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Abstract. We consider a quantum mechanical system consisting of a linear chain of harmonic
oscillators coupled by a nearest neighbor interaction. The system configuration can be closed
(periodic boundary conditions) or open (non-periodic case). We show that such systems can
be considered as Wigner Quantum Systems (WQS), thus yielding extra solutions apart from
the canonical solution. In particular, a class of WQS-solutions is given in terms of unitary
representations of the Lie superalgebra gl(1|n). In order to determine physical properties of the
new solutions, one needs to solve a number of interesting but difficult representation theoretical
problems. We present these problems and their solution, and show how the new results yield
attractive properties for the quantum system (energy spectrum, position probabilities, spacial
properties).

1. Introduction

Coupled systems describing the interaction of oscillating or scattering subsystems and the
corresponding operators have been widely used in classical and quantum mechanics [1–5].

Recently, we have taken up the study of such systems as Wigner Quantum Systems
(WQS) [6–8]. The particular system under consideration consists of a string of n identical
harmonic oscillators, each having the same mass m and frequency ω. The position and
momentum operator for the rth oscillator (r = 1, 2, . . . , n) are given by q̂r and p̂r respectively;
more precisely, q̂r measures the displacement of the rth mass point with respect to its equilibrium
position. The oscillators are coupled by some nearest neighbor coupling, represented by terms of
the form (q̂r−q̂r+1)

2 in the Hamiltonian. The system configuration can either be closed (periodic
boundary conditions), i.e. q̂n+1 = q̂1, or open (fixed wall boundary conditions), i.e. q̂0 = q̂n+1 = 0.

When treating a system as a WQS, the canonical commutation relations (CCRs) are not

required to hold. Instead, the compatibility of the Hamilton equations and the Heisenberg
equations is imposed. Expressing this compatibility leads to the so-called compatibility
conditions (CCs), and these need to be solved (subject to some unitarity conditions). In [9,10],
we have shown that the CCs associated with a system consisting of a coupled oscillator chain
has solutions in terms of generators of the gl(1|n) Lie superalgebra [11]. We are only going to
work with finite-dimensional unitary irreducible representations (unirreps) of gl(1|n), so in fact,
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all the solutions in this article are non canonical, and fall within the framework of Quantum
Systems with a finite Hilbert space [12].

In order to determine physical properties of the system, such as the energy spectrum, position
eigenvalues or position probabilities, one is led to considering problems in the representation
theory of gl(1|n). For the finite-dimensional unirreps of gl(1|n), a Gel’fand-Zetlin basis (GZ-
basis) is known, as well as the explicit action of the generators on the basis vectors of the
representation [13]. These actions, especially the non-diagonal ones, on a general GZ-pattern
are, however, quite involved and thus some of the tasks at hand (e.g. determining position
eigenvalues and eigenvectors) are far from trivial. Nevertheless, we have been able to solve these
problems quite generally [14].

In this article, we first introduce the Hamiltonians of the quantum systems. We then show
briefly how to derive and manipulate the CCs such that they are in a form suitable for finding
Lie superalgebraic solutions. Next it is indicated how a solution in terms of the odd generators
of the Lie superalgebra gl(1|n) is found. As a last part of Section 2, the unirreps of gl(1|n) are
introduced, focusing on one particular class of representations, namely the ladder representations
V (p).

Then, in Section 3, we turn to the study of the physical properties of the systems, starting
with the energy spectrum, stressing the difference between the systems with open and closed
boundary conditions.

Determining the energy spectrum is a relatively easy task compared to determining the
spectrum of the position operators. The key point here is to introduce a second set of generators
of gl(1|n) and recognizing that for this second set of generators the position operators q̂r are
in fact elements of a gl(1|1) subalgebra. The eigenvalue problem is thus solved by considering
the branching gl(1|n) → gl(1|1) ⊕ gl(n − 1), the multiplicity of the different eigenvalues being
determined by the dimension of the various gl(n− 1) representations. The eigenvector problem
is even harder as this involves expressing the highest weight vector w.r.t. the second set of
generators in terms of the original basis vectors of the representation. For this article, we
restrict ourselves completely to the ladder representations.

Finally, as an application, we give some numerical results concerning the position probabilities
when the system is in a stationary state. We remark how the system behaves differently
according to whether it is in the ground state or in the most excited state. Also, this behavior
is in line with physical intuition about such systems. This is the subject of Section 5.

In Section 6 a short conclusion and outlook are given.

2. A Lie superalgebraic solution to the compatibility conditions

2.1. System with periodic boundary conditions

We start with a quick derivation of the compatibility conditions for a linear system consisting of
n interacting but otherwise identical harmonic oscillators. We assume that each oscillator only
interacts explicitly with its direct neighbors. The Hamiltonian of such a system is given by:

ĤP =
n

∑

r=1

( p̂2
r

2m
+
mω2

2
q̂2r

)

+
n

∑

r=1

cm

2
(q̂r − q̂r+1)

2, (1)

where each oscillator has massm and frequency ω. The position and momentum operator of each
oscillator are given by q̂r and p̂r respectively. To be more precise, q̂r measures the displacement
of the rth oscillator with respect to its equilibrium position. Finally, the positive constant c
denotes the coupling strength. For now, we assume periodic boundary conditions, i.e. we assume
that

q̂n+1 ≡ q̂1. (2)



When treating the system as a Wigner Quantum System, one imposes the compatibility
between the Hamilton equations and the Heisenberg equations. It is known that some systems
then also have non canonical solutions, i.e. solutions for which the canonical commutation
relations between the position and momentum operators do not hold [6, 9, 15]. For the
Hamiltonian under consideration, the compatibility conditions can be computed as:

[ĤP , q̂r] = − i~
m
p̂r (= −i~ ˙̂qr), (3)

[ĤP , p̂r] = −i~cm q̂r−1 + i~m(ω2 + 2c) q̂r − i~cm q̂r+1 (= −i~ ˙̂pr), (4)

with r ∈ {1, 2, . . . , n}, q̂n+1 = q̂1 and q̂0 = q̂n. The goal is thus to find (self-adjoint) operators

q̂r and p̂r (r = 1, . . . , n)) such that (3) and (4) are satisfied with ĤP given by (1).
In order to find solutions of the CCs (other than the canonical solution), one introduces the

following discrete Fourier transforms of position and momentum operators:

q̂r =
n

∑

j=1

√

~

2mnωj

(

e−2πijr/na+
j + e2πijr/na−j

)

, (5)

p̂r = i
n

∑

j=1

√

mωj~

2n

(

e−2πijr/na+
j − e2πijr/na−j

)

. (6)

Here, the ωj are positive numbers given by

ω2
j = ω2 + 2c− 2c cos(

2πj

n
) = ω2 + 4c sin2(

πj

n
), (7)

while the (yet unknown) operators a±j satisfy (a±j )† = a∓j , implying that the operators q̂r and p̂r

are indeed self-adjoint. In terms of the operators a±j , the Hamiltonian has a simple expression:

ĤP =
n

∑

j=1

~ωj

2
(a−j a

+
j + a+

j a
−
j ) =

n
∑

j=1

~ωj

2
{a−j , a+

j }. (8)

It is now easy to check that the CCs (3)-(4) are equivalent with finding operators a±k (subject

to (a±k )† = a∓k ) such that

[

n
∑

j=1

ωj{a−j , a+
j }, a±k

]

= ±2ωka
±
k , (k = 1, 2, . . . , n). (9)

Note how these relations involve both commutators and anti-commutators.

2.2. System with fixed wall boundary conditions

We now consider the same system of coupled harmonic oscillators, but this time with fixed wall
boundary conditions. In this case, the Hamiltonian is

ĤFW =
n

∑

r=1

( p̂2
r

2m
+
mω2

2
q̂2r

)

+
n

∑

r=0

cm

2
(q̂r − q̂r+1)

2, (10)

with the same data as in (1) but with boundary conditions

q̂0 = q̂n+1 ≡ 0 (and p̂0 = p̂n+1 ≡ 0). (11)



Stated otherwise, the first and last oscillator (those numbered 1 and n) are assumed to be
attached to a fixed wall rather than being adjacent to one another.

The treatment of this system as a Wigner Quantum system is very similar to that of the
system with periodic boundary conditions. In fact, the CCs are identical to (3) and (4) but

with boundary conditions given by (11) (and with ĤP replaced by ĤFW ). These new boundary
conditions, however, imply the use of a different kind of transform (instead of the discrete Fourier
transform). In this case, the following transformations are introduced:

q̂r =
n

∑

j=1

√

~

m(n+ 1)ω̃j
sin

( rjπ

n+ 1

)(

a+
j + a−j

)

, (12)

p̂r = i
n

∑

j=1

√

mω̃j~

n+ 1
sin

( rjπ

n+ 1

)(

a+
j − a−j

)

, (13)

where the ω̃j are positive numbers given by

ω̃2
j = ω2 + 2c− 2c cos

( jπ

n+ 1

)

= ω2 + 4c sin2
( jπ

2(n+ 1)

)

. (14)

As before, the operators a±j satisfy the adjointness conditions (a±j )† = a∓j . The Hamiltonian

ĤFW , when expressed in terms of the operators a±j is given by

ĤFW =

n
∑

j=1

~ω̃j

2
{a−j , a+

j }, (15)

which is identical to (8) but with ωj replaced by ω̃j . Also the CCs are identical to (9) up to
the same replacement. This implies that the algebraic solutions will be similar, even though the
conclusions about physical properties will be different due to the different numerical values of
the numbers ωj and ω̃j (and due to the different transformations used).

2.3. Solution of the CCs in terms of gl(1|n) generators

The CCs (9) involve both commutators and anti-commutators. Moreover, they resemble certain
algebraic relations satisfied by the odd gl(1|n) generators. The Lie superalgebra gl(1|n) [11] has
standard basis elements ejk (j, k = 0, 1 . . . , n), where ek0 and e0k (k = 1, . . . , n) are the odd
elements (having degree one) while the other elements are the even elements (having degree
zero). The bracket is given by:

[[eij , ekl]] = δjkeil − (−1)deg(eij) deg(ekl)δilekj , (16)

and we impose the star condition e†ij = eji. Then, one can give a solution of (9) in terms of the
odd elements of this algebra. More explicitly, one has

a−j =

√

2βj

ωj
ej0, a+

j =

√

2βj

ωj
e0j (j = 1, . . . , n) (17)

where

βj = −ωj +
1

n− 1

n
∑

k=1

ωk, (j = 1, . . . , n). (18)



Clearly, all these numbers βj should be nonnegative. It can be proved [9] that (for n ≥ 4) this
implies that the coupling constant is bounded above by some positive critical value c0 (dependent
upon n). As was to be expected, the same solution is valid for the case of fixed wall boundary
conditions but with the constants ωj replaced by ω̃j (the βj are then denoted naturally by β̃j).
Also in the fixed wall boundary conditions case, the coupling constant c is bounded above by a
critical value c̃0 (different but similar to c0) [10].

2.4. Unitary irreducible representations of gl(1|n)
In order to study physical properties of the systems, one has to work with specific unitary
irreducible representations of gl(1|n). These unitary representations W = W ([m]n+1) of gl(1|n)
are well known [16]: they are labeled by some (n+1)-tuple [m]n+1 subject to certain conditions.
Even more: for such representations, a Gel’fand-Zetlin basis has been constructed and the
explicit action of the gl(1|n) generators on the basis vectors of the representation is also
known [13]. Explicit actions of generators on a Gel’fand-Zetlin basis are usually quite involved,
and this is also the case for gl(1|n). In particular, the action of the odd generators e0j and ej0
on a GZ-basis vector is very complicated, see [13, Eqs. (2.25) and (2.26)].

As a special case, we consider a simple, yet interesting and quite rich, class of finite-
dimensional representations W ([1, p− 1, 0, . . . , 0]) ≡ V (p), characterized by a positive integer p.
A notation more convenient than the general GZ-patterns for the basis vectors of V (p) is:

w(θ; s) ≡ w(θ; s1, s2, . . . , sn), θ ∈ {0, 1}, si ∈ {0, 1, 2, . . .}, and θ+ s1 + · · ·+ sn = p. (19)

The action of the gl(1|n) generators on the basis (19) is given by (1 ≤ k ≤ n) [13, 14]:

e00w(θ; s) = θ w(θ; s), (20)

ekkw(θ; s) = sk w(θ; s), (21)

ek0w(θ; s) = θ
√
sk + 1 w(1 − θ; s1, . . . , sk + 1, . . . , sn), (22)

e0kw(θ; s) = (1 − θ)
√
sk w(1 − θ; s1, . . . , sk − 1, . . . , sn). (23)

From these one deduces the action of other elements ekl. The basis w(θ; s) of V (p) is orthonormal,
i.e. 〈w(θ; s), w(θ′; s′)〉 = δθ,θ′δs,s′ , and with respect to this inner product the action of the

generating elements satisfies the conjugacy relations e†k0 = e0k and e†0k = ek0.

3. Energy spectrum of the systems

As can be seen from (8) and (17), the Hamiltonian for both systems is a linear combination of
elements ekk (k = 0, 1, . . . , n). Since such elements act diagonally on the basis vectors of any
representation W ([m]n+1), [13], the basis vectors of such a representation will be eigenvectors
of the Hamiltonian. Stated otherwise, the basis vectors of the representation are the stationary
states of the system.

We will now restrict our attention to the ladder representations V (p) introduced in the
previous section. In particular, for fixed wall boundary conditions we have:

ĤFW = ~(β̃ e00 +

n
∑

k=1

β̃k ekk),

with β̃ =
∑n

k=1 β̃k =
∑n

k=1 ω̃k. From (20) and (21) it follows immediately that:

ĤFW w(θ; s) = ~(β̃θ +
n

∑

k=1

β̃ksk)w(θ; s) = ~Ẽθ,sw(θ; s).



When c = 0, one has that β̃k = ω/(n− 1) and β̃ = ωn/(n− 1), so in this case there are only
two eigenvalues namely

Ẽ0,s =
ωp

n− 1
and Ẽ1,s =

ωp

n− 1
+ ω

with multiplicities
(

p+ n− 1

n− 1

)

and

(

p+ n− 2

n− 1

)

respectively. For c > 0, these two energy levels split into
(

p+ n− 1

n− 1

)

+

(

p+ n− 2

n− 1

)

energy levels, each with multiplicity one. Figure 1(a) gives an example.
In the case of periodic boundary conditions, however, the system has much greater symmetry

and hence one expects fewer different energy levels with higher degeneracies. Indeed, in [10] it
is shown that the number of energy levels is in general given by

(

p+ ⌊n/2⌋
p

)

+

(

p+ ⌊n/2⌋ − 1

p− 1

)

.

Figure 1(b) illustrated this. Also, the degeneracy of an energy level Eθ,s can in general be
calculated from θ and s.

4. On the eigenvalues and eigenvectors for the position operators

Under the solution (17), the position operators q̂r are quite arbitrary odd elements of the Lie
superalgebra gl(1|n) as can be seen from (12). Since the action of the odd generators on a GZ-
pattern is very complicated, determining the spectrum of the position operators is an involved
task. However, in [14] a method was developed to determine the eigenvalues (and eigenvectors)
of such an odd operator for a general unirrep W ([m]n+1) of gl(1|n). This method goes as follows:

in a first step, a new set of generators E
(r)
0j and E

(r)
j0 (and E

(r)
00 ) for gl(1|n) is introduced such

that the operator q̂r has an easy form in terms of these new generators. More in particular, the

operator q̂r will be an element of a gl(1|1) subalgebra generated by E
(r)
00 , E

(r)
nn , E

(r)
0n and E

(r)
n0 :

q̂r ∼ E
(r)
0n + E

(r)
n0 .

Hence, it it clear that the decomposition of the representation W ([m]n+1) as a gl(1|1)⊕gl(n−1)
representation solves the eigenvalue problem. The eigenvalues are given by solving the gl(1|1)
eigenvalue problem for the various gl(1|1) representations occurring, and their multiplicities
by the dimension of the corresponding gl(n − 1) representation (for which there is a known
dimension formula). The eigenvector problem is much harder, and involves expressing the new
GZ-patterns in terms of the old GZ-patterns.

Let us now go into a little more detail. First, the position operator q̂r is written as:

q̂r =

√

~

mn

n
∑

j=1

(

γj e
2πijr/nej0 + γj e

−2πijr/ne0j

)

(24)

=

√

~γ

mn
(E

(r)
n0 + E

(r)
0n ), (25)

where we use the notation

γj =
√

βj/ωj (j = 1, . . . , n) and γ = γ2
1 + · · · + γ2

n. (26)



(a) Fixed Wall Boundary Conditions (b) Periodic Boundary Conditions
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Figure 1. (a) The energy levels of the quantum system with fixed wall boundary conditions for
n = 4 in the representation V (p) with p = 2 and ~ = ω = 1; c ranges from 0 to c̃0. The vertical
axis gives the energy values and the numbers next to the levels refer to their multiplicity. When
c = 0, there are only two energy levels with multiplicities 10 and 4 respectively. When 0 < c < c̃0,
however, there are (in general) 14 energy levels each with multiplicity 1. (b) The energy levels
of the quantum system with periodic boundary conditions for n = 4 in the representation V (p)
with p = 2 and ~ = ω = 1; c ranges from 0 to c0. For c = 0, one always has the same system
irrespective of the boundary conditions in place, so again we find the same two energy levels.
When c > 0, however, there are in general only 9 different energy levels, some non-degenerate
others two-fold and one three-fold degenerate.

This defines the operators E
(r)
n0 and E

(r)
0n . Then, this is extended to E

(r)
j0 (and E

(r)
0j ) with

1 ≤ j ≤ n−1 by using a unitary (Hessenberg) matrix. The operators E
(r)
j0 and E

(r)
0j (j = 1, . . . , n)

then also generate sl(1|n) as they also satisfy the defining relations of sl(1|n) [14, 17]. (The

operator E
(r)
00 is then defined in the appropriate way.)

A unirrep of gl(1|1) is characterized by two real numbers a and b, such that either a+ b > 0
or a+ b = 0. When a+ b > 0, the representation W ([a, b]) is two-dimensional with weights (a, b)
and (a− 1, b+ 1). Furthermore, calling the basis vectors of the representation v and w one has:

e01v = 0, e10v =
√
a+ bw, e01w =

√
a+ b v, e10w = 0.

In this case, it is clear that (e01 + e10)(v ± w) = ±
√
a+ b(v ± w). When a + b = 0, the

representation W ([a,−a]) is one-dimensional and one has that (e01 + e10)(v) = 0. In this case
the weight is given by (a,−a).

In the case of the ladder representation V (p) the decomposition gl(1|n) → gl(1|1)⊕ gl(n− 1)
is given by

V (p) →W ([0, 0]) × V ([p, 0, . . . , 0]) ⊕
p−1
⊕

K=0

W ([1, p− 1 −K]) × V ([K, 0, . . . , 0]), (27)

where the gl(n − 1) representation V ([K, 0, . . . , 0]) has dimension
(

n−2+K
n−2

)

. So q̂r has 2p + 1



eigenvalues in all, namely ±xK = ±
√

~γ
mn(p−K), where 0 ≤ K ≤ p − 1, with multiplicities

(

n−2+K
n−2

)

, and xp = 0 with multiplicity
(

n−2+p
n−2

)

.
One can also explicitly compute the eigenvectors of q̂r in the ladder representation as

follows. First, any basis vector w(θ; s1, . . . , sn) can be obtained from the highest weight vector
w(1; p− 1, 0, . . . , 0) by acting on it with negative root vectors. Explicitly, one has:

w(θ; s1, . . . , sn) =
e
p−θ−

∑n−1

j=1
sj

n,n−1 e
p−θ−

∑n−2

j=1
sj

n−1,n−2 · · · ep−θ−
∑

2

j=1
sj

32 e
p−θ−

∑

1

j=1
sj

21 e1−θ
10

√

p1−θ
∏n−1

k=1(p− θ − ∑k
j=1 sj)!(sk + 1)p−θ−

∑k
j=1

sj

w(1; p−1, 0, . . . , 0),

where (a)j = a(a+ 1) · · · (a+ j − 1) is the Pochhammer symbol or rising factorial.
We now define a basis v(φ; t1, . . . , tn) relative to the new generators Ejk as follows (for brevity,

the superscripts r are temporarily dropped):

v(φ; t1, . . . , tn) =
E

p−φ−
∑n−1

j=1
tj

n,n−1 E
p−φ−

∑n−2

j=1
tj

n−1,n−2 · · ·Ep−φ−
∑

2

j=1
tj

32 E
p−φ−

∑

1

j=1
tj

21 E1−φ
10

√

p1−φ
∏n−1

k=1(p− φ− ∑k
j=1 tj)!(tk + 1)p−φ−

∑k
j=1

tj

v(1; p−1, 0, . . . , 0).

(28)
Of course, in order to make this definition work, we have to express the highest weight vector
v(1; p − 1, 0, . . . , 0) in terms of the “old” basis vectors w(θ; s). So, one has to look for the

unique vector that is annihilated by all positive root vectors E
(r)
jk with k > j. For the ladder

representation V (p) one has that

v(1; p− 1, 0, . . . , 0) =
1

(γ2
1 + γ2

2)(p−1)/2

p−1
∑

u=0

(−1)ue−2πiru/n

√

(

p− 1

u

)

× γp−1−u
1 γu

2 w(1;u, p− 1 − u, 0, . . . , 0). (29)

We remark that Proposition 4 of [14] solves this particular problem for arbitrary unirreps
W ([m]n+1). Using the actions (22) and (23), it is now easy to check that the orthonormal
eigenvectors for ±xK 6= 0 are:

ψr,±xK ,t =
1√
2
v(1; t1, . . . , tn−1, p− 1 −K) ± 1√

2
v(0; t1, . . . , tn−1, p−K), (30)

where t1 + · · · + tn−1 = K. For the eigenvalue 0, the eigenvectors read

ψr,0,t = v(0; t1, . . . , tn−1, 0), t1 + · · · + tn−1 = p. (31)

Note how the multiplicity labels t are in accordance with the previously stated multiplicities of
the eigenvalues xK .

5. Application: position probabilities

For the ladder representations V (p), the expressions (30) (or (31)) together with (29) and (28)
give the eigenvectors of the position operators q̂r. Although, admittedly, these expressions do
not yield an analytical expression of the eigenvectors in terms of the basis vectors w(θ; s), they
do allow to compute them efficiently using only matrix multiplications. Stated otherwise, the

coefficients Cθ,s
r,±xK ,t in the expansion

ψr,±xK ,t =
∑

θ,s

Cθ,s
r,±xK ,tw(θ; s),



may be efficiently computed (numerically).
It is a well known fact (postulate) of quantum mechanics that when measuring an observable,

the measurement always yields an eigenvalue of the (self-adjoint) operator associated with that
observable. The probability of measuring a certain eigenvalue when the system is in a particular
state is determined by the expansion of that state in terms of (orthonormal) eigenvectors of the
operator at hand.

So, when the quantum system is in the fixed stationary state w(θ, s), the probability of
measuring for q̂r the eigenvalue ±xK is given by:

P (θ, s, r,±xK) =
∑

t1+···+tn−1=K

∣

∣

∣
Cθ,s

r,±xK ,t

∣

∣

∣

2
. (32)

Also, from (30) it is immediately clear that

P (θ, s, r, xK) = P (θ, s, r,−xK). (33)

For now, we will restrict our attention to the case of periodic boundary conditions, the
case of fixed wall boundary conditions being elaborated upon in [10]. For the case of periodic
boundary conditions, it is clear that the position probabilities are independent of the number of
the oscillator r, as all oscillators are equivalent. So, one can take r = 1. As an explicit example,
we choose n = 4 (so there are four coupled oscillators) and p = 10. This means that each position
operator has 21 distinct eigenvalues. We will plot the position probability distributions for the
ground state (this is the state w(0; 0, p, 0, 0) = w(0; 0, 10, 0, 0)) and for the most excited state
(this is the state w(1; 0, 0, 0, p− 1) = w(1; 0, 0, 0, 9)). These distributions are given in Figure 2,
for some values of the coupling constant c.

Let us make a number of observations on these distributions. When the system is in the
ground state, the probability distribution function of each position operator is symmetric around
its equilibrium position and unimodal. Of course it is also discrete (as we are working in finite-
dimensional representations). As the coupling constant c increases, the “peak” around the
equilibrium position is sharper. In other words, as the coupling constant becomes larger, the
oscillators are more likely to be close to their equilibrium position when the system is in its
ground state.

When the system is in its most excited state, the position probabilities are quite different.
The probability of finding the oscillator in its equilibrium position is zero. On the other hand,
there are certain peaks away from the equilibrium position. As c increases, these peaks are
further away from the equilibrium position. In other words, as the coupling constant becomes
larger, the oscillators are more likely to be further away from their equilibrium position when
the system is in its most excited state.

Note that in this figure one also observes the fact that the range of the spectrum of the
position operators depends on the coupling constant c [10].

6. Conclusion

In this article, we have treated a linear chain of harmonic oscillators as a Wigner Quantum
System. By suitably manipulating the compatibility conditions, we showed how a solution in
terms of odd elements of the Lie superalgebra gl(1|n) can be found. The physical properties of
the system are then determined by the gl(1|n) unitary representation used. Investigating these
physical properties leads to quite interesting and challenging problems in the representation
theory of gl(1|n), and a solution to these problems was presented. The specific examples and
figures given used a simple yet interesting class of representations V (p) with p an integer. The
properties obtained for such a system, e.g. the position probabilities are in line with physical
intuition.
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Figure 2. Position probability distribution function for the position operator q̂1, in the periodic
boundary case, when n = 4 and p = 10. In the three rows, c = 0.1, c = 0.4, c = 0.8. The plotted
value is P (θ, s, 1,±xK) for each of the 21 eigenvalues ±xK (K = 0, 1, . . . , 10) of q̂1. This is given
for the case when the system is in the stationary state w(θ; s) corresponding to the ground state
(minimum energy) in the left column and in the right column when it is in the stationary state
w(θ; s) corresponding to the most excited state (maximum energy).



Although we restricted ourselves here to the case of gl(1|n) solutions, other types of solutions
exist, more specifically in terms of osp(1|2n) elements. We expect to further investigate this
system (and others, such as a multi-dimensional anisotropic oscillator) using a newly constructed
class of infinite dimensional unirreps of osp(1|2n) [18]. As this class of solutions includes
the canonical solution, such a study will be most interesting, although we expect it to be
computationally difficult.
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