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Abstract. Para-Fermi statistics and Fermi statistics are known to be associated
with particular representations of the Lie algebraso(2n+1)≡ Bn. Similarly para-
Bose and Bose statistics are related with the Lie superalgebraosp(1|2n)≡B(0|n).
We develop an algebraical framework for the generalizationof quantum statistics
based on the Lie algebrasAn, Bn, Cn andDn.

1. Introduction

In 1953 Green [1] introduced para-Bose and para-Fermi statistics as generalizations of Bose
and Fermi statistics. Instead of the bilinear commutators[b−i ,b+

j ] = δi j , [bξ
i ,bξ

j ] = 0, ξ =± (or

anti-commutators{ f−i , f +
j }= δi j , { f ξ

i , f ξ
j }= 0, ξ =±) as for Bose creation and annihilation

operators (CAOs) (or Fermi CAOs), para-statistics is described by triple relations. The defining
relations forn pairs of para-Fermi CAOsFξ

i , ξ = ± andi = 1, . . . ,n are:

[[Fξ
j ,Fη

k ],Fε
l ] =

1
2
(ε −η)2δklF

ξ
j −

1
2
(ε −ξ )2δ jl F

η
k , ξ ,η ,ε = ±; j,k, l = 1, . . . ,n (1)

and those forn pairs of para-Bose CAOsBξ
i , ξ = ± andi = 1, . . . ,n:

[{Bξ
j ,B

η
k },B

ε
l ] = (ε −ξ )δ jl B

ξ
k +(ε −η)δklB

η
j , ξ ,η ,ε = ±; j,k, l = 1, . . . ,n. (2)

It was realized by Kamefuchi and Takahashi [2], and by Ryan andSudarshan [3], that the
2n operatorsFξ

i subject to the relations (1) generate the Lie algebraso(2n+ 1) ≡ Bn. More-
over, a particular representation ofso(2n+1) yields the relations of Fermi statistics. Similarly
Ganchev and Palev [4] proved that the Lie superalgebra generated by the 2n operatorsBξ

i
(considered as odd elements) subject to the relations (2) isthe orthosymplectic Lie superal-
gebraosp(1|2n) ≡ B(0|n) [5]. Also here there exists anosp(1|2n) representation, that yields
the Bose statistics. Therefore para-statistics is associated with representations of the Lie (su-
per)algebras of classB. Motivated by these relations we introduce the concept of a generalized
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quantum statistics for a classical Lie algebra and classifyall the classes of such statistics by
means of their algebraic relations [6].

We should mention that examples of such statistics for each of the classical Lie algebras
An,Bn,Cn andDn were considered by Palev [7]-[11] (we refer to those examples as Palev’s
statistics), although a complete classification was never made.

2. Preliminaries, definition, method

Let G be a classical Lie algebra. A generalized quantum statistics related toG is determined
by N creationx+

i and N annihilation operatorsx−i . Inspired by the para-Fermi, para-Bose
and Palev’s statistics, the operatorsx±i should satisfy certain requirements. The 2N operators
x±i should generate the Lie algebraG, subject to triple relations. LetG+1 andG−1 be the
subspaces ofG spanned by the creation and annihilation operators:

G+1 = span{x+
i ; i = 1. . . ,N}, G−1 = span{x−i ; i = 1. . . ,N}. (3)

Since the defining relations should be triple relations, this implies that it is natural to make the
following requirements:

[[x+
i ,x+

j ],x+
k ] = 0, [[x−i ,x−j ],x−k ] = 0,

[[x+
i ,x+

j ],x−k ] = a lineair combination ofx+
l , [[x+

i ,x−j ],x+
k ] = a lineair combination ofx+

l ,

[[x+
i ,x−j ],x−k ] = a lineair combination ofx−l , [[x−i ,x−j ],x+

k ] = a lineair combination ofx−l .

Let G±2 = [G±1,G±1] andG0 = [G+1,G−1], then we requireG−2⊕G−1⊕G0⊕G+1⊕G+2 to
be aZ-grading ofG. Let ω be the standard anti-involution of the Lie algebraG (characterized
by ω(x) = x† in the standard defining representation ofG, wherex† denotes the Hermitian
conjugate of the matrixx in this representation) then we shall assumeω(x+

i ) = x−i . And
finally, we shall require that the CAOsx±i are root vectors of the Lie algebraG.
Definition. Let G be a classical Lie algebra, with anti-involutionω. A set of2N root vectors
x±i (i = 1, . . . ,N) is called a set of creation and annihilation operators forG if:

ω(x±i ) = x∓i ,
G = G−2⊕G−1⊕G0⊕G+1⊕G+2 is aZ-grading of G, with G±1 = span{x±i , i =

1. . . ,N} and Gj+k = [G j ,Gk].
The algebraic relationsR satisfied by the operators x±

i are the relations of a generalized
quantum statistics (GQS) associated with G.

A consequence of this definition is thatG0 is a subalgebra ofG spanned by root vectors
of G, i.e. G0 is a regular subalgebra ofG. By the adjoint action, the remainingGi ’s areG0-
modules. Thus the following technique can be used in order toclassify all GQS associated
with G:
1. Determine all regular subalgebrasG0 of G [12].
2. For each regular subalgebraG0, determine the decomposition ofG into simpleG0-modules
gk (k = 1,2, . . .).
3. Investigate whether there exists aZ-grading ofG of the formG= G−2⊕G−1⊕G0⊕G+1⊕
G+2, where eachGi is either directly a modulegk or else a sum of such modulesg1⊕g2⊕·· ·,
such thatω(G+i) = G−i .
A summary of the classification process for the classical LiealgebrasAn, Bn, Cn andDn fol-
lows.

2



3. Classification

3.1. The Lie algebra An = sl(n+1)

Let G be the special linear Lie algebrasl(n+ 1), consisting of traceless(n+ 1)× (n+ 1)
matrices. The root vectors ofG are the elementsejk ( j 6= k = 1, . . . ,n+ 1), whereejk is a
matrix with zeros everywhere except a 1 on the intersection of row j and columnk. The
corresponding root isε j − εk, in the usual basis. The anti-involution is such thatω(ejk) = ek j.
In order to find regular subalgebras ofG = An, one should delete nodes from the Dynkin
diagram ofG or from its extended Dynkin diagram.
Step 1. Delete nodei from the Dynkin diagram. Thensl(n+ 1) = G−1⊕G0⊕G+1, with
G0 = H + sl(i)⊕ sl(n− i + 1), G−1 = span{ekl; k = 1, . . . , i, l = i + 1, . . . ,n+ 1} andN =
i(n− i +1). For i = 1, N = n, the rank ofAn. Puttinga−j = e1, j+1, a+

j = ej+1,1, j = 1, . . . ,n,

the corresponding relationsR read (j,k, l = 1, . . . ,n):

[a+
j ,a+

k ] = [a−j ,a−k ] = 0, [[a+
j ,a−k ],a+

l ] = δ jka+
l +δkla

+
j , [[a+

j ,a−k ],a−l ] = −δ jka−l −δ jl a
−
k .

These are the relations ofA-statistics [7]-[8], [11], [13]-[14]. Fori = 2, N = 2(n−1), let

a−− j = e1, j+2, a−+ j = e2, j+2, a+
− j = ej+2,1, a+

+ j = ej+2,2, j = 1, . . . ,n−1. (4)

Now the corresponding relations are (ξ ,η ,ε = ±; j,k, l = 1, . . . ,n−1):

[a+
ξ j ,a

+
ηk] = [a−ξ j ,a

−
ηk] = 0, [a+

ξ j ,a
−
−ξk] = 0, j 6= k,

[a+
− j ,a

−
−k] = [a+

+ j ,a
−
+k], j 6= k, [a+

+ j ,a
−
− j ] = [a+

+k,a
−
−k], [a+

− j ,a
−
+ j ] = [a+

−k,a
−
+k],

[[a+
ξ j ,a

−
ηk],a

+
ε l ] = δηεδ jka+

ξ l +δξ ηδkla
+
ε j , [[a+

ξ j ,a
−
ηk],a

−
ε l ] = −δξ εδ jka−η l −δξ ηδ jl a

−
εk.

Step 2. Delete nodei and j from the Dynkin diagram. Thensl(n+ 1) = G−2⊕G−1⊕G0⊕
G+1⊕G+2, with G0 = H +sl(i)⊕sl( j − i)⊕sl(n+1− j). There are six simpleG0-modules
and three different ways in which theseG0-modules can be combined. To characterize these
three cases, it is sufficient to give onlyG−1:

G−1 = span{ekl,el p; k = 1, . . . , i, l = i +1, . . . , j, p = j +1, . . . ,n+1},

N = ( j − i)(n+1− j + i);

G−1 = span{ekl,epk; k = 1, . . . , i, l = i +1, . . . , j, p = j +1, . . . ,n+1}, N = i(n+1− i);

G−1 = span{ekl,el p; k = 1, . . . , i, p = i +1, . . . , j, l = j +1, . . . ,n+1}, N = j(n+1− j).

For j − i = 1 one can label the CAOs as follows:

a−k = ek,i+1, a+
k = ei+1,k, k = 1, . . . , i; a−k = ei+1,k+1, a+

k = ek+1,i+1, k = i +1, . . . ,n.

Using

〈k〉 =

{

0 if k = 1, . . . , i
1 if k = i +1, . . . ,n

(5)

the algebraic relations read(ξ = ±; k, l ,m= 1, . . . ,n):

[a+
k ,a+

l ] = [a−k ,a−l ] = 0, k, l = 1, . . . , i or k, l = i +1, . . . ,n,

[a−k ,a+
l ] = [a+

k ,a−l ] = 0, k = 1, . . . , i, l = i +1, . . . ,n, (6)

[[a+
k ,a−l ],a+

m] = (−1)〈l〉+〈m〉δkla
+
m +(−1)〈l〉+〈m〉δlma+

k , k, l = 1, . . . , i or k, l = i +1, . . . ,n,

[[a+
k ,a−l ],a−m] = −(−1)〈l〉+〈m〉δkla

−
m− (−1)〈l〉+〈m〉δkma−l , k, l = 1, . . . , i or k, l = i +1, . . . ,n,

[[aξ
k ,aξ

l ],a−ξ
m ] = −δkmaξ

l +δlmaξ
k , k = 1, . . . , i, l = i +1, . . . ,n, [[aξ

k ,aξ
l ],aξ

m] = 0.
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The relations (6) withn = 2m andi = m are the commutation relations of the (Palev’s) causal
A-statistics investigated in [10].
Step 3. If we delete 3 or more nodes from the Dynkin diagram, the correspondingZ-grading
of sl(n+1) has no longer the required properties.
Step 4.If we delete nodei from the extended Dynkin diagram, the remaining diagram is again
of typeAn, soG0 = G, and there are no CAOs.
Step 5.If we delete 2 (3) nodes from the extended Dynkin diagram we goto Step 1 (Step 2).
Step 6. If we delete 4 or more nodes from the extended Dynkin diagram,the corresponding
Z-grading ofsl(n+1) has no longer the required properties.

Following the same procedure we give only the most interesting cases for the algebrasBn-Dn.

3.2. The Lie algebra Bn = so(2n+1)

Delete node 1 from the Dynkin diagram. Thenso(2n+ 1) = G−1 ⊕G0 ⊕G+1 with G0 =
H +so(2n−1), G−1 = span{e1,2n+1−e2n+1,n+1, e1,k+n−ek,n+1, e1k−ek+n,n+1; k = 2, . . . ,n}
andN = 2n−1. Let us denote the CAOs by:

b−00 = e1,2n+1−e2n+1,n+1, b+
00 = e2n+1,1−en+1,2n+1,

b−−k = e1,n+k+1−ek+1,n+1, b+
−k = en+k+1,1−en+1,k+1, k = 1, . . . ,n−1, (7)

b−+k = e1,k+1−en+k+1,n+1, b+
+k = ek+1,1−en+1,n+k+1, k = 1, . . . ,n−1.

The corresponding relationsR are given by (ξ ,η ,ε = 0,±; i, j,k = 1, . . . ,n−1):

[b+
ξ i,b

+
η j ] = [b−ξ i,b

−
η j ] = 0, [b+

−i,b
−
− j ] = [b−+i,b

+
+ j ], i 6= j,

[b+
00,b

−
− j ] = [b−00,b

+
+ j ], [b+

00,b
−
+ j ] = [b−00,b

+
− j ],

[[b+
ξ i,b

−
η j ],b

+
εk] = δi j δξ ηb+

εk +δ jkδηεb+
ξ i −δikδξ ,−εb+

−η j ,

[[b+
ξ i,b

−
η j ],b

−
εk] = −δi j δξ ηb−εk−δikδξ εb−η j +δ jkδη ,−εb−

−ξ i.

Delete nodei (i = 2, . . . ,n) from the Dynkin diagram; thenso(2n + 1) = G−2 ⊕
G−1 ⊕ G0 ⊕ G+1 ⊕ G+2 with G0 = H + sl(i) ⊕ so(2(n− i) + 1), G−1 = span{ej,2n+1 −
e2n+1,n+ j , ej,k+n−ek,n+ j , ejk −ek+n,n+ j ; j = 1, . . . , i, k = i +1, . . . ,n}, andN = 2i(n− i)+ i.
The case withi = n is the para-Fermi case presented in the Introduction.

3.3. The Lie algebra Cn = sp(2n)

Delete nodei (i = 1, . . . ,n−1) from the Dynkin diagram. Thensp(2n) = G−2⊕G−1⊕G0⊕
G+1⊕G+2 with G0 = H +sl(i)⊕sp(2(n− i)), G−1 = span{ek,n+l +el ,n+k, ekl −en+l ,n+k; k =
1, . . . , i, l = i +1, . . . ,n} andN = 2i(n− i). For i = 1, let us denote the CAOs by

c−− j = e1,n+ j+1 +ej+1,n+1, c−+ j = e1, j+1−en+ j+1,n+1, j = 1, . . . ,n−1,

c+
− j = en+ j+1,1 +en+1, j+1, c+

+ j = ej+1,1−en+1,n+ j+1, j = 1, . . . ,n−1. (8)

Then the corresponding relationsR read, withξ ,η ,ε,γ = ± or±1, and j,k, l = 1, . . . ,n−1:

[cη
ξ j ,c

η
ξk] = 0, [[cγ

ξ j ,c
γ
ηk],c

γ
ε l ] = 0, [[cξ

− j ,c
ξ
+k],c

−ξ
η l ] = 2ηδ jkcξ

−η l ,

[c+
− j ,c

−
−k] = [c−+ j ,c

+
+k], [c−− j ,c

−
+k] = [c+

− j ,c
+
+k] = 0, j 6= k,

[[c+
ξ j ,c

−
ηk],c

+
ε l ] = δξ ηδ jkc+

ε l +δηεδklc
+
ξ j +(−1)ηεδξ ,−εδ jl c

+
−ηk, (9)

[[c+
ξ j ,c

−
ηk],c

−
ε l ] = −δξ ηδ jkc−ε l −δξ εδ jl c

−
ηk +(−1)ξ ηδη ,−εδklc

−
−ξ j .
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For i = n−1, let us also denote the CAOs byc±j :

c−− j = ej,2n +en,n+ j , c−+ j = ejn −e2n,n+ j , j = 1, . . . ,n−1,

c+
− j = e2n, j +en+ j,n, c+

+ j = en j −en+ j,2n, j = 1, . . . ,n−1. (10)

Now, the corresponding relations read, withξ ,η ,ε,γ = ± or±1, j,k, l = 1, . . . ,n−1:

[cη
ξ j ,c

η
ξk] = 0, [[cγ

ξ j ,c
γ
ηk],c

γ
ε l ] = 0,

[c+
+ j ,c

−
−k] = [c−+ j ,c

+
−k] = 0, j 6= k,

[[cε
ξ j ,c

−ε
ξk ],cε

η l ] = ξ ηδ jkcε
η l +δklc

ε
η j , [[cε

+ j ,c
−ε
−k],c

ξ
η l ] = (εξ −η)δ jkcξ

−η l , (11)

[[cε
+ j ,c

ε
−k],c

−ε
ξ l ] = −ξ δ jl c

ε
−ξk−ξ δklc

ε
−ξ j .

This set of CAOs, together with their relations (11), was constructed earlier in [7].
When noden is deleted from the Dynkin diagram ofCn, thensp(2n) = G−1 ⊕G0 ⊕

G+1 with G0 = H +sl(n) andG−1 = {ej,n+k +ek,n+ j ; 1≤ j ≤ k ≤ n}. There areN = n(n+1)
2

commuting annihilation operators, and the relationsR will not be given explicitly.

3.4. The Lie algebra Dn = so(2n)

When node 1 is deleted from the Dynkin diagram ofDn, thenso(2n) = G−1⊕G0⊕G+1 with
G0 = H + Dn−1, G−1 = span{e1i − en+i,n+1, e1,n+i − ei,n+1; i = 2, . . . ,n} andN = 2(n− 1)
Denoting the CAOs by

d−
−i = e1,n+i+1−ei+1,n+1, d−

+i = e1,i+1−en+i+1,n+1, i = 1, . . . ,n−1,

d+
−i = en+i+1,1−en+1,i+1, d+

+i = ei+1,1−en+1,n+i+1, i = 1, . . . ,n−1, (12)

then, forξ ,η ,ε = ± andi, j,k = 1, . . . ,n−1, the relationsR are given by:

[dε
ξ i,d

ε
η j ] = 0, [d+

−i,d
−
+i] = [d+

+i,d
−
−i] = 0,

[[d+
ξ i,d

−
η j ],d

−
εk] = −δξ ηδi j d

−
εk−δξ εδikd−

η j +δη ,−εδ jkd−
−ξ ,i, (13)

[[d+
ξ i,d

−
η j ],d

+
εk] = δξ ηδi j d

+
εk +δηεδ jkd+

ξ i −δξ ,−εδikd+
−η , j .

Although the relations (13) are new, the existence of the setof CAOs (12) was pointed out
in [7].

When nodei (i = 2, . . . ,n− 2) is deleted from the Dynkin diagram ofDn, then
so(2n) = G−2 ⊕G−1 ⊕G0 ⊕G+1 ⊕G+2 with G0 = sl(i)⊕ so(2(n− i)), G−1 = span{ekl −
en+l ,n+k, ek,n+l −el ,n+k; k = 1, . . . , i, l = i +1, . . . ,n} andN = 2i(n− i).

Delete noden from the Dynkin diagram, thenso(2n) = G−1 ⊕G0 ⊕G+1 with G0 =

H +sl(n), G−1 = span{ej,k+n−ek, j+n; 1≤ j < k≤ n} andN = n(n−1)
2 .

Delete nodesn−1 andn from the Dynkin diagram. Thenso(2n) = G−2⊕G−1⊕G0⊕
G+1⊕G+2 with G0 = H +sl(n−1). There are sixG0-modules and three ways in which these
G0-modules can be combined, namely with:

G−1 = span{ejn −e2n,n+ j , ej,2n−en,n+ j ; j = 1, . . . ,n−1}, (14)

G−1 = span{ejn −e2n,n+ j , j = 1, . . . ,n−1; en+ j,k−en+k, j , 1≤ j < k≤ n−1}, (15)

G−1 = span{ej+n,n−e2n, j , j = 1, . . . ,n−1; ej,k+n−ek, j+n, 1≤ j < k≤ n−1}. (16)

5



For (14), we haveN = 2(n−1); for (15) and (16), we haveN = n(n−1)
2 . It turns out that (15)

and (16) are isomorphic to each other. Denote the CAOs of (14) by

d−
−i = ei,2n−en,n+i, d−

+i = ein −e2n,n+i, i = 1, . . . ,n−1,

d+
−i = e2n,i −en+i,n, d+

+i = eni −en+i,2n, i = 1, . . . ,n−1. (17)

Then, withξ ,η ,ε,γ = ± or±1 andi, j,k = 1, . . . ,n−1, the relations are explicitly given by:

[dη
ξ i,d

η
ξ j ] = 0, [[dγ

ξ i,d
γ
η j ],d

γ
εk] = 0,

[d+
−i,d

−
+ j ] = [d+

+i,d
−
− j ] = 0, [d−

+i,d
−
−i] = [d+

+i,d
+
−i] = 0, (18)

[[dξ
+i,d

ξ
− j ],d

−ξ
εk ] = −δikdξ

−ε j +δ jkdξ
−ε i, [[dη

ξ i,d
−η
ξ j ],dη

εk] = ξ εδi j d
η
εk +δ jkdη

ε i .

The set of CAOs (17) with relations (18) is the example that wasconsidered earlier in [7] and
[9].
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