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Abstract

In this short communication we show how the Lie algebra g2 can easily be described as a free
Lie algebra on 3 generators, subject to some simple quadruple relations for these generators.

The exceptional Lie groups and algebras and their descriptions have always attracted much
attention. Many presentations and realizations can be found in the literature and in books [6–9],
especially for the Lie algebra g2 (often also denoted by G2). The Lie group G2 is commonly defined
as the group of automorphisms of the octonions [2], and thus the Lie algebra g2 is identified as
the derivation algebra of octonions. There are also realizations of g2 as a derivation algebra of
other non-associative algebras [3,5], combinatorial constructions [10] or constructions starting from
different automorphism groups [11]. For a survey, see [4] or [1].

The common description of g2 as a Lie algebra with generators and relations is in terms of the
Chevalley generators and the Serre relations [7]. As far as we know a presentation of g2 as a Lie
algebra with 3 generators subject to some quadruple relations has not been given; at least, we were
not able to find it in the literature. Therefore we think it is worthwhile to correspond our simple
result to the mathematics community.

Note that our result holds for any ground field K of characteristic different from 2 and 3.

Theorem 1. The Lie algebra g on three generators x1, x2, x3 subject to the following quadruple
relations is equal to g2:

[xi, [xj , [xi, xk]]] = 2ϵijkxi, (1)

[xi, [xj , [xj , xk]]] = 6ϵijkxj . (2)

Herein, ϵijk is the common Levi-Civita symbol in three dimensions: ϵijk is 1 if (i, j, k) is an even
permutation of (1, 2, 3), −1 if it is an odd permutation of (1, 2, 3), and 0 otherwise.

Observe that another quadruple relation follows using the Jacobi identity on the triple (xi, xj , xk):

[xi, [xi, [xj , xk]]] + [xi, [xj , [xk, xi]]] + [xi, [xk, [xi, xj ]]] = 0;
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using (1) this leads to

[xi, [xi, [xj , xk]]] = [xi, [xj , [xi, xk]]]− [xi, [xk, [xi, xj ]]]

= 2ϵijkxi − 2ϵikjxi,

and hence
[xi, [xi, [xj , xk]]] = 4ϵijkxi. (3)

Note that the list (1), (2) and (3) describes all possible quadruple relations for four elements
with three indices from {1, 2, 3}, since among 4 indices at least two should be equal.

The most straightforward proof of Theorem 1 is by identifying the independent elements of g,
and computing their commutation relations.

Let us first count the number of independent elements of g. There are three elements of degree 1
in the generators: x1, x2 and x3. Using the anti-symmetry of the Lie bracket, there are also three
elements of degree 2 in the generators: [x2, x3], [x1, x3] and [x1, x2]. Next, the elements of degree 3
are of the form [xi, [xj , xk]], where i ∈ {1, 2, 3} and (j, k) ∈ {(2, 3), (1, 3), (1, 2)}. However, among
these 9 elements there is one linear relation following from the Jacobi identity, namely

[x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]] = 0.

This implies that there are 8 linearly independent elements of degree 3 in the generators. The
quadruple relations imply that there are no independent elements of degree 4 or higher. So all
together, g has dimension 14.

In order to identify g with g2 it is sufficient to show that g is a simple Lie algebra. We shall
do more, and give the complete table of brackets among the 14 basis elements (from which it also
follows that [g, g] = g). For this purpose, let us introduce some further notation. The elements of
degree 2 are denoted by:

y1 =
1

2
[x2, x3], y2 =

1

2
[x3, x1], y3 =

1

2
[x1, x2]. (4)

The elements of degree 3 in the generators are denoted by:

a12 =
1

3
[x2, y1], a23 =

1

3
[x3, y2], a13 =

1

3
[x3, y1],

a21 =
1

3
[x1, y2], a32 =

1

3
[x2, y3], a31 =

1

3
[x1, y3], (5)

h1 =
1

3
([x1, y1]− [x2, y2]), h2 =

1

3
([x2, y2]− [x3, y3]).

It is now a simple matter to determine the table of brackets between these elements, using the
definitions (4) and (5), the quadruple relations (1)-(3), and the Jacobi identity to rewrite elements
of degree 4 in the form of relations (1)-(3).

For example, let us compute a bracket corresponding to an element of degree 5 in the generators:

[y1, a23] =
1

2
[[x2, x3], a23] =

1

2
[x2, [x3, a23]]−

1

2
[x3, [x2, a23]]

=
1

12
[x2, [x3, [x3, [x3, x1]]]]−

1

12
[x3, [x2, [x3, [x3, x1]]]]

=
1

12
[x2, 0]−

1

12
[x3, 6x3] = 0. (6)
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And as a second example, we compute an element of degree 6:

[a12, a23] =
1

3
[[x2, y1], a23] =

1

3
[x2, [y1, a23]]−

1

3
[y1, [x2, a23]]

= 0− 1

3
[y1,

1

6
[x2, [x3, [x3, x1]]]] = −1

3
[y1, x3] = a13, (7)

where the first term vanishes using the previous computation (6). Using such manipulations, the
complete commutator table (Table 1) is computed.

[·, ·] h1 h2 a12 a13 a23 a21 a31 a32 x1 x2 x3 y1 y2 y3

h1 0 0 2a12 a13 −a23 −2a21 −a31 a32 −x1 x2 0 y1 −y2 0
h2 0 −a12 a13 2a23 a21 −a31 −2a32 0 −x2 x3 0 y2 −y3
a12 0 0 a13 h1 −a32 0 −x2 0 0 0 y1 0
a13 0 0 −a23 h1+h2 a12 −x3 0 0 0 0 y1
a23 0 0 a21 h2 0 −x3 0 0 0 y2
a21 0 0 −a31 0 −x1 0 y2 0 0
a31 0 0 0 0 −x1 y3 0 0
a32 0 0 0 −x2 0 y3 0
x1 0 2y3 −2y2 2h1+h2 3a21 3a31
x2 0 2y1 3a12 −h1+h2 3a32
x3 0 3a13 3a23 −h1−2h2

y1 0 2x3 −2x2

y2 0 2x1

y3 0

Table 1: Table of brackets among the 14 basis elements

From the commutator table, the subalgebra structure of the basis is obvious. Clearly, the ele-
ments hi and aij satisfy the standard commutation relations of sl(3): in the defining representation
of sl(3) in terms of 3 × 3-matrices, the elements aij can be realized as eij (a matrix with 1 on
position (i, j) and zeros elsewhere) and hi as eii − ei+1,i+1. The elements x1, x2, x3 are an sl(3)
triple, and y1, y2, y3 a dual sl(3) triple.
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