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Abstract

Quantum systems consisting of a linear chaimofiarmonic oscillators
coupled by a quadratic nearest-neighbour interaction are considéfed.
investigate when such a system is analytically solvable, in the sense that
the eigenvalues and eigenvectors of the interaction matrix have analytically
closed expressions. This leads to a relation with Jacobi matrices of system
of discrete orthogonal polynomials. Our study is first performed in dse c

of canonical quantization. Then we consider these systems under Wigne
quantization, leading to solutions in terms of representations of Lie super-
algebras. Finally, we show how such analytically solvable Hamiltonians
also play a role in another application, that of spin chains used as com-
munication channels in quantum computing. In this context, the analytic
solvability leads to closed form expressions for certain transition ampli-
tudes.

1 Introduction

One-dimensional systems with a nearest-neighbour irtterabave received a
lot of attention, especially those that are still exactlivable. Among the most
famous, we mention the Toda system [1] and the Calogeroe8atid-Moser
models [2—4]. In this context, the emphasis is on mathemlatispects such as
integrability and the underlying algebraic structures.

Also the quantum versions of many of these systems or modeis iwesti-
gated from various points of view during the last decaded][3n such quantum
systems, the emphasis — from the physics point of view — is conatruction
of ground wave states, formulae for the excitation spectrardescription of
stationary states, etc.

In the present paper we consider quantum systems consistiagone-
dimensional chain of particles with a nearest-neighboderaction that is
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2 Solvable quantum Hamiltonians

guadratic in the position operators. The Hamiltonian othsasystem will be
written as

n ~9 2 n—1
H = Z (2qu7n + %QZ) - % Z’Yrdr(jr-‘rL (1)
r=1 r=1
This quantum system consists of a string or chaim édentical harmonic os-
cillators, each having the same massand natural frequency. As usual, the
position and momentum operators for thth oscillator are given by, andp,;
more preciselyj, measures the displacement of itk mass point with respect
to its equilibrium position. The (positive) constants refer to the interaction
strength between oscillatorsaand(r + 1), andc is an overall coupling constant.
In order to have a physical meaning, the interaction masee(later) related
to (1) should be positive definite.

Hamiltonians of the form (1) are always numerically soheablhe purpose
of this paper is to study cases where a Hamiltonian of this igpanalytically
solvable, i.e. when the eigenvaluesidfare known in analytically closed form.
As we shall see, one example is

n

5 2 n—1

. Py mwe cm s

HK — Z (2m + 72 q?) — —2 E r(n — ’f‘) qrqr+1- (2)
r=1

A Hamiltonian of the form (1) is determined by its interactimatrix, which
is tridiagonal. By identifying this tridiagonal interasti matrix with the Jacobi
matrix of a set of discrete orthogonal polynomials, we are &b derive new
examples of analytically solvable Hamiltonians. This neeltis outlined in Sec-
tion 2, where the example (2) is discussed as well.

As expected, such an analysis is carried out in the casertthgiosition and
momentum operators are self-adjoint, and satisfy the daabnommutation
relations (CCRs)

[Qr; st] =0, [ﬁraﬁs] = 07 [@“»ﬁs] = ihérs (T‘, s=1,... 7”)’ (3)

More interestingly, the Hamiltonians of this form can alsmdwlved as a
Wigner quantum system. In that case, the CCRsnateequired, but instead
some more general quantization conditions are imposetiéooperatorg, and
pr-. The analysis of this is performed in Section 3, where we stiatithe new
guantization conditions lead to a relation with Lie supgeakas.

Finally, we consider a quantum system that is in nature cetalyl differ-
ent from the ones we have described so far, but which is alswrdmed by an
interaction matrix. Such systems consist of a chain of fen®i(spinl/2 par-
ticles) with a nearest-neighbour hopping interaction,jettito a non-uniform
magnetic field. It will be clear that the solutions of suchteyss are closely
related to those of the earlier described oscillator systeirhis topic will be
discussed in Section 4.

The purpose of this contribution is to give a review of therzertion between
analytically solvable quantum Hamiltonians and (disgret¢hogonal polyno-
mials, the Wigner quantization of such Hamiltonians, anéhtticate how the
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same type of Hamiltonians appear in a different context whbe analytical
solvability plays again an important role. The first topics Heeen discussed in
detail in [7], where more examples of analytically solvatpmntum Hamiltoni-
ans are given. The Wigner quantization is only briefly expddi here; for more
details, the reader is referred to [8].

2 Oscillators with a nearest-neighbour interaction

2.1 General method

The Hamiltonian (1) can be written in matrix form and is detered by an
interaction matrixi/:

X 1 b1
H =5 (] pho)|
Pn
Q1
+%(q{ g ) WMy | | @)
qn
where in this case
0 -m/2
M= —71/2 0 . 5)
- *7n71/2
~Yn—1/2 0

More generally, assume thaf is areal and symmetricnatrix, and that21 +
cM is a positive definite matrix [9, 10]. A general method to de#@h such
Hamiltonians was described in [9, section 2.1]. Sidées real and symmetric,
the spectral theorem [11] implies

M =UDUT (6)

where
D =diagA1, A, -, An), ™
vt =uTu = 1. (8)

The entries of the diagonal matrix are the (real) eigenvalues of M, in some
order, and the columns of the real orthogonal matfiare eigenvectors ai/
(in the same order)/” stands for the transpose Gt

Introducing new operators (the so-called normal coorésmaind momenta)
as follows:

Ql ql pl Zal
=uT| ;. 2 S ZC I IR )
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the Hamiltonian (4) reads

1 b
H:%(Pf Pl ) :
P,
o
m A~ ~
+5<QI QL)(wQI—&-cD)
Qn
1 & p2 m
%; J+5;w +e)) (10)

By the transformation (9), the new operators also satisyctmonical commu-
tation relations:

[Q;, Q1] =0, [P;,P] =0, [Qj,P]=1ihd (j,k=1,...,n). (11)

In (10), the values ab? + c); are all positive since the interaction matiX/ +
cM is assumed to be positive definite. So one can introduce

w; = /w2 +cAj (12)
g A - p2 M - 242

j=1

and write

This expression is just like the Hamiltonian of ardimensional non-isotropic
oscillator, so we can use the commonly known method for itistiem [12, 13].
Introducing boson operators

:t mwj 1 ~
a; P;, 14
j h G F D (14)
these satisfy
la;,a;] = [aj',a;:] =0, [aj_,am = 0k, (J,k=1,...,n) (15)

andH can be written as
n hw 3 n hw
_27 af.a;} =S T (2ata; +1). (16)

Furthermore,

[H,aji} = thw; a;t (j=1,...,n). 17)
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So if we assume that there is a lowéEteigenvalue (lowest energy), say for the
state|0), then we have the usualtboson Fock space in which the action/éf
is diagonal. The vacuum vectfil) satisfies

00y =1,  a;]0)=0; (18)
the other (orthogonal and normalized) basis vectors aredeéned by

af )k ar kn
|k1,...,kn>:( 1)k1' (k ') 0),  (k;=0,1,...). (19)

The spectrum off is now determined by

. - 1
H|k1,...,kn>:Zhwj(kj+§) ki, k). (20)

j=1

This analysis is well known, and it seems to indicate that enianian of
the form (4) with a general interaction mati{ is exactly solvable as a quan-
tum system. Note, however, that the solution we have destiitvolves also a
numerical processnamely the determination of the eigenvalues and eigenvec-
tors of M in (7) and (8). We shall say that the Hamiltoniahis analytically
solvableif we have an analytically closed expression for the eigkmesand
eigenvectors of\/, for arbitraryn.

One classical example of an analytically solvable Hami#ioris the case
where the couplings of neighbouring oscillators are idehtand described by
Hooke’s law. In that case, the interaction mathik has constant entries on the
first diagonal below and above the main diagonal [14, 15]. hia following
subsection, we shall present another example of an argllytsnlvable Hamil-
tonian.

2.2 Krawtchouk interaction

We shall first describe some properties of Krawtchouk patyiads, and then
relate their Jacobi matrix to a solvable Hamiltonian.

For a fixed positive integer paramet¥rand a real parameter(0 < p < 1),
the Krawtchouk polynomial of degree(: = 0,1,..., N) in the variablez is
defined by [16, 17]

—x,—1 1
K;(z) = Ki(z;p, N) = o F; PR
z(‘r) l(l‘,p, ) 2 1< _N 7p) (21)
Herein,s F is the usual Gauss hypergeometric series [18]
a,b 2 (@) (D) 2*
F iz | = —_ 22
21(072> ’;) ©r K (22)

In (21), the series is terminating because one of the nuoreparameters is a
negative integer. Note that in (22) we use the notation ofréigng factorial,
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which can also be rewritten by means of a (generalized) bialasnefficient:

(a)p =ala+1)-(atk-1)= (—1)k<_ka)k!

The Krawtchouk polynomials satisfy a discrete orthogdpaielation of the

form
N

> w(@)Ki(2)K;(x) = didyj, (23)
=0
wherew(z) is a weight function inc andd; is a function depending on

w(z) = (f) p"(1—p)V-2 (x=0,1,...,N); (24)

) @

3

Recall that the recurrence relation for Krawtchouk polyiadsis given by

—2K;(x) = i(1-p) Ki—1(2) = [p(N —i)+i(1—p)] Ki(2)+ p(N—i) Kt ().

(26)
For future purposes we will however be interested in an orwhmality condi-
tion, so we define the orthonormal Krawtchouk functions by

Ki(x)zki(x;ﬂ]\]):ku\/)ffi(x), i=0,1,2,...,N.  (27)

Now we can state the following property [7]:
Lemmal Let Mg be the tridiagonal vV + 1) x (N + 1)-matrix

Fy —F; 0
-FE N —E

MK = 0 —E2 F2 . 0 ’ (28)

where

Ei=\p(L-p)Vi(N—i+1), F=Np+(1-2p)i, (29)
and letU be the(N + 1) x (N + 1)-matrix with matrix elements
o N\ /NN L y 1/2 min(i,j) /iy (j 1
Uy = Kilj) = [( ) ) ( ‘>pl+](1 p } 3 W) Ly
L J k=0 (k) p
(30)
wherei,j =0,1,..., N. Then
vt =vTu =1 and Mg =UDUT (31)
whereD = diag(0,1,2...,N).
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For a proof, see [7]. The main ingredient of the proof is theureence
relation for theK;:

Ii{l(x) = *Ei f{i—l(x) + Fi [(1(1') — EZ‘+1 Ri+1(l’). (32)

Now have a good candidate interaction matti . In order to correspond
to systems of the form (1), however, the diagonal entfigsf My should be
constants (i.e. independent®f We see from (29) that this is the case fo=
1/2. This leads us to the following Hamiltonian “with KrawtcHointeraction”:

n

o 2 n—1
. P2 mw? cm .
Hic = Z (Qm + qu) 2 Z r(n—=r) Grgri1- (33)
— r=1

This can indeed be written in matrix form:

1 b1
Hi =g (o1 ph)|
Dn
1) 0
m cln —
5 (d @) (W= M) || (39)
n

where M is the matrix (28) withV = n — 1 andp = 1/2. Using the ex-
plicitly known spectral decomposition, given in Lemma ldédbllowing the
general procedure described in the previous subsectienintmoduces here the
following quantities { = 1,2, ..., n):

wj\/MQC(nl)JrC(jl)\/ng(anJrl). (35)

2
The interaction matrixw? — @)IﬁthK is positive definite if all quantities
under the square root symbol are positive. Sia¢andw?) is positive,w? —
c(n—1)

=5 +c(j—1)( =1,2,...,n)is an increasing sequencegisicreases. So
this condition leads te < 2w?/(n — 1), or the “coupling strength” should be
sufficiently small. Now we have:

Proposition 2 The HamiltonianH x given by(33)is analytically solvable. The
explicit spectrum of - follows from(20):

. n 1
HK|k1,...,kn>:Zhwj(kj+§) ki, k), (36)
j=1

where the constants; are given byw; = /w2 — c¢(n — 25 + 1)/2.

From this example, it should be clear that the general praeedorked out
here for Krawtchouk polynomials works in general for disererthogonal poly-
nomials. In order to find other interesting examples, onegmthrough the list
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of discrete orthogonal polynomials [16, 17] and theianalogues. The basic
restriction, in order to have Hamiltonians of the form (¥)that the diagonal
elements in the interaction matrix are constant (for speeé#lues of the param-
eters). This analysis has been done in [7], leading to ontymmre such cases:
the Hahn polynomials witl¥ = o and the duad-Krawtchouk polynomials with
¢ = —1. For further details of these Hamiltonians and propertfekeair spectra,
the reader is referred to [7].

3 Wigner’s quantization procedure and relations with Lie superal-
gebras

We shall now consider an alternative quantization of the Hamans in-
troduced in the previous section, known as Wigner quambaat Eugene
Wigner [19] was the first to realize that one does not needdoras the CCRs in
order to find operators that satisfy Hamilton's equationsofyerator form) and
the equations of Heisenberg simultaneously. In Wigner tiz@tion, one does
not assume the CCRs. Instead, one expresses the compatbitiamilton’s
equations and the Heisenberg equations. This leads to ¢ifmfipaconditions
(CCs) that are more general than the CCRs [20]. In other wainéscanonical
guantization is a particular case of Wigner quantization.
Let us rewrite the Hamiltonian with a general interactiortnwg4) as

1 b1 q1
- A A~ . m A~ A
H=o—(pf -~ pl) : +5 (al - al)A A
Pn dn
_ 1 <« o . m n A
=5 2 Dy + 3 Tgl ArsGrgs. (37)

So hereind = w?I 4+ ¢M, and the matrix4d = (A)1<rs<n is again assumed to
be real, symmetric and positive definite.

Let us now move to the Wigner quantization procedure. Theatpeform
of Hamilton’s equations is

pr = — ) I = 38
P 7. q - (38)

X Z [f[ A~ ] A Z [f[ ~ ] (39)
p7 h 1p7 ) q7 h I q7 .

Their equivalence results in the following compatibiligraitions (CCs):

[H7Q7’] = —— Dr,
™ (40)
[H,p] = ihmy_ Areds,

s=1
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with » = 1,2,...,n. We are now looking for operator solutions f@randp,.
satisfying the compatibility conditions (40), with Hanaittian (37). Since the
matrix A is real and symmetric, we can again apply the spectral thearsd
write

A=UD,UT. (41)

Note that, withA = w?I + cM as in the previous section, the orthogonal matrix
U is the same as fal/, andD 4 = w?I +¢D, with D the diagonalization ol/.
SoD, is diagonal with the real and positive eigenvalpegj = 1,...,n) of A
as diagonal elements. Using the orthogonal mdfrixne introduces once again
normal coordinates and momeidja andP; by the same transformation (9). The
difference is of course that in the current case the new tgrsrdonotsatisfy the
canonical commutation relations, since these are notmedjfior theg; andp;
either. In function of the normal coordinates and momeh&Hamiltonian (37)
can be rewritten as
2 1 & f 2, m - A2
H:%ijjugz,”@j, (42)
j=1 j=1
where the elemenig; are the (positive) eigenvalues dfor D 4. The compati-
bility conditions (40) become

A A ih A
[I_{?C%j] = 7EPJ'7A (43)
[H,P;] = ihmp;Q;.

It turns out that we will be able to find solutions f@r; and P; satisfying the
CCs (43) and the Hamiltonian in equation (37) in terms of Lupesalgebra
generators. The easiest way to establish such a result,igrealuce linear
combinations of the unknown operataps and P; as follows:

TN LAY i p
bj = oh Q; F /7277/'77/\//7]‘})]' (44)

In terms of the operatofgt, which satisfy the adjointness relatio(nig”)T = b;F,
the Hamiltonian (37) can be rewritten as

3777 2

. " hy/I; B " h/1; _ _
H=>" ‘f{b.+ IESY ﬁ(bjbj +b5b7). (45)

j=1 j=1
The operator$§E should not be confused with the boson operatx;"rs)f (14):

the b;t do not satisfy any particular commutation relations. Also in camp
ing (45) one should be careful not to use relations that holgio the canonical
case. We can now express the compatibility conditions imseof the newly
introduced operators. These follow from (43) and are

[H,bF] = £ h ;b7 (Gj=1,2,...,n). (46)

Thus we have:
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Theorem 3 The Wigner quantization of the syst€37) has been reduced to the
problem of finding2n operatorsbji (j = 1,...,n) acting in a certain Hilbert

space. These operators must sat(zibﬁr)T = b and

SO [0y b = 22 ymmbE, (k=12....n).  (47)
j=1

The Wigner quantization procedure is reversible, so thatkhowledge of the
operatorsbjE allows us to reconstruct the observabjgsand g,. The Hamilto-
nian is given by equatio®5).

The compatibility conditions (47) are triple relations pesssed by means
of anti-commutators and commutators. In fact, (47) is eajeint to a quantum
system describing am-dimensional non-isotropic oscillator [21, Section 2]r Fo
such systems, it is known that solutions in terms of Lie salgebra generators
exist [21]. Some specific solutions are related to the Liesalgebrassp(1|2n)
andgl(1|n), but not all solutions are known fer > 1.

Without going into the details of the further analysis, lstdescribe some
properties of thgl(1|n) solutions. First of all, one can verify that certain mul-
tiples of the odd basis elements gif 1|n) satisfy the relations (47) [21]. In
this gl(1|n) realization of the operato@t, the Hamiltonian (45) becomes an
element of the Cartan subalgebra. Next, one has to condidanitary repre-
sentations ofyl(1|n) (here, unitary refers to the fact th(altjt)T = b7 should
be satisfied in thg[(1]n) representation). For certain sets of valueg pfthese
unitary representations are finite-dimensional (i.e.esponding to the real form
u(1ln) of gl(1|n)). Then itis a matter of finding the weight structure of such a
representation (e.g. by determining its character). ldgfee any weight vector

of weight(ko, k1, - . ., kn), the correspondinﬁ[ eigenvalue reads
B n n n n
= (O VI k) = Y bk /ity = const— Y hk; /i, (48)
j=1 j=0 j=1 j=1

sinceZ;?:0 k; is constant for an irreducible representation@f|n). Applying

this, for example, to the Hamiltoniaf x (33) with Krawtchouk interaction,
yields a spectrum of the form

const— »  hk; \/w? —¢(n —2j +1)/2, (49)
j=1
where (ko, k1, . .., k) runs over all weights of the representation under con-

sideration, and the multiplicity is determined by the nplitity of the weight.
So the spectrum off in Wigner's quantization looks formally very similar
to that in canonical quantization, given by Proposition zefe are however
some important differences. First of all, in (36) the indiég run over all natu-
ral numbers, corresponding to all Fock space states. Satrgyespectrum is
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discrete but unbounded from above. Here, the indices assnly&alues corre-
sponding to all weights of a certain finite-dimensional esntation ofi(1|n).
This implies that multiplicities of energy levels are in geal quite different.
More strikingly, a peculiar feature of Wigner quantizatierhat it allows finite-
dimensional solutions, i.e. with a finite energy spectrumctsolutions might
be of relevance in a physical context. For more details apoaperties of the
spectrum, and about relations to other Lie superalgebead .

4 Spin chain with a Krawtchouk interaction matrix

A final model where the new analytically solvable quantum l@mians can
be of use is related to quantum computation. In models of [guarcomputa-
tion, the transmission of a quantum state is an importargcsf. Bose [22,23]
introduced linear spin chains as a channel for short distgnantum communi-
cation. Transfer of data in such linear quantum registesdlean the subject of
many papers [22,24-26] (and references therein). An isti@gesituation arises
if one assumes to have individual control of the nearegghimur interactions.

The transmission of quantum states can in principle be padd by a chain
of qubits coupled via the Heisenberg or th&” interactions [27—-30]. The idea
of pre-engineered intercubit couplings has been discussesiderably [31, 32].
One of the advantages of well-chosen controlled couplistjsat one can obtain
mirror inversion of a quantum state with respect to the geoft¢he chain, and
that perfect transfer of quantum states is possible [2836,

Let us consider a by now classical system\of+ 1 interacting qubits (spin
1/2 particles) in a quantum register, with a Hamiltoniano¥ type (for reasons
of convenience, the index here runs frorto NV):

N—

[

N

xr xr 1 z
Ji (o}, -ok+1+0;’é+1-a£)—§ E hi(oj, — 1), (50)
k=0 k=0

ﬁ:

N —

whereJy, is the coupling strength between the qubits located at Biseslk + 1,
and h;, is the “Zeeman” energy of a qubit at sike So the subindex (k =
0,1,2,...,N) labels the position of the qubit in the chain, and the sunolex
refers to the Pauli matrices’, c¥ ando*.

To describe the Hilbert space associated with the Hamétgnbne adopts
a standard fermionization technique [34]. Then the JoM&gmer transforma-
tion [35] allows to rewrite the Hamiltonian (50) in terms efmion operatorg;.
andf/ (k=0,1,...,N):

N—

N
H=" Bulffforr + FLfo) + > hifl fie (51)

k=0 k=0

—

This Hamiltonian can be interpreted as describing a séY of 1 fermions on
a chain with nearest-neighbour interaction (hopping betwadjacent sites of
the chain), and subject to a non-uniform magnetic field dmhdty 7, (K =
0,1,...,N). We shall assume that the system is initially in its groutates
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|0) = |[00---0) = |0) ® |0) ® --- ® |0), where|0) denotes the spin down
state. Letk) =|00---010---0) = f,1|0> (k =0,1,...,N) denote a state in
which there is a single fermion at the sitend all other sites are empty, /&)
describes the state in which the spin at the sitas been flipped td). Clearly,
the set of statel) (k = 0,1,..., N) forms a basis for the single-fermion states
of the system, and we can represent these by the standareatuts in column
matrix form:

k) = 5 (k=0,1,...,N). (52)

In this single-fermion basis, the Hamiltonidhtakes the matrix form

ho Jo O 0
Jo hy Jp - 0
0 0 In-1 hn

The dynamics (time evolution) of the system is completeliedrined by the
eigenvalues:; and eigenvectorg; of this matrix. It is then a standard tech-
nique [33, 34] to describe the-fermion eigenstates off (n < N) using the
single-fermion eigenstates; and Slater determinants. For this reason we con-
centrate here on the single-fermion eigenstates.

Once we have arrived at the matrix (53), one recognizes mgadal in-
teraction matrix and the methods of Section 2 can be appliadpbarticular,
one can perform the spectral decomposition (6) with an gdhal matrixU,
andD = diag(ep, €1,...,€en). The entries oD are the single-fermion energy
eigenvalues, and the columns of the matriare the (orthonormal) eigenvectors
of M, i.e. the single-fermion eigenstates:

Uoj
Uy N N
oi=| . | =D Uk lk)=> Uy fil0)  (G=01,....N),
' k=0 k=0
Un;j

. (54)
with Hp; = M¢; = €; ¢;. From the orthogonality of/, the inverse relation
follows:

N
k) =" Uk;o;. (55)
j=0
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We now turn to the dynamics of the system under consideratiescribed
by the time evolution operatmp(—itﬁ). Assume that the “state sender” is
located at sites of the spin chain, and the “state receiver” at sités andr
are site labels, belonging {®, 1,..., N}). Attime ¢ = 0 the sender turns the
system into the single spin stdtg. After a certain time, the system is in the
(mixed) stateexp(—itH)|s). So the transition amplitude of an excitation from
site s to siter of the spin chain is given by the modulus of

F, o(t) = (] exp(—itH)|s). (56)

This is one of the central quantities to be computed in thigexd. Note that it
can be expressed by means of the orthogonal mé&tappearing in (6). Indeed,
using the expansion (55) and orthogonality of the state®ne finds:

N N
Fro(t) = (rlexp(—itH)|s) = () Uil exp(—itH) > Us;é;)

k=0 =0

= {

™=

N
Uk Y Usje™ " ¢;)

0 7=0

M= 1

I
<

U,;jUsje” . (57)

J

The purpose of this section is to show that various intargstiosed form
expressions can be given for this crucial quanfity;(¢), in the case that the
fixed values characterizing the system (the valligandhy) are related to the
Jacobi matrix of a set of discrete orthogonal polynomialst ps this was the
case in Section 2. Again, we shall illustrate this by meanthefexample of
Krawtchouk polynomials. Let us therefore identify the mai{53) with the
Jacobi matrix (28) of the Krawtchouk polynomials (note ttie replacement
of J, by —J,, does not lead to essential changes in the formulation, asutdv
only give rise to sign factoré—1)’** in the matrix element&’;;, and(—1)"**
in the amplituded,. ;(¢)). Under this identification, the matrix elementsiof
are (normalized) Krawtchouk polynomials, see eq. (30), theccorresponding
energy eigenvalues ate = j (j = 0,1,..., N).

This implies that we can determine the transition amplitasiéollows:

N N
Fro(t) =Y UplUge " =3 K, (k)K,(k)e "
k=0 k=0

N
_ \/de S w(k) K, (k) K (k)e i, (58)
rs 1o

So we need to compute the quantity in (58). First of all, nbt in general
F, 5(t) is a periodic function of. In particular, it follows from (58) and the
orthogonality relation (23) thak). ;(¢) = ¢,.s for ¢ = 0 and for any multiple of
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27. So after a time span @fr, the system is back in its original state where only
the spin at the sending sites flipped.

The purpose is how to compute (58) explicitly. Rewriting fi@ynomials
in (58) as, F-series, this sum reduces to a classical summation fornivém g
for example in [36, p. 84, (8)]. This leads immediately to fokowing closed
form expression:

Frelt) = <N> <N>( p(1=p)"* (1= ) (1 = ptpe )N

r S

—r,—5 —e
<o () 9

Some special cases of this general formula are worth disauss
Let us consider the case when the sender is located af,site. s = 0.
Then (59) yields

N

r

Foolt) = ()( D) (1 e (1 - pt pe-®N".  (60)

So far,p (0 < p < 1) is still a free parameter. A special case occurs when
p=1/2:

Fra) = 5[ () )= =1 e

giving
t |

sin(5) !

i ’N_r

Frall =/ ()

In other words,

(p=1/2) (62

Fro(m) =0drn. (p=1/2) (63)

This is the situation of “perfect state transfer” describ&dady in [33]: at time
t = 7 the system is in the state with all spins down except at/Sithe spin is
up. So for this time there is perfect state transfer fromiesite V.

More generally, let us specialize the expression (59) foeti = =

Frs(m) = <N> <N>( Ap(1 —p)) (1= 2p)N T

S
% oF} (f - 1) . (64)

This expression shows once again that taking the free paeame- 1/2 yields
a special case:
Frs(m) = 6rts,N- (p=1/2) (65)
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So forp = 1/2 there is also perfect state transfer between the sigesl N — s.

We have shown here how a spin chain (51) with interactioniméiB) de-
termined by a Jacobi matrix related to discrete orthogopdinmmials gives
rise to an analytic solution of transition amplitudes imtsrof these orthogonal
polynomials. Only the simplest case of Krawtchouk polyramhas been dis-
cussed here; more detailed work with other families of aggtimal polynomials
is in preparation [37].

5 Conclusions

Quantum Hamiltonians characterized by a tridiagonal atgon matrix play
an interesting role in various models. When this tridiagontdraction matrix
coincides with the Jacobi matrix of a system of discreteagtimal polynomials,
many quantities related to the model can be computed ettplitn the model
of harmonic oscillators with some nearest-neighbour &dgon, the spectrum of
the Hamiltonian is determined in closed form (or the Hamilém is analytically
solvable), as it is related to factors appearing in the tteaa recurrence relation
for the orthogonal polynomials. In the model of a spin chaithva nearest-
neighbour hopping term, one obtains explicit formulas fansition amplitudes,
as in this case there is a relation with some bilinear geimgrdiinction of the
orthogonal polynomials.

In this paper, we have illustrated these aspects by meamsrd examples,
and indicated how to approach this in general. We have atstetd an alterna-
tive quantization of the first model of interaction harmoaogrillators, namely
Wigner quantization. In that case, representations of Uperlgebras appear
in the solutions.
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