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Abstract

We consider quantum systems consisting of a linear chain of n harmonic oscillators coupled
by a nearest neighbour interaction of the form −q̂r q̂r+1 (q̂r refers to the position of the rth
oscillator). In principle, such systems are always numerically solvable and involve the eigenvalues
of the interaction matrix. In this paper, we investigate when such a system is analytically
solvable, i.e. when the eigenvalues and eigenvectors of the interaction matrix have analytically
closed expressions. This is the case when the interaction matrix coincides with the Jacobi matrix
of a system of discrete orthogonal polynomials. Our study of possible systems leads to three
new analytically solvable Hamiltonians: with a Krawtchouk interaction, a Hahn interaction or
a q-Krawtchouk interaction. For each of these cases, we give the spectrum of the Hamiltonian
(in analytic form) and discuss some typical properties of the spectra.

1 Introduction

In classical mechanics, one-dimensional systems (or lattices) consisting of mass points with some
nearest neighbour interaction have a long history. A typical system is a lattice of n particles with
masses m1, m2, . . . , mn, and a harmonic coupling with spring constants κ1, κ2, . . . , κn−1 leading to
the Hamiltonian

H(p, x) =
n

∑

r=1

p2
r

2mr
+

n−1
∑

r=1

κr

2
(xj − xj+1)

2. (1)

Such classical systems (or variations, with an infinite number of mass points, or with various
boundary conditions) were already considered by Schrödinger [1]. The equations of motion of
such a system can be solved by (numerically) diagonalizing the interaction matrix (the eigenvalues
of which yield the normal modes of the system). Alternatively, the system can be solved using
orthogonal polynomials whose recurrence relations are derived from the equations of motion [2–4].
In that case, the normal modes are obtained from the zeros of the nth orthogonal polynomial.

One-dimensional systems with a different type of nearest neighbour interaction received a lot of
attention, especially those that are still exactly solvable. Among the most famous, we mention the
Toda system [5] and the Calogero-Sutherland-Moser models [6–8]. In this context, the emphasis
was shifted from physics to mathematical aspects such as integrability and the underlying algebraic
structures.

Also the quantum versions of many of these systems or models were investigated from various
points of view during the last decades. Quantum Calogero-Moser systems for any root system were
studied by Olshanetsky and Perelomov [9]; for a review, see [10]. In such quantum systems, the
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emphasis – from the physics point of view – is on a construction of ground wave states, formulae
for the excitation spectrum, a description of stationary states, etc. Several other quantum systems
with a nearest neighbour interaction closely related to Calogero-Sutherland-Moser models were
explored, see [11–14] to cite a few.

In the present paper we consider yet another quantum system given in equation (5), consist-
ing of a one-dimensional chain of particles with a certain nearest neighbour interaction, which is
quadratic in the position operators. Our emphasis is on the investigation of analytical solvability
of the quantum system (i.e. on obtaining analytically closed expressions of the spectrum of the
Hamiltonian and of its eigenstates, the stationary states of the system). In such a context, the
physical significance of the interaction introduced here is less clear: it can, in a sense, be considered
as a deviation from a vibrating quantum system.

To introduce our system, let us first consider one of the most common quantum systems,
consisting of a chain of harmonic oscillators coupled by some nearest neighbour interaction [17–
20]. In this popular model the particles are described as identical harmonic oscillators which are
moreover coupled by springs obeying Hooke’s law. Then the Hamiltonian of the system is given
by:

Ĥh =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

+
n

∑

r=0

cm

2
(q̂r − q̂r+1)

2, (2)

where q̂0 = q̂n+1 ≡ 0 (fixed wall boundary conditions). In other words, the quantum system consists
of a string or chain of n identical harmonic oscillators, each having the same mass m and natural
frequency ω. The position and momentum operators for the rth oscillator are given by q̂r and p̂r;
more precisely q̂r measures the displacement of the rth mass point with respect to its equilibrium
position. The last term in (2) represents the nearest neighbour coupling by means of “springs”,
with a coupling strength c (c ≥ 0). For c = 0 one is simply dealing with a set of identical uncoupled
harmonic oscillators.

We shall consider (2), and the other quantum system being studied here, in the case of canonical

quantization, i.e. the q̂r and p̂r are self-adjoint operators (q̂†r = q̂r and p̂†r = pr) satisfying the
commutation relations

[q̂r, q̂s] = 0, [p̂r, p̂s] = 0, [q̂r, p̂s] = i~δrs (r, s = 1, . . . , n). (3)

It is well known that the Hamiltonian (2) is completely solvable (see also next section). In fact, it is
analytically solvable in the sense that one has an analytically closed expression for the eigenvalues
of (2).

Note that (2) can be rewritten in the following form (with ω̃2 = ω2 + 2c)

Ĥh =
n

∑

r=1

( p̂2
r

2m
+

mω̃2

2
q̂2
r

)

− cm
n−1
∑

r=1

q̂r q̂r+1. (4)

The fact that the nearest neighbour interaction is the same everywhere in the chain, thus indepen-
dent of the position r, implies that all coefficients of q̂r q̂r+1 are the same.

In the present paper, we shall study deviations of (4), where the nearest neighbour interaction
is not constant in the chain, but depends on r. The Hamiltonian of such a more general system is
assumed to be of the following form:

Ĥ =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

γrq̂r q̂r+1. (5)

The physical interpretation of such a system is not obvious. First of all, in order to have a physical
meaning, the interaction matrix related to (5) should still be positive definite (see next section).
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Second, the interaction is in general no longer harmonic. It could be seen as a chain still consisting
of identical oscillators but with a quadratic nearest neighbour interaction of the form −q̂r q̂r+1. This
interaction is not homogeneous in the chain but depends on the location r in the linear system.
For a more general context in which quantum systems of the form (5) appear as a special case,
see the notion of “harmonic systems on general lattices” in [15,16] in the study of entanglement in
many-body systems.

The purpose of this paper is to study the spectrum of Hamiltonians of the form (5). Such
Hamiltonians are always numerically solvable, i.e. the complete spectrum can be described using
the eigenvalues of the interaction matrix (see next section). The contribution of this paper is
to investigate those cases for which Ĥ is analytically solvable (i.e. when the eigenvalues of the
interaction matrix are known in analytically closed form). Some examples of Hamiltonians for
which this is the case are:

ĤK =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(n − r) q̂r q̂r+1,

Ĥ
(1)
Q =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

(n − r)(n + r + 1)

2
q̂r q̂r+1,

ĤKq =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

2
√

qr+1−2n(1 − qr)(1 − qn−r) q̂r q̂r+1,

where q is some positive parameter.
In the following section, we shall consider (2) again, and describe a method to solve this Hamil-

tonian. This method can best be formulated in terms of an interaction matrix M [11, 21], and
we shall determine the conditions for M to be analytically solvable. In particular, systems of the
form (5) correspond to tridiagonal interaction matrices with a constant diagonal. As we shall see,
this leads us to the area of discrete orthogonal polynomials. We have investigated the families
of discrete orthogonal polynomials that lead to solutions. These are described in the following
sections: an interaction based upon Krawtchouk polynomials, on Hahn polynomials, or on dual
q-Krawtchouk polynomials. For each of these cases, we give the corresponding Hamiltonian and
its solution. In section 6 we also briefly describe some interesting features of the energy levels of
these Hamiltonians.

2 General method

The Hamiltonian (2) can be written in matrix form as follows:

Ĥh =
1

2m

(

p̂†1 · · · p̂†n

)







p̂1
...

p̂n






+

m

2

(

q̂†1 · · · q̂†n

)

Ah







q̂1
...

q̂n






, (6)

where Ah is a symmetric tridiagonal matrix of the form

Ah = ω2I + cMh, (7)
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with I the n × n identity matrix and

Mh =



















2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2



















. (8)

The fact that the interaction is only between nearest neighbours is reflected by the tridiagonal form
of Mh (i.e. nonzero entries only on the diagonal, the subdiagonal and the superdiagonal). We shall
refer to Mh as the “interaction matrix” [11,21].

Let us for a while consider quantum systems described by a Hamiltonian with a more general
interaction matrix M :

Ĥ =
1

2m

(

p̂†1 · · · p̂†n

)







p̂1
...

p̂n






+

m

2

(

q̂†1 · · · q̂†n

)

(ω2I + cM)







q̂1
...

q̂n






. (9)

In (9), M is a real and symmetric matrix. In order to be physically meaningful, ω2I +cM should be
a positive definite matrix [15,16]. A general method to deal with such Hamiltonians was described
in [15, section 2.1]. Since M is real and symmetric, the spectral theorem [22] implies

M = UDUT (10)

where

D = diag(λ1, λ2, . . . , λn), (11)

UUT = UT U = I. (12)

The entries of the diagonal matrix D are the (real) eigenvalues λi of M , in some order, and the
columns of the real orthogonal matrix U are eigenvectors of M (in the same order); UT stands for
the transpose of U .

Introducing new operators (the so-called normal coordinates and momenta) as follows:







Q̂1
...

Q̂n






= UT







q̂1
...

q̂n






,







P̂1
...

P̂n






= UT







p̂1
...

p̂n






, (13)

the Hamiltonian (9) reads

Ĥ =
1

2m

(

P̂ †
1 · · · P̂ †

n

)







P̂1
...

P̂n






+

m

2

(

Q̂†
1 · · · Q̂†

n

)

(ω2I + cD)







Q̂1
...

Q̂n







=
1

2m

n
∑

j=1

P̂ 2
j +

m

2

n
∑

j=1

(ω2 + cλj)Q̂
2
j . (14)

By the transformation (13), the new operators also satisfy the canonical commutation relations:

[Q̂j , Q̂k] = 0, [P̂j , P̂k] = 0, [Q̂j , P̂k] = i~δjk (j, k = 1, . . . , n). (15)
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In (14), the values of ω2 + cλj are all positive since the interaction matrix ω2I + cM is assumed to
be positive definite. So one can introduce

ωj =
√

ω2 + cλj . (16)

Then we can write

Ĥ =
1

2m

n
∑

j=1

P̂ 2
j +

m

2

n
∑

j=1

ω2
j Q̂

2
j . (17)

This expression is just like the Hamiltonian of an n-dimensional non-isotropic oscillator, so we can
use the commonly known method for its solution [23,24]. Introducing boson operators

a±j =

√

mωj

2~
Q̂j ∓

i
√

2~mωj

P̂j , (18)

these satisfy
[a−j , a−k ] = [a+

j , a+
k ] = 0, [a−j , a+

k ] = δjk, (j, k = 1, . . . , n) (19)

and Ĥ can be written as

Ĥ =
n

∑

j=1

~ωj

2
{a+

j , a−j } =
n

∑

j=1

~ωj

2
(2a+

j a−j + 1). (20)

Furthermore,
[Ĥ, a±j ] = ±~ωj a±j (j = 1, . . . , n). (21)

So if we assume that there is a lowest Ĥ-eigenvalue (lowest energy), say for the state |0〉, then we
have the usual n-boson Fock space in which the action of Ĥ is diagonal. The vacuum vector |0〉
satisfies

〈0|0〉 = 1, a−j |0〉 = 0; (22)

the other (orthogonal and normalized) basis vectors are then defined by

|k1, . . . , kn〉 =
(a+

1 )k1 . . . (a+
n )kn

√
k1! . . . kn!

|0〉, (kj = 0, 1, . . .). (23)

The spectrum of Ĥ is now determined by

Ĥ|k1, . . . , kn〉 =
n

∑

j=1

~ωj(kj +
1

2
) |k1, . . . , kn〉. (24)

This analysis is well known, and it seems to indicate that a Hamiltonian of the form (9) with
a general interaction matrix M is exactly solvable as a quantum system. Note, however, that
the solution we have described involves also a numerical process, namely the determination of
the eigenvalues and eigenvectors of M in (11) and (12). We shall say that the Hamiltonian Ĥ is
analytically solvable if we have an analytically closed expression for the eigenvalues and eigenvectors
of M , for arbitrary n.

One example of an analytically solvable Hamiltonian is (2), with interaction matrix Mh given
by (8). In this case, the decomposition (10) is determined by [17,20]

U =

√
2√

n + 1

(

sin(
ijπ

n + 1
)

)

1≤i,j≤n

(25)
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and the eigenvalues in (11) by

λj = 2 − 2 cos(
jπ

n + 1
). (26)

So we have

ω2
j = ω2 + 2c − 2c cos(

jπ

n + 1
) = ω2 + 4c sin2(

jπ

2(n + 1)
). (27)

Apparently, there are not so many examples of analytically solvable Hamiltonians of the type (9)
known in the literature. One paper dealing with this problem (and closely related ones) is [21]. In
that paper, some examples of analytically solvable Hamiltonians are given.

In the current paper, we present some new examples. Since we are studying Hamiltonians of
the form (5), we are dealing with tridiagonal interaction matrices M with constant entries on the
diagonal. For tridiagonal matrices, an explicit spectral decomposition (10) can be found by relating
these matrices to Jacobi matrices of discrete orthogonal polynomials. So it is natural to look for
new examples in that area. We shall first describe the example of “Krawtchouk interaction”, and
then indicate how to find other examples.

3 Krawtchouk interaction

In this section, let us first collect some (known) properties of Krawtchouk polynomials, and then
use these to describe the spectrum of a Hamiltonian with a Krawtchouk interaction term. For a
list of hypergeometric orthogonal polynomials, see [25] or [26].

3.1 Krawtchouk polynomials

For a fixed positive integer parameter N and a real parameter p (0 < p < 1), the Krawtchouk
polynomial of degree i (i = 0, 1, . . . , N) in the variable x is defined by [25–27]

Ki(x) ≡ Ki(x; p, N) = 2F1

(−x,−i

−N
;
1

p

)

. (28)

Herein, 2F1 is the usual Gauss hypergeometric series [28]

2F1

(

a, b

c
; z

)

=
∞

∑

k=0

(a)k(b)k

(c)k

zk

k!
. (29)

In (28), the series is terminating because one of the numerator parameters is a negative integer.
Note that in (29) we use the notation of the raising factorial, which can also be rewritten by means
of a (generalized) binomial coefficient:

(a)k = a(a + 1) · · · (a + k − 1) = (−1)k

(−a

k

)

k!

The Krawtchouk polynomials satisfy a discrete orthogonality relation of the form

N
∑

x=0

w(x)Ki(x)Kj(x) = hiδij , (30)

where w(x) is a weight function in x and hi is a function depending on i:

w(x) =

(

N

x

)

px (1 − p)N−x (x = 0, 1, . . . , N); hi =
1

(

N
i

)

(

1 − p

p

)i

. (31)

6



Recall that the recurrence relation for Krawtchouk polynomials is given by

−xKi(x) = i(1 − p)Ki−1(x) −
[

p(N − i) + i(1 − p)
]

Ki(x) + p(N − i)Ki+1(x). (32)

For future purposes we will however be interested in an orthonormality condition, so we define the
orthonormal Krawtchouk polynomials by

K̃i(x) ≡ K̃i(x; p, N) =

√

w(x)Ki(x)√
hi

, i = 0, 1, 2, . . . , N. (33)

Now we can state the following property:

Lemma 1 Let MK be the tridiagonal (N + 1) × (N + 1)-matrix

MK =



















F0 −E1 0

−E1 F1 −E2
. . .

0 −E2 F2
. . . 0

. . .
. . .

. . . −EN

0 −EN FN



















, (34)

where

Ei =
√

p(1 − p)
√

i(N − i + 1), Fi = Np + (1 − 2p)i, (35)

and let U be the (N + 1) × (N + 1)-matrix with matrix elements

Uij = K̃i(j) =

[(

N

i

)(

N

j

)

pi+j(1 − p)N−i−j

]1/2 min(i,j)
∑

k=0

(

i
k

)(

j
k

)

(

N
k

) (−1

p
)k, (36)

where i, j = 0, 1, . . . , N . Then

UUT = UT U = I and MK = UDUT (37)

where D = diag(0, 1, 2 . . . , N).

Proof. We have that

(UUT )ij =
N

∑

k=0

UikUjk =
N

∑

k=0

K̃i(k)K̃j(k) = δij

by the orthogonality relations (30). So UUT = I, hence UT is the inverse of U and thus also
UT U = I. Furthermore, notice that

Ei = i(1 − p)

√

hi−1

hi
and Ei+1 = p(N − i)

√

hi+1

hi
.

Equation (32) can then be rewritten as a recurrence relation for the orthonormal Krawtchouk
polynomials K̃i(x):

xK̃i(x) = −Ei K̃i−1(x) + Fi K̃i(x) − Ei+1 K̃i+1(x). (38)

Then we have, using E0 = EN+1 = 0,

(MKU)ij =
N

∑

k=0

(MK)ikUkj

= −Ei K̃i−1(j) + Fi K̃i(j) − Ei+1 K̃i+1(j)

= j K̃i(j) = (UD)ij ,

7



so MKU = UD or MK = UDUT . 2

So we now have a good candidate interaction matrix MK . In order to describe systems of the
form (5), however, the diagonal entries Fi of MK should be constants (i.e. independent of i). We see
from (35) that this is the case for p = 1/2. So this leads to a new analytically solvable Hamiltonian
of the form (5).

3.2 Hamiltonian with Krawtchouk interaction

Consider a linear chain of n identical harmonic oscillators, with a nearest neighbour interaction
that is given by

ĤK =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(n − r) q̂r q̂r+1. (39)

We shall refer to the interaction term as “Krawtchouk interaction”. The purpose is to find the
analytic solution for the spectrum of HK . It is easy to see that this Hamiltonian can be written in
matrix form, like (9):

ĤK =
1

2m

(

p̂†1 · · · p̂†n

)







p̂1
...

p̂n






+

m

2

(

q̂†1 · · · q̂†n

)

(

(ω2−c(n − 1)

2
)I+cMK

)







q̂1
...

q̂n






, (40)

where MK is the matrix (34) with N = n − 1 and p = 1/2. But for the matrix MK we have
an explicit spectral decomposition, given in Lemma 1, and the eigenvalues of MK are given by
0, 1, . . . , n − 1. Using this result, and following the general procedure described in section 2, one
introduces here the following quantities:

ωj =

√

ω2 − c(n − 1)

2
+ c(j − 1) =

√

ω2 − c

2
(n − 2j + 1), (j = 1, 2, . . . , n). (41)

The interaction matrix (ω2 − c(n−1)
2 )I + cMK is positive definite if all quantities under the square

root symbol are positive. Since c (and ω2) is positive, ω2 − c(n−1)
2 + c(j − 1) (j = 1, 2, . . . , n) is

an increasing sequence as j increases. So this condition leads to c < 2ω2/(n − 1), or the “coupling
strength” should be sufficiently small. Now we have:

Proposition 2 The Hamiltonian ĤK given by (39) is analytically solvable. The explicit spectrum

of HK follows from (24):

ĤK |k1, . . . , kn〉 =
n

∑

j=1

~ωj(kj +
1

2
) |k1, . . . , kn〉, (42)

where the constants ωj are given by ωj =
√

ω2 − c(n − 2j + 1)/2.

Finally, notice that the interaction term in (39) is invariant under the reflection r → n − r.

3.3 Remark

It is clear that the general procedure worked out here for the Krawtchouk polynomials works in
general for discrete orthogonal polynomials. So in order to find other interesting examples, one
can go through the list of discrete orthogonal polynomials [25–27] and their q-analogues. The basic
restriction, in order to have Hamiltonians of the form (5), is that the diagonal elements in the
interaction matrix are constant (for specific values of the parameters). An investigation of this
restriction has shown that, apart from the Krawtchouk polynomials with p = 1/2, there are only
the following cases to be considered: the Hahn polynomials with β = α and the dual q-Krawtchouk
polynomials with c̄ = −1. We shall now study these cases and the corresponding Hamiltonians.
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4 Hahn interaction

4.1 Hahn polynomials

Hahn polynomials are again a class of discrete orthogonal polynomials Qi(x; α, β, N), characterized
by a positive integer parameter N and two real parameters α and β (for orthogonality, one should
have α > −1 and β > −1, or α < −N and β < −N). The Hahn polynomial of degree i
(i = 0, 1, . . . , N) in the variable x is defined by [25,26]

Qi(x) ≡ Qi(x; α, β, N) = 3F2

(−i, i + α + β + 1,−x

α + 1,−N
; 1

)

, (43)

where 3F2 is the generalized hypergeometric series (which is terminating here due to the numerator
parameter −i). The Hahn polynomials satisfy a discrete orthogonality relation:

N
∑

x=0

w(x)Qi(x)Qj(x) = hiδij , (44)

where

w(x) =

(

α + x

x

)(

N + β − x

N − x

)

(x = 0, 1, . . . , N);

hi =
i!(N − i)!

N !2
(i + α + β + 1)N+1(β + 1)i

(2i + α + β + 1)(α + 1)i
.

The recurrence relation for Hahn polynomials is given by

−xQi(x) = Ai Qi+1(x) − (Ai + Ci)Qi(x) + Ci Qi−1(x), (45)

where

Ai =
(i + α + β + 1)(i + α + 1)(N − i)

(2i + α + β + 1)(2i + α + β + 2)
, Ci =

i(i + α + β + N + 1)(i + β)

(2i + α + β)(2i + α + β + 1)
.

The orthonormal Hahn polynomials are defined by

Q̃i(x) =

√

w(x)Qi(x)√
hi

, i = 0, 1, 2, . . . , N. (46)

Then we have a similar lemma as Lemma 1:

Lemma 3 Let MQ be the tridiagonal (N + 1) × (N + 1)-matrix

MQ =



















F0 −E1 0

−E1 F1 −E2
. . .

0 −E2 F2
. . . 0

. . .
. . .

. . . −EN

0 −EN FN



















, (47)

where

Ei =

√

i (i + α) (i + β) (i + α + β) (i + α + β + N + 1) (N − i + 1)

(2i + α + β)2(2i + α + β − 1)(2i + α + β + 1)
,

Fi =
N

2
+

(α − β)
[

(α + β) (N − 2i) − 2i(i + 1)
]

2(2i + α + β) (2i + α + β + 2)
, (48)
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and let U be the (N + 1) × (N + 1)-matrix with matrix elements

Uij = Q̃i(j) (49)

where i, j = 0, 1, . . . , N . Then

UUT = UT U = I and MQ = UDUT (50)

where D = diag(0, 1, 2 . . . , N).

Proof. The proof is essentially the same as that of Lemma 1:

(UUT )ij =
N

∑

k=0

UikUjk =
N

∑

k=0

Q̃i(k)Q̃j(k) = δij

by the orthogonality relations (44), hence UUT = UT U = I. Furthermore, equation (45) can then
be rewritten as a recurrence relation for the orthonormal Hahn polynomials Q̃i(x):

xQ̃i(x) = −Ei Q̃i−1(x) + Fi Q̃i(x) − Ei+1 Q̃i+1(x), (51)

and this implies MQU = UD or MQ = UDUT . 2

It remains to be determined when the diagonal of (47) is constant, in other words when Fi is
independent of i. Following (48), this happens when β = α. Note that in that case the parameter
should satisfy α > −1 or α < −N . It is worthwhile mentioning that there are two other cases
where the diagonal of (47) is “almost constant”:

• When β = −α (with −1 < α < 1) one finds that all Fi = (N − α)/2 for i = 1, 2, . . . , N , but
F0 = N(α + 1)/2.

• When β = −2N − 2 − α (with −2 − N < α < −N) one finds that all Fi = −(α + 1)/2 for
i = 0, 1, . . . , N − 1, but FN = N(N + α + 2)/2.

For these cases, it could still be interesting to consider the Hamiltonian (9) built from the corre-
sponding interaction matrix. The Hamiltonian, however, is not of the form (5) as either the first
or last oscillator in the chain would play a special role and give rise to an extra term (either in q̂2

1

or else in q̂2
n); so the chain would no longer consist of identical oscillators, but have one of them

different from the others.
The Hamiltonians corresponding to β = α will now be considered in the next subsection.

4.2 Hamiltonian with Hahn interaction

Consider a linear chain of n identical harmonic oscillators with a nearest neighbour interaction
given by

ĤQ =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(n − r)(r + 2α)(r + 2α + n)

(2r + 2α − 1)(2r + 2α + 1)
q̂r q̂r+1, (52)

the interaction term to be referred to as the “Hahn interaction”, and where α is some parameter
with α > −1 or α < −n + 1 (guaranteeing that the expression under the square root is positive).
This Hamiltonian can be written in matrix form:

ĤQ =
1

2m

(

p̂†1 · · · p̂†n

)







p̂1
...

p̂n






+

m

2

(

q̂†1 · · · q̂†n

)

(

(ω2− c(n − 1)

2
)I+cMQ

)







q̂1
...

q̂n






, (53)

where MQ is the matrix (47) with β = α and N = n − 1. Since the diagonal matrix D in the
spectral decomposition of MQ is again diag(0, 1, 2 . . . , n − 1), it follows that:
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Proposition 4 The Hamiltonian ĤQ given by (52) is analytically solvable. The spectrum of ĤQ

is exactly the same as that of ĤK , and given by (42) and (41).

Also the condition for positive definiteness is the same as in the Krawtchouk case, namely c <
2ω2/(n − 1). Note that for α = 1/2 the form of the interaction term is considerably simpler:

Ĥ
(1)
Q =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

(n − r)(n + r + 1)

2
q̂r q̂r+1. (54)

Observe that for α → +∞, the interaction (52) reduces to the Krawtchouk interaction (39). Also
note that under the reflection r → n − r in the interaction term, the Hamiltonian reads

Ĥ
(2)
Q =

n
∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

√

r(2n − r + 1)

2
q̂r q̂r+1. (55)

This can also be obtained by taking α = −n − 1/2 in (52).

5 q-Krawtchouk interaction

5.1 The dual q-Krawtchouk polynomials

For a fixed positive integer parameter N , and real parameters q > 0 and c̄ < 0 §, the dual q-
Krawtchouk polynomial of degree i in the variable λ(x) = q−x + c̄qx−N is defined by [25,26]

Ki(λ(x); q) ≡ Ki(λ(x); c̄, N ; q) = 3φ2

(

q−i, q−x, c̄qx−N

q−N , 0
; q; q

)

, (56)

where 3φ2 is the q-generalized (or basic) hypergeometric series (which is terminating here due to
the numerator parameter q−i). Recall that [28]

3φ2

(

a, b, c

d, e
; q; z

)

=
∞

∑

k=0

(a; q)k(b; q)k(c; q)k

(d; q)k(e; q)k(q; q)k
zk,

where the q-Pochhammer symbol is [28]

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

The dual q-Krawtchouk polynomials satisfy the discrete orthogonality relation:

N
∑

x=0

w(x)Ki(λ(x); q)Kj(λ(x); q) = hiδij , (57)

where

w(x) =
(c̄q−N ; q)x(q−N ; q)x(1 − c̄q2x−N )

(q; q)x(c̄q; q)x(1 − c̄q−N )
c̄(−x)qx(2N−x) (x = 0, 1, . . . , N);

hi = (c̄−1; q)N
(q; q)i

(q−N ; q)i
(c̄q−N )i.

§In standard literature, this parameter is usually denoted by c, but we replace it by c̄ in order not to confuse with

the notation for the coupling constant c.
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The recurrence relation for dual q-Krawtchouk polynomials is given by

− (1 − q−x)(1 − c̄qx−N )Ki(λ(x); q) = c̄q−N (1 − qi)Ki−1(λ(x); q)

− [(1 − qi−N ) + c̄q−N (1 − qi)]Ki(λ(x); q) + (1 − qi−N )Ki+1(λ(x); q) (58)

The orthonormal dual q-Krawtchouk polynomials are defined by

K̃i(λ(x); q) =

√

w(x)Ki(λ(x); q)√
hi

, i = 0, 1, 2, . . . , N. (59)

Then we have the usual lemma:

Lemma 5 Let MKq be the tridiagonal (N + 1) × (N + 1)-matrix

MKq =



















F0 −E1 0

−E1 F1 −E2
. . .

0 −E2 F2
. . . 0

. . .
. . .

. . . −EN

0 −EN FN



















, (60)

where

Ei =
√

c̄q−N (1 − qi)(1 − qi−1−N ) Fi = (1 − qi−N ) + c̄q−N (1 − qi), (61)

and let U be the (N + 1) × (N + 1)-matrix with matrix elements

Uij = K̃i(λ(j); q) (62)

where i, j = 0, 1, . . . , N . Then

UUT = UT U = I and MKq = UDUT (63)

where D = diag((1 − q−j)(1 − c̄qj−N )), (j = 0, 1, 2 . . . , N).

The proof is the same as those given before, and uses the orthonormality of K̃i(λ(j); q) and

(1 − q−x)(1 − c̄qx−N )K̃i(λ(x); q) = −Ei K̃i−1(λ(x); q) + Fi K̃i(λ(x); q) − Ei+1 K̃i+1(λ(x); q). (64)

This case is interesting because for c̄ = −1 the diagonal of (60) is constant, in other words then
Fi is independent of i. This leads again to a Hamiltonian of the type (5).

5.2 Hamiltonian with dual q-Krawtchouk interaction

Now we consider a linear chain of n identical harmonic oscillators with a nearest neighbour inter-
action given by

ĤKq =
n

∑

r=1

( p̂2
r

2m
+

mω2

2
q̂2
r

)

− cm

2

n−1
∑

r=1

2
√

qr+1−2n(1 − qr)(1 − qn−r) q̂r q̂r+1, (65)

the interaction term to be referred to as “dual q-Krawtchouk interaction”, where q > 0. This
Hamiltonian can be written in matrix form:

ĤKq =
1

2m

(

p̂†1 · · · p̂†n

)







p̂1
...

p̂n






+

m

2

(

q̂†1 · · · q̂†n

)

(

(ω2 − c(1− q1−n))I + cMKq

)







q̂1
...

q̂n






,

(66)
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where MKq is the matrix (60) with c̄ = −1 and N = n− 1. It follows that the spectrum of ĤKq is
given by (42), with

ωj =
√

ω2 − c(1 − q1−n) + c(1 − q−j)(1 + qj−n+1) =
√

ω2 + c(qj−n+1 − q−j), (j = 1, 2, . . . , n).

(67)
For positive definiteness of the interaction matrix, all quantities under the square root must be
positive. It is easy to see that ω2 + c(qj−n+1 − q−j) (j = 1, 2, . . . , n) is an increasing sequence
of j when q > 1 and a decreasing sequence of j when q < 1. So for q > 1 the condition means
c < qω2/(1 − q3−n), while for 0 < q < 1 we need c < qnω2/(1 − qn+1). To conclude, we have

Proposition 6 The Hamiltonian ĤKq given by (65) is analytically solvable. The explicit spectrum

of ĤKq is given by (24), where the constants ωj are given by ωj =
√

ω2 + c(qj−n+1 − q−j).

6 Some properties of the spectra and conclusion

The spectrum of each of the Hamiltonians given here is of the form (24), thus it is discrete but
infinite dimensional. In order to appreciate the differences of the various examples given here, we
shall plot the energy levels of the singly excited states (the single phonons, or the simple vibrations)
of the system. These are the levels of the n states |1, 0, . . . , 0〉, |0, 1, 0, . . . , 0〉, . . . , |0, . . . , 0, 1〉 (in
the notation of (24)). So, following (24), these levels are given by

E0 + ~ω1, E0 + ~ω2, . . . , E0 + ~ωn, (68)

where

E0 =
1

2

n
∑

j=1

~ωj . (69)

In order to illustrate the spacing of the energy levels of the singly excited states, it is sufficient to
plot the values of (ω1, ω2, . . . , ωn). We plot these values in Figure 1, for n = 12, in four different
cases:

(a) The Hamiltonian (4) with constant nearest neighbour interaction, where the values ωj are
given by (27), plotted in Figure 1(a).

(b) The Hamiltonian with Krawtchouk interaction (39) or with Hahn interaction (52), which have
the same spectrum and where the values ωj are given by (41), plotted in Figure 1(b).

(c) The Hamiltonian with q-Krawtchouk interaction (65) where q > 1, for which the ωj are given
by (67), plotted in Figure 1(c).

(d) The same Hamiltonian (65) but with q < 1, for which the ωj are also given by (67), plotted
in Figure 1(d).

The values of c and q are appropriately chosen (see the figure caption for actual values) in order
to illustrate the typical energy level spacing properties for each case.

For a Hamiltonian with constant nearest neighbour interaction like (2) or (4), the levels are
wider apart in the middle of the spectrum, and closer to each other near the top and the bottom
of the spectrum, see Figure 1(a). The property is known, and was e.g. also observed in [21]. For
a Hamiltonian with a Krawtchouk interaction or a Hahn interaction like (39) or (52), the energy
level spacing decreases as the energy increases, a phenomenon also typical for molecular spectra,
see Figure 1(b). Finally, for a Hamiltonian with a q-Krawtchouk interaction like (65), the energy

13



level properties depend on whether 0 < q < 1 or q > 1. For q > 1, one observes just the opposite
of a constant nearest neighbour interaction: the energy level spacing is small near the middle of
the spectrum, and larger near the top and bottom of the spectrum (but they are wider apart near
the top than near the bottom), see Figure 1(c). For 0 < q < 1, the levels behave similarly: the
energy level spacing is small near the middle of the spectrum, and larger near the top and bottom
of the spectrum, but now they are wider apart near the bottom than near the top, see Figure 1(d).
It should be noted that for the cases (a), (b) and (c) the order of the levels from bottom to top
correspond to the states |1, 0, . . . , 0〉, |0, 1, . . . , 0〉, . . . , |0, 0, . . . , 1〉 in this order, whereas for (d) it is
just the opposite. This is related to the fact that the sequence ωj (j = 1, 2, . . . , n) is an increasing
sequence in the cases (a), (b) and (c), but a decreasing sequence in the case (d) (see the remark
following eq. (67)).

To conclude, we have presented a number of Hamiltonians for a quantum system consisting of
a linear chain of identical oscillators with a nearest neighbour interaction term depending on the
position in the chain, in general given by (5). Although such Hamiltonians are always numerically
solvable, we have focused on the question when such a Hamiltonian is analytically solvable. The
connection between the interaction matrix of the matrix expression of the Hamiltonian and Jacobi
matrices of discrete orthogonal polynomials has led to new analytically solvable Hamiltonians, with
interesting spectral properties.

Our original interest in Hamiltonians with a nearest neighbour interaction of the form (2)
stems from the fact that this Hamiltonian can also be quantized in an alternative way, namely
as a Wigner quantum system [29–31], leading in particular to finite spectra and non-commutative
coordinates [19,20,32–35]. Our aim is to investigate when Hamiltonians with a general interaction
matrix, of the form (9), can still be solved as a Wigner quantum system, and investigate the
properties of such a solution. We hope to report on that topic in the near future.
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Figure 1: Energy levels of the n single phonon states |0, . . . , 0, 1, 0, . . . , 0〉, for n = 12. In each of
the cases, ~ = ω = 1. The four cases correspond to: (a) a Hamiltonian (4) with constant nearest
neighbour interaction [for c = 0.5]; (b) a Hamiltonian with Krawtchouk interaction (39) or with
Hahn interaction (52) [for c = 0.18]; (c) a Hamiltonian with q-Krawtchouk interaction (65) where
q > 1 [here, q = 1.6 and c = 1.0]; (d) the same q-Krawtchouk interaction (65) where 0 < q < 1
[here, q = 0.7 and c = 0.01]. The levels are rescaled, so that the lowest and highest levels match in
the four cases.

(a) (b) (c) (d)
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