
October 4, 2012 9:0 WSPC - Proceedings Trim Size: 9in x 6in VanderJeugt-ws-proc

1

FINITE OSCILLATOR MODELS DESCRIBED

BY THE LIE SUPERALGEBRA sl(2|1)

J. Van der Jeugt

Department of Applied Mathematics, Ghent University,

Krijgslaan 281-S9, 9000 Gent, Belgium

E-mail: Joris.VanderJeugt@UGent.be

We investigate new models for a finite quantum oscillator based upon the Lie
superalgebra sl(2|1), where the position and momentum operators are repre-
sented as odd elements of the algebra. We discuss properties of the spectrum

of the position operator, and of the (discrete) position wavefunctions given by
(alternating) Krawtchouk polynomials.

Keywords: Algebraic oscillator models, discrete wavefunctions, Lie superalge-
bra sl(2|1), Krawtchouk polynomials

1. Introduction and the Lie superalgebra sl(2|1)

The literature on quantum mechanics in a finite-dimensional Hilbert space

is substantial. This paper is devoted to an algebraic model for a quantum

oscillator allowing finite-dimensional representations, thus leading to a finite

oscillator model.

The canonical one-dimensional quantum oscillator (in the convention

m = ω = ~ = 1) is described by a position operator q̂, a momentum

operator p̂ and a Hamiltonian Ĥ given by

H =
p̂2

2
+
q̂2

2
. (1)

The oscillator Lie algebra is usually defined to be the Lie algebra generated

by q̂, p̂, Ĥ and the identity operator 1, subject to the relations

[Ĥ, q̂] = −i p̂, [Ĥ, p̂] = i q̂, (2)

[q̂, p̂] = i. (3)

Equation (3) is the canonical commutation relation (CCR); (2) is known

as the Hamilton-Lie equations. In fact, (3) together with (1) imply the
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Hamilton-Lie equations (2). The converse is not true. If one drops the

CCR (3) but keeps (1) and (2), the resulting system is the Wigner quan-

tum oscillator, also known as the paraboson oscillator.1,2 The underlying

algebra (generated by q̂ and p̂) is the Lie superalgebra osp(1|2).
Most algebraic models for the quantum oscillator go even one step fur-

ther, and also drop relation (1), thus keeping only the “dynamics” of the

oscillator described by (2). In order to speak of an algebraic oscillator model,

one requires3

• there should be three operators q̂, p̂, Ĥ belonging to some (Lie) algebra

(or superalgebra) A such that (2) is satisfied,

• the spectrum of Ĥ in representations of A is equidistant.

The best known algebraic model for the quantum oscillator is based on

the Lie algebra A = su(2).3 Ĥ, q̂ and p̂ are certain self-adjoint elements

in su(2), and the corresponding unitary representations are the common

finite dimensional representations of dimension 2j + 1, with 2j a positive

integer. The spectrum of Ĥ is of the form n+ 1
2 (with n = 0, 1, . . . , 2j), and

the spectrum of q̂ is discrete and equidistant.The corresponding discrete

position wavefunctions are expressed in terms of normalized Krawtchouk

polynomials, tending to normalized Hermite polynomials when j → ∞.

Some interesting deformations of the su(2) oscillator model were studied

recently, in which case the discrete wavefunctions turn out to be normalized

Hahn polynomials.4,5

Inspired by Wigner’s work, where the paraboson oscillator is described

by osp(1|2), we have initiated the study of oscillator models based on a Lie

superalgebra A. We shall consider here an algebraic oscillator model based

on A = sl(2|1). In order to do so, we need to consider an appropriate class

of representations of sl(2|1). Furthermore, we shall make a proper choice

for Ĥ, q̂ and p̂. In particular, q̂ (and p̂) should be odd elements of the Lie

superalgebra. The main task is then to determine the spectrum of these

operators and to construct the corresponding wavefunctions. In the current

paper, we highlight just some of the main results for the sl(2|1) oscillator.
More detailed results are found in Ref. 6.

In terms of 3 × 3 Weyl matrices eij (i, j = 1, 2, 3), one can choose the

following basis for sl(2|1)7

F+ = e32, G
+ = e13, F

− = e31, G
− = e23, (4)

H =
1

2
(e11 − e22), E

+ = e12, E
− = e21, Z =

1

2
(e11 + e22) + e33, (5)

where the first four elements are odd, and the last four even. The even
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subalgebra of sl(2|1) is just sl(2)⊕u(1), where sl(2) is spanned byH,E+, E−

and u(1) by Z. This follows from the commutators

[H,E±] = ±E±, [E+, E−] = 2H, [Z,H] = [Z,E±] = 0. (6)

For the odd basis elements, the mutual anti-commutators are

{F±, G±} = E±, {F±, G∓} = Z ∓H,

{F±, F±} = {G±, G±} = {F±, F∓} = {G±, G∓} = 0. (7)

The “mixed” commutators are given by

[H,F±] = ±1

2
F±, [Z,F±] =

1

2
F±, [E±, F±] = 0, [E∓, F±] = −F∓;

[H,G±] = ±1

2
G±, [Z,G±] = −1

2
G±, [E±, G±] = 0, [E∓, G±] = G∓.

We shall consider here a known class of representations of sl(2|1), but
with basis and action rewritten in a nicer and more appropriate form. These

are atypical irreducible representations labelled by a non-negative integer

j, with representation space Wj and dim(Wj) = 2j+1. The (orthonormal)

basis of Wj is denoted by |j,m〉 (m = −j,−j + 1, . . . ,+j). Using the prac-

tical notation E(n) = 1 if n is even and 0 otherwise; and O(n) = 1 if n is

odd and 0 otherwise, the actions of the odd basis elements is easily written

as:

F±|j,m〉 = ±O(j −m)

√

j ±m+ 1

2
|j,m± 1〉,

G±|j,m〉 = ±E(j −m)

√

j ∓m

2
|j,m± 1〉. (8)

Those of the even basis elements read:

Z|j,m〉 = −E(j −m)
j

2
|j,m〉 − O(j −m)(

j + 1

2
) |j,m〉,

H|j,m〉 = m

2
|j,m〉,

E±|j,m〉 = 1

2
E(j −m)

√

(j ∓m)(j ±m+ 2) |j,m± 2〉

+
1

2
O(j −m)

√

(j ∓m− 1)(j ±m+ 1) |j,m± 2〉. (9)

These are the known “dispin” representations:8,9 Wj decomposes as

( j2 ;−
j
2 )⊕ ( j−1

2 ;− j+1
2 ), where (l; b) denotes the su(2)⊕ u(1) representation

“with isospin l and hypercharge b”. Note that Wj is a unitary representa-

tion, for the adjoint operation

Z† = Z, H† = H, (E±)† = E∓, (F±)† = −G∓, (G±)† = −F∓. (10)



October 4, 2012 9:0 WSPC - Proceedings Trim Size: 9in x 6in VanderJeugt-ws-proc

4

2. The sl(2|1) oscillator model

Let us now make a proper choice for position, momentum and Hamiltonian

operator in sl(2|1). Following the second requirement, we should take:

Ĥ = 2H + j +
1

2
, (11)

having spectrum n+ 1
2 (n = 0, 1, . . . , 2j). As concerns q̂, an arbitrary self-

adjoint odd element is of the form q̂ = AF+ +BG+ −BF− −AG−, with

A and B arbitrary real numbers. An overall factor does not play a crucial

role, however, so we can take A2 + B2 = 1. Assuming that A and B have

the same sign (the other case is analogous), it follows that the most general

form for q̂ is

q̂ =
√
p F+ +

√

1− p G+ −
√

1− p F− −√
p G−, (0 ≤ p ≤ 1). (12)

Herein, p is a free parameter, and we shall treat only the generic case

0 < p < 1. For the momentum operator, we have

p̂ = i(
√
p F+ +

√

1− p G+ +
√

1− p F− +
√
p G−). (13)

The expressions (11), (12) and (13) do indeed satisfy the Hamilton-Lie

equations (2).

Next, we need to determine the eigenvalues and eigenvectors of the oper-

ators q̂ and p̂ in the representation Wj (we will consider only q̂ here). From

the actions of F± and G± in the (ordered) basis {|j, j〉, |j, j−1〉, . . . , |j,−j〉}
of Wj , it follows that the matrixMq of q̂ is a symmetric tridiagonal matrix,

with zero diagonal and off diagonal elements given by

R1, S1, R2, S2, . . . , Rj , Sj ,

where

Rk =
√
p
√

j + 1− k, Sk =
√

1− p
√
k (k = 1, 2, . . . , j).

The eigenvectors of this matrix Mq are described in terms of Krawtchouk

polynomials.10 These polynomialsKn(x; p,N), of degree n (n = 0, 1, . . . , N)

in the variable x, with parameter p, satisfy a discrete orthogonality relation:

N
∑

x=0

w(x; p,N)Kn(x; p,N)Kn′(x; p,N) = h(n; p,N) δnn′ ,

where w(x; p,N) =
(

N
x

)

px(1 − p)N−x and h(n; p,N) = n!(N−n)!
N !

(

1−p
p

)n

.

The corresponding orthonormal Krawtchouk polynomials are denoted by

K̃n(x; p,N) ≡
√

w(x; p,N)
√

h(n; p,N)
Kn(x; p,N).
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In terms of these, let U be the (2j + 1)× (2j + 1)-matrix:

U2n,j = (−1)nK̃0(n; p, j), U2m+1,j = 0,

U2n,j−k = U2n,j+k =
(−1)n√

2
K̃k(n; p, j),

U2n′+1,j−k = −U2n′+1,j+k = − (−1)n
′

√
2

K̃k−1(n
′; p, j − 1),

where n ∈ {0, 1, . . . , j}, n′ ∈ {0, . . . , j − 1} and k ∈ {1, . . . , j}. Then the

orthogonality of Krawtchouk polynomials implies that U is an orthogo-

nal matrix: UUT = UTU = I. Furthermore, from forward and backward

shift operator formulas10 for Krawtchouk polynomials one can deduce that

MqU = UD, with D a diagonal matrix:

D = diag(−
√

j,−
√

j − 1, . . . ,−
√
2,−1, 0, 1,

√
2, . . . ,

√

j − 1,
√

j).

In other words, the columns of U are the eigenvectors of Mq, and the

eigenvalues ofMq (and hence of q̂ in the representation Wj) are of the form

q±k = ±
√
k (k = 0, 1, . . . , j). Note that in the columns of U , Krawtchouk

polynomials with parameter j and with parameter j − 1 alternate.

Let us denote the eigenvector for the eigenvalue qk by |j, qk):

|j, qk) =
j

∑

m=−j

Uj+m,j+k|j,−m〉 =
j

∑

m=−j

φ
(p)
j+m(qk)|j,−m〉. (14)

The reason to denote this coefficient by φ
(p)
j+m(qk) is because overlaps be-

tween the normalized eigenstates of the position operator and the eigen-

states of the Hamiltonian have an interpretation as position wavefunc-

tions. Hence position wavefunctions are given in terms of (alternating)

Krawtchouk polynomials, e.g. when qk > 0:

φ
(p)
2n (qk) =

(−1)n√
2
K̃k(n; p, j), φ

(p)
2n+1(qk) =

(−1)n√
2
K̃k−1(n; p, j − 1).

In Ref. 6 we have given some plots of these position wavefunctions,

for various values of p, j and n. Their behaviour shows similarities with

canonical oscillator wavefunctions, but of course they are a discrete version.

When the dimension parameter j is large, the sl(2|1) wavefunctions tend to

paraboson wavefunctions (which is also confirmed by a limit calculation).

3. Further results

The determination of the eigenvalues and eigenvectors of p̂ is very similar.

The spectrum of p̂ is the same as that of q̂: pk = ±
√
k. The momentum
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wavefunctions are, up to a power of i, the same as the position wavefunc-

tions:

ψ
(p)
j+m(pk) = (i)j+m−1φ

(p)
j+m(pk).

So one can determine the matrix F that transforms position wavefunctions

into momentum wavefunctions; this is the sl(2|1) discrete Fourier transform
F . Since the wavefunctions have such a simple form, the matrix elements of

F can be determined explicitly using the known bilinear generating function

for Krawtchouk polynomials. This sl(2|1) discrete Fourier transform has

many properties similar to the standard Discrete Fourier Transform.

Choosing a different adjoint operation for sl(2|1), the corresponding

unitary representations are infinite dimensional. These discrete series rep-

resentations of sl(2|1), labelled by a positive number β > 0, have been

determined recently.11 In these representations, Ĥ has the same spectrum

as the canonical oscillator. General forms for q̂ (and p̂) involve one param-

eter γ > 0 (like our p in the finite dimensional case). The spectrum of q̂ is

continuous (= R) for γ = 1 and infinite discrete (±
√

γ2 − 1
√
k, k ∈ Z+)

for γ > 1 (similar for 0 < γ < 1). The position wavefunctions Φ
(β,γ)
n (x)

coincide with paraboson wavefunctions for γ = 1, and are related to (dis-

crete) Meixner polynomials for γ 6= 1; the canonical oscillator is recovered

for β = 1/2.
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