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Abstract

Quantum systems consisting of a linear chain ofn harmonic oscillators
coupled by a quadratic nearest-neighbour interaction are considered.We
investigate when such a system is analytically solvable, in the sense that
the eigenvalues and eigenvectors of the interaction matrix have analytically
closed expressions. This leads to a relation with Jacobi matrices of systems
of discrete orthogonal polynomials. Our study is first performed in the case
of canonical quantization. Then we consider these systems under Wigner
quantization, leading to solutions in terms of representations of Lie super-
algebras. Finally, we show how such analytically solvable Hamiltonians
also play a role in another application, that of spin chains used as com-
munication channels in quantum computing. In this context, the analytic
solvability leads to closed form expressions for certain transition ampli-
tudes.

1 Introduction

One-dimensional systems with a nearest-neighbour interaction have received a
lot of attention, especially those that are still exactly solvable. Among the most
famous, we mention the Toda system [1] and the Calogero-Sutherland-Moser
models [2–4]. In this context, the emphasis is on mathematical aspects such as
integrability and the underlying algebraic structures.

Also the quantum versions of many of these systems or models were investi-
gated from various points of view during the last decades [5,6]. In such quantum
systems, the emphasis – from the physics point of view – is on aconstruction
of ground wave states, formulae for the excitation spectrum, a description of
stationary states, etc.

In the present paper we consider quantum systems consistingof a one-
dimensional chain of particles with a nearest-neighbour interaction that is
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quadratic in the position operators. The Hamiltonian of such a system will be
written as

Ĥ =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

γr q̂r q̂r+1. (1)

This quantum system consists of a string or chain ofn identical harmonic os-
cillators, each having the same massm and natural frequencyω. As usual, the
position and momentum operators for therth oscillator are given bŷqr andp̂r;
more preciselŷqr measures the displacement of therth mass point with respect
to its equilibrium position. The (positive) constantsγr refer to the interaction
strength between oscillatorsr and(r + 1), andc is an overall coupling constant.
In order to have a physical meaning, the interaction matrix (see later) related
to (1) should be positive definite.

Hamiltonians of the form (1) are always numerically solvable. The purpose
of this paper is to study cases where a Hamiltonian of this type is analytically
solvable, i.e. when the eigenvalues ofĤ are known in analytically closed form.
As we shall see, one example is

ĤK =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(n − r) q̂r q̂r+1. (2)

A Hamiltonian of the form (1) is determined by its interaction matrix, which
is tridiagonal. By identifying this tridiagonal interaction matrix with the Jacobi
matrix of a set of discrete orthogonal polynomials, we are able to derive new
examples of analytically solvable Hamiltonians. This method is outlined in Sec-
tion 2, where the example (2) is discussed as well.

As expected, such an analysis is carried out in the case that the position and
momentum operators are self-adjoint, and satisfy the canonical commutation
relations (CCRs)

[q̂r, q̂s] = 0, [p̂r, p̂s] = 0, [q̂r, p̂s] = i~δrs (r, s = 1, . . . , n). (3)

More interestingly, the Hamiltonians of this form can also be solved as a
Wigner quantum system. In that case, the CCRs arenot required, but instead
some more general quantization conditions are imposed for the operatorŝqr and
p̂r. The analysis of this is performed in Section 3, where we showthat the new
quantization conditions lead to a relation with Lie superalgebras.

Finally, we consider a quantum system that is in nature completely differ-
ent from the ones we have described so far, but which is also determined by an
interaction matrix. Such systems consist of a chain of fermions (spin1/2 par-
ticles) with a nearest-neighbour hopping interaction, subject to a non-uniform
magnetic field. It will be clear that the solutions of such systems are closely
related to those of the earlier described oscillator systems. This topic will be
discussed in Section 4.

The purpose of this contribution is to give a review of the connection between
analytically solvable quantum Hamiltonians and (discrete) orthogonal polyno-
mials, the Wigner quantization of such Hamiltonians, and toindicate how the
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same type of Hamiltonians appear in a different context where the analytical
solvability plays again an important role. The first topic has been discussed in
detail in [7], where more examples of analytically solvablequantum Hamiltoni-
ans are given. The Wigner quantization is only briefly explained here; for more
details, the reader is referred to [8].

2 Oscillators with a nearest-neighbour interaction

2.1 General method

The Hamiltonian (1) can be written in matrix form and is determined by an
interaction matrixM :

Ĥ =
1

2m

(

p̂†1 · · · p̂†n
)







p̂1

...
p̂n







+
m

2

(

q̂†1 · · · q̂†n
)

(ω2I + cM)







q̂1

...
q̂n






, (4)

where in this case

M =













0 −γ1/2

−γ1/2 0
.. .

.. .
.. . −γn−1/2

−γn−1/2 0













. (5)

More generally, assume thatM is a real and symmetricmatrix, and thatω2I +
cM is a positive definite matrix [9, 10]. A general method to dealwith such
Hamiltonians was described in [9, section 2.1]. SinceM is real and symmetric,
the spectral theorem [11] implies

M = UDUT (6)

where

D = diag(λ1, λ2, . . . , λn), (7)

UUT = UT U = I. (8)

The entries of the diagonal matrixD are the (real) eigenvaluesλi of M , in some
order, and the columns of the real orthogonal matrixU are eigenvectors ofM
(in the same order);UT stands for the transpose ofU .

Introducing new operators (the so-called normal coordinates and momenta)
as follows:







Q̂1

...
Q̂n






= UT







q̂1

...
q̂n






,







P̂1

...
P̂n






= UT







p̂1

...
p̂n






, (9)



4 Solvable quantum Hamiltonians

the Hamiltonian (4) reads

Ĥ =
1

2m

(

P̂ †
1 · · · P̂ †

n

)







P̂1

...
P̂n







+
m

2

(

Q̂†
1 · · · Q̂†

n

)

(ω2I + cD)







Q̂1

...
Q̂n







=
1

2m

n
∑

j=1

P̂ 2
j +

m

2

n
∑

j=1

(ω2 + cλj)Q̂
2
j . (10)

By the transformation (9), the new operators also satisfy the canonical commu-
tation relations:

[Q̂j , Q̂k] = 0, [P̂j , P̂k] = 0, [Q̂j , P̂k] = i~δjk (j, k = 1, . . . , n). (11)

In (10), the values ofω2 +cλj are all positive since the interaction matrixω2I +
cM is assumed to be positive definite. So one can introduce

ωj =
√

ω2 + cλj (12)

and write

Ĥ =
1

2m

n
∑

j=1

P̂ 2
j +

m

2

n
∑

j=1

ω2
j Q̂2

j . (13)

This expression is just like the Hamiltonian of ann-dimensional non-isotropic
oscillator, so we can use the commonly known method for its solution [12, 13].
Introducing boson operators

a±
j =

√

mωj

2~
Q̂j ∓

i
√

2~mωj

P̂j , (14)

these satisfy

[a−
j , a−

k ] = [a+
j , a+

k ] = 0, [a−
j , a+

k ] = δjk, (j, k = 1, . . . , n) (15)

andĤ can be written as

Ĥ =

n
∑

j=1

~ωj

2
{a+

j , a−
j } =

n
∑

j=1

~ωj

2
(2a+

j a−
j + 1). (16)

Furthermore,
[Ĥ, a±

j ] = ±~ωj a±
j (j = 1, . . . , n). (17)
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So if we assume that there is a lowestĤ-eigenvalue (lowest energy), say for the
state|0〉, then we have the usualn-boson Fock space in which the action ofĤ
is diagonal. The vacuum vector|0〉 satisfies

〈0|0〉 = 1, a−
j |0〉 = 0; (18)

the other (orthogonal and normalized) basis vectors are then defined by

|k1, . . . , kn〉 =
(a+

1 )k1 . . . (a+
n )kn

√
k1! . . . kn!

|0〉, (kj = 0, 1, . . .). (19)

The spectrum of̂H is now determined by

Ĥ|k1, . . . , kn〉 =

n
∑

j=1

~ωj(kj +
1

2
) |k1, . . . , kn〉. (20)

This analysis is well known, and it seems to indicate that a Hamiltonian of
the form (4) with a general interaction matrixM is exactly solvable as a quan-
tum system. Note, however, that the solution we have described involves also a
numerical process, namely the determination of the eigenvalues and eigenvec-
tors of M in (7) and (8). We shall say that the Hamiltonian̂H is analytically
solvableif we have an analytically closed expression for the eigenvalues and
eigenvectors ofM , for arbitraryn.

One classical example of an analytically solvable Hamiltonian is the case
where the couplings of neighbouring oscillators are identical and described by
Hooke’s law. In that case, the interaction matrixM has constant entries on the
first diagonal below and above the main diagonal [14, 15]. In the following
subsection, we shall present another example of an analytically solvable Hamil-
tonian.

2.2 Krawtchouk interaction

We shall first describe some properties of Krawtchouk polynomials, and then
relate their Jacobi matrix to a solvable Hamiltonian.

For a fixed positive integer parameterN and a real parameterp (0 < p < 1),
the Krawtchouk polynomial of degreei (i = 0, 1, . . . , N ) in the variablex is
defined by [16,17]

Ki(x) ≡ Ki(x; p,N) = 2F1

(−x,−i

−N
;
1

p

)

. (21)

Herein,2F1 is the usual Gauss hypergeometric series [18]

2F1

(

a, b

c
; z

)

=

∞
∑

k=0

(a)k(b)k

(c)k

zk

k!
. (22)

In (21), the series is terminating because one of the numerator parameters is a
negative integer. Note that in (22) we use the notation of theraising factorial,
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which can also be rewritten by means of a (generalized) binomial coefficient:

(a)k = a(a + 1) · · · (a + k − 1) = (−1)k

(−a

k

)

k!

The Krawtchouk polynomials satisfy a discrete orthogonality relation of the
form

N
∑

x=0

w(x)Ki(x)Kj(x) = diδij , (23)

wherew(x) is a weight function inx anddi is a function depending oni:

w(x) =

(

N

x

)

px (1 − p)N−x (x = 0, 1, . . . , N); (24)

di =
1

(

N
i

)

(

1 − p

p

)i

. (25)

Recall that the recurrence relation for Krawtchouk polynomials is given by

−xKi(x) = i(1−p)Ki−1(x)−
[

p(N−i)+i(1−p)
]

Ki(x)+ p(N−i)Ki+1(x).
(26)

For future purposes we will however be interested in an orthonormality condi-
tion, so we define the orthonormal Krawtchouk functions by

K̃i(x) ≡ K̃i(x; p,N) =

√

w(x) Ki(x)√
di

, i = 0, 1, 2, . . . , N. (27)

Now we can state the following property [7]:

Lemma 1 LetMK be the tridiagonal(N + 1) × (N + 1)-matrix

MK =



















F0 −E1 0

−E1 F1 −E2
.. .

0 −E2 F2
.. . 0

.. .
. . .

.. . −EN

0 −EN FN



















, (28)

where

Ei =
√

p(1 − p)
√

i(N − i + 1), Fi = Np + (1 − 2p)i, (29)

and letU be the(N + 1) × (N + 1)-matrix with matrix elements

Uij = K̃i(j) =

[(

N

i

)(

N

j

)

pi+j(1 − p)N−i−j

]1/2 min(i,j)
∑

k=0

(

i
k

)(

j
k

)

(

N
k

) (−1

p
)k,

(30)
wherei, j = 0, 1, . . . , N . Then

UUT = UT U = I and MK = UDUT (31)

whereD = diag(0, 1, 2 . . . , N).
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For a proof, see [7]. The main ingredient of the proof is the recurrence
relation for theK̃i:

xK̃i(x) = −Ei K̃i−1(x) + Fi K̃i(x) − Ei+1 K̃i+1(x). (32)

Now have a good candidate interaction matrixMK . In order to correspond
to systems of the form (1), however, the diagonal entriesFi of MK should be
constants (i.e. independent ofi). We see from (29) that this is the case forp =
1/2. This leads us to the following Hamiltonian “with Krawtchouk interaction”:

ĤK =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(n − r) q̂r q̂r+1. (33)

This can indeed be written in matrix form:

ĤK =
1

2m

(

p̂†1 · · · p̂†n
)







p̂1

...
p̂n







+
m

2

(

q̂†1 · · · q̂†n
) (

(ω2 − c(n − 1)

2
)I + cMK

)







q̂1

...
q̂n






, (34)

whereMK is the matrix (28) withN = n − 1 andp = 1/2. Using the ex-
plicitly known spectral decomposition, given in Lemma 1, and following the
general procedure described in the previous subsection, one introduces here the
following quantities (j = 1, 2, . . . , n):

ωj =

√

ω2 − c(n − 1)

2
+ c(j − 1) =

√

ω2 − c

2
(n − 2j + 1). (35)

The interaction matrix(ω2− c(n−1)
2 )I+cMK is positive definite if all quantities

under the square root symbol are positive. Sincec (andω2) is positive,ω2 −
c(n−1)

2 + c(j − 1) (j = 1, 2, . . . , n) is an increasing sequence asj increases. So
this condition leads toc < 2ω2/(n − 1), or the “coupling strength” should be
sufficiently small. Now we have:

Proposition 2 The HamiltonianĤK given by(33) is analytically solvable. The
explicit spectrum ofHK follows from(20):

ĤK |k1, . . . , kn〉 =
n

∑

j=1

~ωj(kj +
1

2
) |k1, . . . , kn〉, (36)

where the constantsωj are given byωj =
√

ω2 − c(n − 2j + 1)/2.

From this example, it should be clear that the general procedure worked out
here for Krawtchouk polynomials works in general for discrete orthogonal poly-
nomials. In order to find other interesting examples, one cango through the list
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of discrete orthogonal polynomials [16, 17] and theirq-analogues. The basic
restriction, in order to have Hamiltonians of the form (1), is that the diagonal
elements in the interaction matrix are constant (for specific values of the param-
eters). This analysis has been done in [7], leading to only two more such cases:
the Hahn polynomials withβ = α and the dualq-Krawtchouk polynomials with
c̄ = −1. For further details of these Hamiltonians and properties of their spectra,
the reader is referred to [7].

3 Wigner’s quantization procedure and relations with Lie superal-
gebras

We shall now consider an alternative quantization of the Hamiltonians in-
troduced in the previous section, known as Wigner quantization. Eugene
Wigner [19] was the first to realize that one does not need to assume the CCRs in
order to find operators that satisfy Hamilton’s equations (in operator form) and
the equations of Heisenberg simultaneously. In Wigner quantization, one does
not assume the CCRs. Instead, one expresses the compatibility of Hamilton’s
equations and the Heisenberg equations. This leads to compatibility conditions
(CCs) that are more general than the CCRs [20]. In other words, the canonical
quantization is a particular case of Wigner quantization.

Let us rewrite the Hamiltonian with a general interaction matrix (4) as

Ĥ =
1

2m

(

p̂†1 · · · p̂†n
)







p̂1

...
p̂n






+

m

2

(

q̂†1 · · · q̂†n
)

A







q̂1

...
q̂n







=
1

2m

n
∑

r=1

p̂2
r +

m

2

n
∑

r,s=1

Arsq̂r q̂s. (37)

So hereinA = ω2I + cM , and the matrixA = (A)1≤r,s≤n is again assumed to
be real, symmetric and positive definite.

Let us now move to the Wigner quantization procedure. The operator form
of Hamilton’s equations is

˙̂pr = −∂Ĥ

∂q̂r
, ˙̂qr =

∂Ĥ

∂p̂r
, (38)

and the Heisenberg equations read

˙̂pr =
i

~
[Ĥ, p̂r], ˙̂qr =

i

~
[Ĥ, q̂r]. (39)

Their equivalence results in the following compatibility conditions (CCs):

[Ĥ, q̂r] = − i~

m
p̂r,

[Ĥ, p̂r] = i~m

n
∑

s=1

Arsq̂s,
(40)
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with r = 1, 2, . . . , n. We are now looking for operator solutions forq̂r andp̂r

satisfying the compatibility conditions (40), with Hamiltonian (37). Since the
matrix A is real and symmetric, we can again apply the spectral theorem and
write

A = UDAUT . (41)

Note that, withA = ω2I + cM as in the previous section, the orthogonal matrix
U is the same as forM , andDA = ω2I +cD, with D the diagonalization ofM .
SoDA is diagonal with the real and positive eigenvaluesµj (j = 1, . . . , n) of A
as diagonal elements. Using the orthogonal matrixU , one introduces once again
normal coordinates and momentaQ̂j andP̂j by the same transformation (9). The
difference is of course that in the current case the new operators donotsatisfy the
canonical commutation relations, since these are not required for theq̂j andp̂j

either. In function of the normal coordinates and momenta, the Hamiltonian (37)
can be rewritten as

Ĥ =
1

2m

n
∑

j=1

P̂ 2
j +

m

2

n
∑

j=1

µj Q̂2
j , (42)

where the elementsµj are the (positive) eigenvalues ofA or DA. The compati-
bility conditions (40) become

[Ĥ, Q̂j ] = − i~

m
P̂j ,

[Ĥ, P̂j ] = i~mµj Q̂j .
(43)

It turns out that we will be able to find solutions for̂Qj and P̂j satisfying the
CCs (43) and the Hamiltonian in equation (37) in terms of Lie superalgebra
generators. The easiest way to establish such a result, is tointroduce linear
combinations of the unknown operatorsQ̂j andP̂j as follows:

b±j =

√

m
√

µj

2~
Q̂j ∓

i
√

2~m
√

µj

P̂j . (44)

In terms of the operatorsb±j , which satisfy the adjointness relations(b±j )† = b∓j ,
the Hamiltonian (37) can be rewritten as

Ĥ =
n

∑

j=1

~
√

µj

2
{b+

j , b−j } =
n

∑

j=1

~
√

µj

2
(b+

j b−j + b−j b+
j ). (45)

The operatorsb±j should not be confused with the boson operatorsa±
j of (14):

the b±j do not satisfy any particular commutation relations. Also in comput-
ing (45) one should be careful not to use relations that hold only in the canonical
case. We can now express the compatibility conditions in terms of the newly
introduced operators. These follow from (43) and are

[

Ĥ, b±j
]

= ± ~
√

µj b±j , (j = 1, 2, . . . , n). (46)

Thus we have:
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Theorem 3 The Wigner quantization of the system(37)has been reduced to the
problem of finding2n operatorsb±j (j = 1, . . . , n) acting in a certain Hilbert

space. These operators must satisfy(b±j )† = b∓j and

n
∑

j=1

√
µj

[

{b+
j , b−j }, b±k

]

= ±2
√

µk b±k , (k = 1, 2, . . . , n). (47)

The Wigner quantization procedure is reversible, so that the knowledge of the
operatorsb±j allows us to reconstruct the observablesp̂r and q̂r. The Hamilto-
nian is given by equation(45).

The compatibility conditions (47) are triple relations, expressed by means
of anti-commutators and commutators. In fact, (47) is equivalent to a quantum
system describing ann-dimensional non-isotropic oscillator [21, Section 2]. For
such systems, it is known that solutions in terms of Lie superalgebra generators
exist [21]. Some specific solutions are related to the Lie superalgebrasosp(1|2n)
andgl(1|n), but not all solutions are known forn > 1.

Without going into the details of the further analysis, let us describe some
properties of thegl(1|n) solutions. First of all, one can verify that certain mul-
tiples of the odd basis elements ofgl(1|n) satisfy the relations (47) [21]. In
this gl(1|n) realization of the operatorsb±j , the Hamiltonian (45) becomes an
element of the Cartan subalgebra. Next, one has to consider all unitary repre-
sentations ofgl(1|n) (here, unitary refers to the fact that(b±j )† = b∓j should
be satisfied in thegl(1|n) representation). For certain sets of values ofµj , these
unitary representations are finite-dimensional (i.e. corresponding to the real form
u(1|n) of gl(1|n)). Then it is a matter of finding the weight structure of such a
representation (e.g. by determining its character). Indeed, for any weight vector
of weight(k0, k1, . . . , kn), the correspondinĝH eigenvalue reads

~

n − 1
(

n
∑

j=1

√
µj)(

n
∑

j=0

kj) −
n

∑

j=1

~kj
√

µj = const−
n

∑

j=1

~kj
√

µj , (48)

since
∑n

j=0 kj is constant for an irreducible representation ofu(1|n). Applying

this, for example, to the Hamiltonian̂HK (33) with Krawtchouk interaction,
yields a spectrum of the form

const−
n

∑

j=1

~kj

√

ω2 − c(n − 2j + 1)/2, (49)

where(k0, k1, . . . , kn) runs over all weights of the representation under con-
sideration, and the multiplicity is determined by the multiplicity of the weight.
So the spectrum of̂HK in Wigner’s quantization looks formally very similar
to that in canonical quantization, given by Proposition 2. There are however
some important differences. First of all, in (36) the indiceskj run over all natu-
ral numbers, corresponding to all Fock space states. So the energy spectrum is
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discrete but unbounded from above. Here, the indices assumeonly values corre-
sponding to all weights of a certain finite-dimensional representation ofu(1|n).
This implies that multiplicities of energy levels are in general quite different.
More strikingly, a peculiar feature of Wigner quantizationis that it allows finite-
dimensional solutions, i.e. with a finite energy spectrum. Such solutions might
be of relevance in a physical context. For more details aboutproperties of the
spectrum, and about relations to other Lie superalgebras, see [8].

4 Spin chain with a Krawtchouk interaction matrix

A final model where the new analytically solvable quantum Hamiltonians can
be of use is related to quantum computation. In models of quantum computa-
tion, the transmission of a quantum state is an important aspect. S. Bose [22,23]
introduced linear spin chains as a channel for short distance quantum communi-
cation. Transfer of data in such linear quantum registers has been the subject of
many papers [22,24–26] (and references therein). An interesting situation arises
if one assumes to have individual control of the nearest-neighbour interactions.

The transmission of quantum states can in principle be performed by a chain
of qubits coupled via the Heisenberg or theXY interactions [27–30]. The idea
of pre-engineered intercubit couplings has been discussedconsiderably [31,32].
One of the advantages of well-chosen controlled couplings is that one can obtain
mirror inversion of a quantum state with respect to the center of the chain, and
that perfect transfer of quantum states is possible [24,26,33].

Let us consider a by now classical system ofN + 1 interacting qubits (spin
1/2 particles) in a quantum register, with a Hamiltonian ofXY type (for reasons
of convenience, the index here runs from0 to N ):

Ĥ =
1

2

N−1
∑

k=0

Jk(σx
k · σx

k+1 + σy
k+1 · σ

y
k) − 1

2

N
∑

k=0

hk(σz
k − 1), (50)

whereJk is the coupling strength between the qubits located at sitesk andk+1,
andhk is the “Zeeman” energy of a qubit at sitek. So the subindexk (k =
0, 1, 2, . . . , N ) labels the position of the qubit in the chain, and the superindex
refers to the Pauli matricesσx, σy andσz.

To describe the Hilbert space associated with the Hamiltonian, one adopts
a standard fermionization technique [34]. Then the Jordan-Wigner transforma-
tion [35] allows to rewrite the Hamiltonian (50) in terms of fermion operatorsfk

andf†
k (k = 0, 1, . . . , N ):

Ĥ =

N−1
∑

k=0

Jk(f†
kfk+1 + f†

k+1fk) +

N
∑

k=0

hkf†
kfk. (51)

This Hamiltonian can be interpreted as describing a set ofN + 1 fermions on
a chain with nearest-neighbour interaction (hopping between adjacent sites of
the chain), and subject to a non-uniform magnetic field denoted byhk (k =
0, 1, . . . , N ). We shall assume that the system is initially in its ground state
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|0〉 = |00 · · · 0〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, where|0〉 denotes the spin down
state. Let|k) = |00 · · · 010 · · · 0〉 = f†

k |0〉 (k = 0, 1, . . . , N ) denote a state in
which there is a single fermion at the sitek and all other sites are empty, i.e.|k)
describes the state in which the spin at the sitek has been flipped to|1〉. Clearly,
the set of states|k) (k = 0, 1, . . . , N) forms a basis for the single-fermion states
of the system, and we can represent these by the standard unitvectors in column
matrix form:

|k) =





















0
0
...
1
...
0





















(k = 0, 1, . . . , N). (52)

In this single-fermion basis, the Hamiltonian̂H takes the matrix form

M =

















h0 J0 0 · · · 0
J0 h1 J1 · · · 0

0 J1 h2
. . .

...
...

. . .
. . . Jn−1

0 0 JN−1 hn

















. (53)

The dynamics (time evolution) of the system is completely determined by the
eigenvaluesǫj and eigenvectorsφj of this matrix. It is then a standard tech-
nique [33, 34] to describe then-fermion eigenstates of̂H (n ≤ N ) using the
single-fermion eigenstatesφj and Slater determinants. For this reason we con-
centrate here on the single-fermion eigenstates.

Once we have arrived at the matrix (53), one recognizes a tridiagonal in-
teraction matrix and the methods of Section 2 can be applied.In particular,
one can perform the spectral decomposition (6) with an orthogonal matrixU ,
andD = diag(ǫ0, ǫ1, . . . , ǫN ). The entries ofD are the single-fermion energy
eigenvalues, and the columns of the matrixU are the (orthonormal) eigenvectors
of M , i.e. the single-fermion eigenstates:

φj =











U0j

U1j

...
UNj











=

N
∑

k=0

Ukj |k) =

N
∑

k=0

Ukj f†
k |0〉 (j = 0, 1, . . . , N),

(54)
with Ĥφj = Mφj = ǫj φj . From the orthogonality ofU , the inverse relation
follows:

|k) =

N
∑

j=0

Ukjφj . (55)



G. Regniers and J. Van der Jeugt 13

We now turn to the dynamics of the system under consideration, described
by the time evolution operatorexp(−itĤ). Assume that the “state sender” is
located at sites of the spin chain, and the “state receiver” at siter (s and r
are site labels, belonging to{0, 1, . . . , N}). At time t = 0 the sender turns the
system into the single spin state|s). After a certain timet, the system is in the
(mixed) stateexp(−itĤ)|s). So the transition amplitude of an excitation from
sites to siter of the spin chain is given by the modulus of

Fr,s(t) = (r| exp(−itĤ)|s). (56)

This is one of the central quantities to be computed in this context. Note that it
can be expressed by means of the orthogonal matrixU appearing in (6). Indeed,
using the expansion (55) and orthogonality of the statesφj , one finds:

Fr,s(t) = (r| exp(−itĤ)|s) = 〈
N

∑

k=0

Urkφk| exp(−itĤ)

N
∑

j=0

Usjφj〉

= 〈
N

∑

k=0

Urkφk|
N

∑

j=0

Usje
−itǫj φj〉

=
N

∑

j=0

UrjUsje
−itǫj . (57)

The purpose of this section is to show that various interesting closed form
expressions can be given for this crucial quantityFr,s(t), in the case that the
fixed values characterizing the system (the valuesJk andhk) are related to the
Jacobi matrix of a set of discrete orthogonal polynomials, just as this was the
case in Section 2. Again, we shall illustrate this by means ofthe example of
Krawtchouk polynomials. Let us therefore identify the matrix (53) with the
Jacobi matrix (28) of the Krawtchouk polynomials (note thatthe replacement
of Jk by −Jk does not lead to essential changes in the formulation, as it would
only give rise to sign factors(−1)j+k in the matrix elementsUjk and(−1)r+s

in the amplitudesFr,s(t)). Under this identification, the matrix elements ofU
are (normalized) Krawtchouk polynomials, see eq. (30), andthe corresponding
energy eigenvalues areǫj = j (j = 0, 1, . . . , N ).

This implies that we can determine the transition amplitudeas follows:

Fr,s(t) =

N
∑

k=0

UrkUske−itǫk =

N
∑

k=0

K̃r(k)K̃s(k)e−itk

=
1√
drds

N
∑

k=0

w(k)Kr(k)Ks(k)e−itk. (58)

So we need to compute the quantity in (58). First of all, note that in general
Fr,s(t) is a periodic function oft. In particular, it follows from (58) and the
orthogonality relation (23) thatFr,s(t) = δrs for t = 0 and for any multiple of
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2π. So after a time span of2π, the system is back in its original state where only
the spin at the sending sites is flipped.

The purpose is now to compute (58) explicitly. Rewriting thepolynomials
in (58) as2F1-series, this sum reduces to a classical summation formula given
for example in [36, p. 84, (8)]. This leads immediately to thefollowing closed
form expression:

Fr,s(t) =

√

(

N

r

)(

N

s

)

(
√

p(1 − p))r+s(1 − e−it)r+s(1 − p + pe−it)N−r−s

× 2F1

(−r,−s

−N
;

−e−it

p(1 − p)(1 − e−it)2

)

. (59)

Some special cases of this general formula are worth discussing.
Let us consider the case when the sender is located at site0, i.e. s = 0.

Then (59) yields

Fr,0(t) =

√

(

N

r

)

(
√

p(1 − p))r(1 − e−it)r(1 − p + pe−it)N−r. (60)

So far,p (0 < p < 1) is still a free parameter. A special case occurs when
p = 1/2:

Fr,0(t) =
1

2N

√

(

N

r

)

(1 − e−it)r(1 + e−it)N−r, (p = 1/2) (61)

giving

|Fr,0(t)| =

√

(

N

r

) ∣

∣

∣

∣

sin
( t

2

)

∣

∣

∣

∣

r ∣

∣

∣

∣

cos
( t

2

)

∣

∣

∣

∣

N−r

. (p = 1/2) (62)

In other words,
Fr,0(π) = δr,N . (p = 1/2) (63)

This is the situation of “perfect state transfer” describedalready in [33]: at time
t = π the system is in the state with all spins down except at siteN the spin is
up. So for this time there is perfect state transfer from site0 to siteN .

More generally, let us specialize the expression (59) for timet = π:

Fr,s(π) =

√

(

N

r

)(

N

s

)

(
√

4p(1 − p))r+s(1 − 2p)N−r−s

× 2F1

(−r,−s

−N
;

1

4p(1 − p)

)

. (64)

This expression shows once again that taking the free parameterp = 1/2 yields
a special case:

Fr,s(π) = δr+s,N . (p = 1/2) (65)
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So forp = 1/2 there is also perfect state transfer between the sitess andN − s.
We have shown here how a spin chain (51) with interaction matrix (53) de-

termined by a Jacobi matrix related to discrete orthogonal polynomials gives
rise to an analytic solution of transition amplitudes in terms of these orthogonal
polynomials. Only the simplest case of Krawtchouk polynomials has been dis-
cussed here; more detailed work with other families of orthogonal polynomials
is in preparation [37].

5 Conclusions

Quantum Hamiltonians characterized by a tridiagonal interaction matrix play
an interesting role in various models. When this tridiagonalinteraction matrix
coincides with the Jacobi matrix of a system of discrete orthogonal polynomials,
many quantities related to the model can be computed explicitly. In the model
of harmonic oscillators with some nearest-neighbour interaction, the spectrum of
the Hamiltonian is determined in closed form (or the Hamiltonian is analytically
solvable), as it is related to factors appearing in the threeterm recurrence relation
for the orthogonal polynomials. In the model of a spin chain with a nearest-
neighbour hopping term, one obtains explicit formulas for transition amplitudes,
as in this case there is a relation with some bilinear generating function of the
orthogonal polynomials.

In this paper, we have illustrated these aspects by means of some examples,
and indicated how to approach this in general. We have also treated an alterna-
tive quantization of the first model of interaction harmonicoscillators, namely
Wigner quantization. In that case, representations of Lie superalgebras appear
in the solutions.
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