−1 m2,2n−1 · · · mn−2,2n−1 mn−1,2n−1

↓ ↓ · · · ↓ ↓
m

n−1,2n−2
· · · m2̄,2n−2 m1̄,2n−2 m1,2n−2 m2,2n−2 · · · mn−2,2n−2 mn−1,2n−2

↑ · · · ↑ ↑
m

n−1,2n−3
· · · m2̄,2n−3 m1̄,2n−3 m1,2n−3 m2,2n−3 · · · mn−2,2n−3

. . .
.
.
.

.

.

.
.
.
.

.

.

. . .
.

m2̄4 m1̄4 m14 m24
↑ ↑
m2̄3 m1̄3 m13

↓
m1̄2 m12
↑
m1̄1


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where all mij ∈ Z+, satisfying mn̄,2n ≤ p and the GZ-conditions

1. mj,2n −mj+1,2n ∈ Z+, j ∈ [n̄, 2̄] ∪ [1, n] and
m−1,2n ≥ #{i : mi,2n > 0, i ∈ [1, n]};

2. m−i,2s −m−i,2s−1 ≡ θ−i,2s−1 ∈ {0, 1}, 1 ≤ i ≤ s ≤ n;
3. mi,2s −mi,2s+1 ≡ θi,2s ∈ {0, 1}, 1 ≤ i ≤ s ≤ n− 1;
4. m−1,2s ≥ #{i : mi,2s > 0, i ∈ [1, s]}, s ∈ [1, n];
5. m−1,2s−1 ≥ #{i : mi,2s−1 > 0, i ∈ [1, s− 1]}, s ∈ [2, n];
6. mi,2s −mi,2s−1 ∈ Z+ and mi,2s−1 −mi+1,2s ∈ Z+,

1 ≤ i ≤ s− 1 ≤ n− 1;
7. m−i−1,2s+1 −m−i,2s ∈ Z+ and m−i,2s −m−i,2s+1 ∈ Z+,

1 ≤ i ≤ s ≤ n− 1.

(29)

Conditions 2 and 3 are referred to as “θ-conditions”. Conditions 6 and 7
are often referred to as “betweenness conditions.” Conditions 1, 4 and 5
assure that each row of (28) corresponds to the highest weight of a covariant
representation of gl(t|t) or gl(t|t− 1) in the chain (17). Note that the arrows
in this pattern have no real function, and can be omitted. We find it useful
to include them, just in order to visualize the θ-conditions. When there is
an arrow a → b between labels a and b, it means that either b = a or else
b = a+ 1 (a θ-condition). We will also refer to “rows” and “columns” of the
GZ-pattern. Rows are counted from the bottom: row 1 is the bottom row
in (28), and row 2n is the top row in (28). In an obvious way, columns 1,
2, 3, . . . refer to the columns to the right of the dashed line in (28), and
columns −1, −2, −3, . . . (or 1̄, 2̄, 3̄, . . .) to the columns to the left of this
dashed line. For two consecutive rows in the GZ-pattern (28), about half
of the labels involve θ-conditions, and the other half involves betweenness
conditions.

It should already be clear from this construction that the GZ-patterns of
gl(n|n) consist of those of gl(n− 1|n− 1) to which two rows are added at the
top. Hence it will be possible to gradually increase n, and we are in a setting
for which the limit n→∞ can be examined.

One of the main computational results of [13] is the determination of
the action of the parastatistics operators c±i on the GZ basis vectors |m)2n.
For this, it is necessary to note that the 2n elements c+i themselves form a
standard gl(n|n) tensor. Thus every element of (c+n , c

+
−n, · · · , c+2 , c

+
−2, c

+
1 , c

+
−1)

corresponds, in this order, to a GZ-pattern of type (28) consisting of k top
rows of the form 10 · · · 0 and 2n − k bottom rows of the form 0 · · · 0 for
k = 1, 2, . . . , 2n. It will be convenient to introduce a notation for the order
in which these 2n elements appear:

ρ(i) =

{
2i for i ∈ [1, n]

−2i− 1 for i ∈ [n̄, 1̄]
. (30)

Then the pattern corresponding to c+i has rows of the form 10 · · · 0 for each
row index j ∈ [ρ(i), 2n] and zero rows for each row index j ∈ [1, ρ(i)− 1].
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Following standard methods [9, 18], and knowing the tensor product rule
in gl(n|n) for covariant representations, the matrix elements of c+i in V (p)
can be written as follows:

2n(m′|c+i |m)2n =

(
[m]2n+(k)

|m′)2n−1

∣∣∣∣∣ c+i
∣∣∣∣∣ [m]2n

|m)2n−1

)

=

10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
× ([m]2n+(k)||c

+||[m]2n). (31)

Herein, the GZ-pattern with 0’s and 1’s is the one corresponding to c+i ,
as described earlier, and [m]2n±(k) is the pattern obtained from [m]2n by the
replacement of mk,2n by mk,2n ± 1. The first factor in the right hand side
of (31) is a gl(n|n) Clebsch-Gordan coefficient (CGC), where all patterns are
of the form (28). These CGC’s have been determined in the Appendix of [13],
and will not be repeated here. The second factor in (31) is a reduced matrix
element for the standard gl(n|n) tensor. The possible values of the patterns
|m′)2n are determined by the gl(n|n) tensor product rule and the first line
of |m′)2n is of the form [m]2n+(k). The reduced matrix elements themselves

depend only upon the gl(n|n) highest weights [m]2n and [m]2n+k (and not on
the type of GZ basis that is being used.) These reduced matrix elements have
actually been determined in [12, Proposition 4].

Note furthermore that by the Hermiticity requirement one has

2n(m′|c−i |m)2n = 2n(m|c+i |m
′)2n. (32)

So in this way, one obtains a complete action of all parastatistics operators:

c+i |m)2n =
∑
m′

C+
[
i, |m)2n, |m′)2n

]
|m′)2n, (33)

c−i |m)2n =
∑
m′

C−
[
i, |m)2n, |m′)2n

]
|m′)2n, (34)

where C+
[
i, |m)2n, |m′)2n

]
is just a shorthand notation for the element

2n(m′|c+i |m)2n computed in (31), and similarly for C−
[
i, |m)2n, |m′)2n

]
.

Examining the action of the creation operators c+i in detail, one deduces
the following property [13]: the action of c+i on |m)2n yields vectors |m′)2n

such that rows 1, 2, . . . , ρ(i) − 1 of |m′)2n are the same as those of |m)2n.
And in rows ρ(i), . . . , 2n there is a change by one unit for just one particular
column index s: [m′]j = [m]j + [0, . . . , 0, 1, 0, . . . , 0] for j ∈ [ρ(i), 2n]. The
increase can be in any possible column, as long as the remaining pattern is
still valid, i.e. as long as (29) is satisfied.

An important observation is a certain stability property. For this, one
introduces the following definition: the pattern, or equivalently the associated
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basis vector, |m)2n is row-stable with respect to row s if there exists a partition
ν such that all rows s, s+ 1, . . . , 2n are of the form

[ν1, ν2, . . . , 0; 0, 0, . . .].

In that case, s is called a stability index of |m)2n.
The following properties were proven in [13]:

• The action of a consecutive number of c+i ’s on the vacuum vector produces
row-stable patterns if n is sufficiently large. More precisely, if k < n, then
all basis vectors appearing in

c+ik · · · c
+
i2
c+i1 |0〉 (each ir ∈ [n̄, n]∗) (35)

are row-stable with respect to some row index s.
• Row-stable patterns remain row-stable under the action of c+i ’s (but the

stability index might increase). Specifically, let |m)2n be row-stable with
respect to row s, where s < 2n− 1. Then the vectors |m′)2n appearing in
c+i |m)2n are row-stable with respect to row max{s+ 2, ρ(i) + 1}.

• Row-stable patterns remain row-stable under the action of c−i ’s for the
same stability index.

Also the matrix elements (33)-(34) satisfy a stability property. To specify
this, one defines a map from GZ-patterns with 2n rows to GZ-patterns with
2n+2 rows. For this, suppose that the top row of |m)2n has the zero partition
as second part, i.e. it is of the form

[m]2n = [ν1, ν2, . . . ; 0, . . . , 0]

with ν a partition. Define the map φ2n,+2 from the set of GZ-patterns |m)2n

with zero second part to the set of GZ-patterns |m)2n+2 with stability index
2n by:

|m)2n+2 = φ2n,+2

(
|m)2n

)
, where (36)

[m]2n+1 = [ν1, ν2, . . . , 0, 0; 0, . . . , 0], [m]2n+2 = [ν1, ν2, . . . , 0, 0; 0, . . . , 0, 0].

In other words, the top row of |m)2n is just repeated twice, with the extra
addition of zeros in order to have sufficient entries for the pattern |m)2n+2.
Clearly, the action of φ2n,+2 can also be extended by linearity, on a linear
combination of vectors |m)2n with zero second part.

The final important stability property can now be formulated: let |m)2n

be row-stable with respect to row 2n, and |m)2n+2 = φ2n,+2

(
|m)2n

)
Then

for all i with ρ(i) ≤ 2n (or equivalently, i ∈ [−n, n]∗):

c+i |m)2n+2 = φ2n,+2

(
c+i |m)2n

)
.
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5 The Fock representations V (p) of B(∞,∞)

Due to the stability properties just described, we can extend both the para-
statistics algebra B(n, n) and its Fock representations V (p) to the infinite
rank case B(∞,∞).

The infinite rank Lie superalgebra B(∞,∞) consists of infinite matrices X
of the form (22) with n→∞ but with a finite number of non-zero elements,
see [13] for a more precise definition. The indices of the matrices X now
belong to Z instead of [−n, n]. The matrices eij consist of zeros everywhere
except a 1 on position (i, j), where the row and column indices belong to
Z. A basis of a Cartan subalgebra h of B(∞,∞) consists of the elements
hi = e2i−1,2i−1 − e2i,2i (i ∈ Z∗+) and hi = e2i,2i − e2i+1,2i+1 (i ∈ Z∗−). The
corresponding dual basis of h∗ is denoted by εi (i ∈ Z∗). As in the finite rank
case, we can identify the following even root vectors with roots ε−i and −ε−i
respectively (i ∈ Z∗+):

c+−i ≡ f
+
−i =

√
2(e−2i,0 − e0,−2i+1),

c−−i ≡ f
−
−i =

√
2(e0,−2i − e−2i+1,0), (37)

and odd root vectors with roots εi and −εi respectively (i ∈ Z∗+):

c+i ≡ b
+
i =
√

2(e0,2i + e2i−1,0),

c−i ≡ b
−
i =

√
2(e0,2i−1 − e2i,0). (38)

The operators c+i can be chosen as positive root vectors, and the c−i as neg-
ative root vectors.

The operators introduced here satisfy the triple relations of parastatistics.
But now we are dealing with an infinite number of parafermions and an
infinite number of parabosons, satisfying the mutual relative parafermion
relations. In other words, the triple relations (11) are satisfied, but now with
j, k, l ∈ Z∗. We also have: as a Lie superalgebra defined by generators and
relations, B(∞,∞) is generated by the elements c±i (i ∈ Z∗) subject to the
relations (11).

The parastatistics Fock space of order p, with p a positive integer, can
be defined as before, and will correspond to a lowest weight representation
V (p) of the algebra B(∞,∞). V (p) is the Hilbert space generated by a vac-
uum vector |0〉 and the parastatistics creation and annihilation operators, i.e.
subject to 〈0|0〉 = 1, c−j |0〉 = 0, (c±j )† = c∓j ,

Jc−j , c
+
k K|0〉 = pδjk |0〉 (j, k ∈ Z∗) (39)

and which is irreducible under the action of the algebra B(∞,∞). Clearly
|0〉 is a lowest weight vector of V (p) with weight (. . . ,−p2 ,−

p
2 |
p
2 ,

p
2 , . . .) in the

basis {. . . , ε−2, ε−1; ε1, ε2, . . .}.
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The basis vectors of V (p) will consist of infinite GZ-patterns. Not all
possible infinite GZ-patterns will appear, but only row-stable ones. Such
row-stable infinite GZ-patterns consist of an infinite number of rows, of the
type introduced in (28), but such that from a certain row index s all rows
s, s+ 1, s+ 2, . . . are of the same form. As an example,

|m)∞ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . . . .

.
. .
.

4 3 1 0 0 0 0 0
4 3 1 0 0 0 0

4 3 1 0 0 0
4 3 1 0 0

3 3 1 0
3 2 1

2 2
1


(40)

where the row (4, 3, 1, 0, . . .) is repeated up to infinity.
The basis of V (p) is described as follows.

Proposition 1. A basis of V (p) is given by all infinite row-stable GZ-
patterns |m)∞ of the form (28) with n → ∞ where for each |m)∞ there
should exist a row index s (depending on |m)∞) such that row s is of the
form

[m]s = [ν1, ν2, . . . , 0; 0, 0, . . .]

with ν a partition, all rows above s are of the same form (up to extra zeros),
and ν1 ≤ p. Furthermore all mij ∈ Z+ and the usual GZ-conditions should
be satisfied:

1. m−i,2r −m−i,2r−1 ≡ θ−i,2r−1 ∈ {0, 1}, 1 ≤ i ≤ r;
2. mi,2r −mi,2r+1 ≡ θi,2r ∈ {0, 1}, 1 ≤ i ≤ r;
3. m−1,2r ≥ #{i : mi,2r > 0, i ∈ [1, r]}, r ∈ Z∗+;
4. m−1,2r+1 ≥ #{i : mi,2r+1 > 0, i ∈ [1, r]}, r ∈ Z∗+;
5. mi,2r+2 −mi,2r+1 ∈ Z+ and mi,2r+1 −mi+1,2r+2 ∈ Z+, 1 ≤ i ≤ r;
6. m−i−1,2r+1 −m−i,2r ∈ Z+ and m−i,2r −m−i,2r+1 ∈ Z+, 1 ≤ i ≤ r.

The process of adding an infinite number of identical rows (up to additional
zeros) at the top of a finite GZ-pattern can now be formalized by means of
a map, just as we did by adding two identical rows in the previous section.
Let |m)2n be a finite GZ-pattern of type (28) with 2n rows, such that row 2n
is of the form [ν1, ν2, . . . ; 0, 0, . . . , 0]. Then φ2n,∞

(
|m)2n

)
is the infinite GZ-

pattern consisting of the rows of |m)2n to which an infinite number of rows
[ν1, ν2, . . . ; 0, 0, . . . , 0] are added at the top (all identical, up to additional
zeros). Conversely, if an infinite GZ-pattern |m)∞ is given, which is stable
with respect to row 2s, then one can restrict the infinite pattern to a finite
GZ-pattern, and
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|m)2s = φ−1
2s,∞ (|m)∞) .

Both maps can be extended by linearity. Then one can define the action of
c±i on vectors |m)∞:

Definition 1. Given a vector |m)∞ of V (p) with stability index 2s, and a
generator c±i . Let 2n be such that 2n > max{2s, ρ(i)}. Then

c±i |m)∞ = φ2n,∞
(
c±i |m)2n

)
, where |m)2n = φ−1

2n,∞ (|m)∞) . (41)

The main theorem, proved in [13] is then

Theorem 1. The vector space V (p), with basis vectors all infinite row-stable
GZ-patterns for which ν1 ≤ p, on which the action of the B(∞,∞) generators
c±i (i ∈ Z∗) is defined by (41), is an irreducible unitary Fock representation
of B(∞,∞).

To conclude, we have managed to give a description of parastatistics Fock
spaces with an infinite number of parafermions and parabosons. Our de-
velopments in previous years had already led to such a description for m
parafermions and n parabosons by means of representations of osp(2m+1|2n).
The GZ basis for these representations, determined in [12], is however not
appropriate for the limit to an infinite number of parastatistics operators.
We therefore constructed a new GZ basis for B(n, n) = osp(2n + 1|2n) rep-
resentations. In this new basis, there is a natural limit for n → ∞, and the
corresponding infinite row-stable GZ-patterns label the basis vectors of the
corresponding Fock space V (p) of B(∞,∞).
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Appendix

Although a low-rank example is not very instructive for the case n → ∞,
it is still useful to the reader to visualize the basic structure of the basis
vectors (28) and the action (31) with matrix elements (33). This is why we
include the basis of V (p) for n = 1, i.e. for B(n, n). Let

|m) ≡
∣∣∣∣m1̄2 m12

m1̄1

)
where

1. mij ∈ Z+, m1̄2 ≤ p;
2. m1̄2 ∈ {0, 1, 2, · · · } if m12 = 0; m1̄2 ∈ {1, 2, · · · } if m12 6= 0;
3. m1̄1 ∈ {m1̄2,m1̄2 − 1}.

. (42)
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The action of the Cartan algebra elements is:

h1̄|m) =
(
−p

2
+m1̄1

)
|m),

h1|m) =
(p

2
+m1̄2 +m12 −m1̄1

)
|m). (43)

The action of the parastatistics creation operators reads

c+
1̄

∣∣∣∣m1̄2 m12

m1̄2

)
= G1̄(m1̄2,m12)

∣∣∣∣m1̄2 + 1 m12

m1̄2 + 1

)
,

c+
1̄

∣∣∣∣m1̄2 m12

m1̄2 − 1

)
=

√
m1̄2 +m12

m1̄2 +m12 + 1
G1̄(m1̄2,m12)

∣∣∣∣m1̄2 + 1 m12

m1̄2

)
−

√
1

m1̄2 +m12 + 1
G1(m1̄2,m12)

∣∣∣∣m1̄2 m12 + 1
m1̄2

)
,

c+1

∣∣∣∣m1̄2 m12

m1̄2

)
=

√
1

m1̄2 +m12 + 1
G1̄(m1̄2,m12)

∣∣∣∣m1̄2 + 1 m12

m1̄2

)
+

√
m1̄2 +m12

m1̄2 +m12 + 1
G1(m1̄2,m12)

∣∣∣∣m1̄2 m12 + 1
m1̄2

)
,

c+1

∣∣∣∣m1̄2 m12

m1̄2 − 1

)
= −G1(m1̄2,m12)

∣∣∣∣m1̄2 m12 + 1
m1̄2 − 1

)
. (44)

Herein, G1̄ and G1 are shorthand notations for the reduced matrix elements
in (31): G1̄(m1̄2,m12) = (m1̄2 + 1,m12||c+||m1̄2,m12) and G1(m1̄2,m12) =
(m1̄2,m12 + 1||c+||m1̄2,m12), explicitly given by

G1̄(m1̄2,m12) =

√
m1̄2(m1̄2 +m12 + 1)(p−m1̄2)

m1̄2 +m12
, if m12 is even,

G1̄(m1̄2,m12) =
√
m1̄2(p−m1̄2), if m12 is odd,

G1(m1̄2,m12) =
√
m1̄2 +m12 + 1, if m12 is even,

G1(m1̄2,m12) =

√
(m12 + 1)(p+m12 + 1)

m1̄2 +m12
, if m12 is odd. (45)
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