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Abstract. An explicit construction of all finite-dimensional irreducible rep-
resentations of the Lie superalgebragl(1|n) in a Gel’fand-Zetlin basis is
given. The notion of Wigner Quantum Oscillators (WQOs) is recalled. The
star type I representations ofgl(1|n) are physical state spaces of the WQO.
These solutions have remarkable properties following from the spectrum of
the Hamiltonian and of the position and momentum operators.

1 Introduction

We investigate the properties of anN-particleD-dimensional Wigner Quan-
tum Oscillator (WQO) whose mathematical background is the Lie superal-
gebra (LS)gl(1|DN). After the construction of all finite dimensional irre-
ducible representations ofgl(1|n) we consider the consequences for all rep-
resentations of physical relevance – the star type I representations. For more
details on the physical properties of thegl(1|DN) WQOs see [1]

In Section 2 we construct all the finite-dimensional irreducible rep-
resentations of the Lie superalgebragl(1|n) with a specification of the GZ
basis vectors|m) and the explicit action of a set ofgl(1|n) generators on
these vectors. The WQO is introduced in Section 3. The WQO requirement
that Hamilton’s equations and the Heisenberg equations coincide as opera-
tor equations leads to compatibility conditions on the creation and ahhilation
operators of the oscillator that have a non-canonical solution allowing them
to be identified with the odd generators,ej0 ande0 j , of gl(1|n). The latter
is used to determine the physical properties of WQO models, including their
energy spectrum and the eigenvalues of their spatial coordinate operators.
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2 The gl(1|n) representations

As a basis ingl(1|n) we choose the Weyl matricesei j , i, j = 0,1, . . . ,n, where
the odd elements are{ei0,e0i |i = 1, . . . ,n}, and the remaining elements are
even. The Lie superalgebra bracket is determined by

[[ei j ,ekl]]≡ ei j ekl −(−1)deg(ei j )deg(ekl)eklei j = δ jkeil −(−1)deg(ei j )deg(ekl)δil ek j.

The finite-dimensional simple modules ofgl(1|n) are characterized by their
highest weightΛ [2] with coordinates[m]n+1 = [m0,n+1,m1,n+1, . . . ,mn,n+1],
for whichmi,n+1−mj,n+1 ∈ Z+, ∀i ≤ j = 1, . . . ,n.

Proposition 1 Consider the gl(1|n) module W([m]n+1) as a gl(n) module.
Then W([m]n+1) can be represented as a direct sum of simple gl(n) modules:

W([m]n+1) = ∑i ⊕Vi([m]n), where

I. All Vi([m]n) carry inequivalent representations of gl(n) [m]n =
[m1n,m2n, . . . ,mnn], min −mi+1,n ∈ Z+.

II. 1. min −mi,n+1 = θi ∈ {0,1}, 1≤ i ≤ n,

2. if for k∈ {1, . . . ,n} m0,n+1 +mk,n+1 = k−1, thenθk = 0.

Proposition 1 follows from the character formula for simplegl(1|n) mod-
ules [3]. If for somek ∈ {1, . . . ,n} the conditionm0,n+1 + mk,n+1 = k− 1
is satisfied, then the representation isatypical of type k. Otherwise, it is
typical. A GZ-basis for thegl(n) module is well known [4]. Using it and
Proposition 1 we have

Proposition 2 The set of vectors
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m0,n+1 m1,n+1 · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1
... . . .

m11















(1)

satisfying the conditions

1. mi,n+1are fixed and mi,n+1−mj,n+1 ∈ Z+ 1≤ i ≤ j ≤ n,

2. min −mi,n+1 = θi ∈ {0,1}, 1≤ i ≤ n,

3. if for k∈ {1, . . . ,n} m0,n+1 +mk,n+1 = k−1, thenθk = 0,

4. mi, j+1−mi j ∈ Z+ and mi, j −mi+1, j+1 ∈ Z+, 1≤ i ≤ j ≤ n−1

constitute a basis in W([m]n+1).
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The action of a set ofgl(1|n) generators is given by:

e00|m) =

(

m0,n+1−
n

∑
j=1

θ j

)

|m); ekk|m) =

(

k

∑
j=1

mjk −
k−1

∑
j=1

mj,k−1

)

|m),

1≤ k≤ n;

ek−1,k|m) =
k−1

∑
j=1

(

−
∏k

i=1(l ik − l j,k−1)∏k−2
i=1 (l i,k−2− l j,k−1−1)

∏k−1
i 6= j=1(l i,k−1− l j,k−1)(l i,k−1− l j,k−1−1)

)1/2

|m)+ j,k−1,

2≤ k≤ n;

ek,k−1|m) =
k−1

∑
j=1

(

−
∏k

i=1(l ik − l j,k−1 +1)∏k−2
i=1 (l i,k−2− l j,k−1)

∏k−1
i 6= j=1(l i,k−1− l j,k−1)(l i,k−1− l j,k−1 +1)

)1/2

|m)− j,k−1,

2≤ k≤ n;

e0 j |m) =
n

∑
in=1

n−1

∑
in−1=1

. . .
j

∑
i j=1

θin(−1)θ1+...+θin−1(l in,n+1 + l0,n+1 +1)1/2

×
n

∏
r= j+1

S(ir , ir−1)

(

∏r−1
k6=ir−1=1(lk,r−1− l ir ,r)∏r

k6=ir=1(lkr − l ir−1,r−1 +1)

∏r
k6=ir=1(lkr − l ir ,r)∏r−1

k6=ir−1=1(lk,r−1− l ir−1,r−1 +1)

)1/2

×

(

n

∏
k6=in=1

(lkn− l in,n)
(lk,n+1− l in,n+1)

)1/2(

∏ j−1
k=1(lk, j−1− l i j , j)

∏ j
k6=i j=1(lk j − l i j , j)

)1/2

×|m)−in,n;−in−1,n−1;...;−i j , j , 1≤ j ≤ n;

ej0|m) =
n

∑
in=1

n−1

∑
in−1=1

. . .
j

∑
i j=1

(1−θin)(−1)θ1+...+θin−1(l in,n+1 + l0,n+1 +1)1/2

×
n

∏
r= j+1

S(ir , ir−1)

(

∏r−1
k6=ir−1=1(lk,r−1− l ir ,r −1)∏r

k6=ir=1(lkr − l ir−1,r−1)

∏r
k6=ir=1(lkr − l ir ,r)∏r−1

k6=ir−1=1(lk,r−1− l ir−1,r−1−1)

)1/2

×

(

n

∏
k6=in=1

(lkn− l in,n)
(lk,n+1− l in,n+1)

)1/2(

∏ j−1
k=1(lk, j−1− l i j , j −1)

∏ j
k6=i j=1(lk j − l i j , j)

)1/2

×|m)+in,n;+in−1,n−1;...;+i j , j , 1≤ j ≤ n;

wherel i j = mi j − i; a symbol±ik,k attached as a subscript to|m) indicates a

replacementmik,k → mik,k±1, andS(k, l) =

{

1 for k≤ l
−1 for k > l .

In order to deduce the above formulas, we have used the paper of
Palev [5] and the fact thatgl(n|1) andgl(1|n) are isomorphic.

The representations of physical relevance are thestar type Irepresen-
tations classified in [6].
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Proposition 3 The representation W([m]n+1) is a star type I representation
if and only if

(a) The highest weight is real and m0,n+1 +mn,n+1−n+1 > 0. In this
case, the representation is typical.

(b) The highest weight is real and there exists a k∈ {1,2, . . . ,n} such
that m0,n+1 + mk,n+1 = k− 1, mk,n+1 = mk+1,n+1 = · · · = mn,n+1. In this
case, the representation is atypical of type k.

3 The N-particle D-dimensional WQO

Let Ĥ be the Hamiltonian of anN-particleD-dimensional oscillator:

Ĥ =
N

∑
α=1

( P̂
2
α

2m
+

mω2

2
R̂2

α

)

. (2)

We consider this oscillator as a Wigner quantum system [7]: this means that
the canonical commutation relations are not required, but are replaced by
compatibility conditions between Hamilton’s equations and the Heisenberg
equations. These compatibility conditions are such that

[Ĥ, P̂α ] = ih̄mω2R̂α , [Ĥ, R̂α ] = −
ih̄
m

P̂α for α = 1,2, . . . ,N. (3)

Write the operatorŝPα andR̂α for α = 1,2, . . . ,N in terms of new operators
(creation and annihilation operators):

A±
D(α−1)+k =

√

(DN−1)mω
4h̄

R̂αk± i

√

(DN−1)

4mω h̄
P̂αk, k = 1, . . . ,D. (4)

The HamiltonianĤ and the compatibility conditions take the form:

Ĥ =
ω h̄

DN−1

DN

∑
j=1

{A+
j ,A−

j },
DN

∑
j=1

[{A+
j ,A−

j },A
±
i ] =∓(DN−1)A±

i , i = 1, . . . ,DN.

As a solution of the compatibility conditions one can choose:

[{A+
i ,A−

j },A
+
k ] = δ jkA+

i −δi j A
+
k , [{A+

i ,A−
j },A

−
k ] = −δikA−

j +δi j A
−
k ,

{A+
i ,A+

j } = {A−
i ,A−

j } = 0.

Proposition 4 The operators A±j , for j = 1,2, . . . ,DN, are the odd elements
of gl(1|DN): A+

j = ej0, A−
j = e0 j .
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The Hilbert space (state space) of the WQO is a star type I represen-
tation spaceW of the Lie superalgebragl(1|DN). The HamiltonianĤ is
diagonal in the GZ-basis, i.e.|m) are stationary states of the system.

Ĥ|m) = Eq|m) Eq = h̄ω
(

nm0,n+1 +m1,n+1 + . . .+mn,n+1

n−1
−q

)

, q=
n

∑
j=1

θ j .

The position operatorŝRαk (α = 1, . . . ,N, k= 1, . . . ,D) do not commute with
each other[R̂α i , R̂β j ] 6= 0 for α i 6= β j. Similarly [P̂α i , P̂β j ] 6= 0 for α i 6=
β j. These imply that the WQO belongs to the class of models of non-
commutative quantum oscillators. However, the squares of the compo-
nents of position and momentum operators commute[R̂2

α i , R̂
2
β j ] = [P̂2

α i , P̂
2
β j ] =

0 for α i 6= β j. Furthermore, the GZ basis states|m) are eigenstates of these
operators,

R̂2
α i |m) =

h̄
(n−1)mω

(m0,n+1 + . . .+mn,n+1−m1,n−·· ·−mn,n

+m1,k + · · ·+mk,k−m1,k−1−·· ·−mk−1,k−1)|m), k = D(α −1)+ i.

Thus the spectrum of the position operator componentR̂α i is discrete

±

√

√

√

√

h̄
(n−1)mω

(
n

∑
j=0

mj,n+1−
n

∑
j=1

mj,n +
k

∑
j=1

mj,k−
k−1

∑
j=1

mj,k−1), k= D(α−1)+ i.

Acknowledgments

NIS was supported by a project from the Fund for Scientific Research –
Flanders (Belgium).

References

[1] King R C, Stoilova N I and Van der Jeugt J 2006J. Phys. A39 5763-5785

[2] Kac V G 1977Adv. Math.26 8-96; 1978Lect. Notes Math.676 597-626

[3] Van der Jeugt J, Hughes J W B, King R C and Thierry-Mieg J 1990 Commun.
Alg. 18 3453-3480

[4] Gel’fand I M and Zetlin M L 1950Dokl. Akad. Nauk SSSR71 825-828

[5] Palev T D 1989J. Math. Phys.30 1433-1442

[6] Gould M D and Zhang R B 1990J. Math. Phys.31 2552-2559

[7] Wigner E P 1950Phys. Rev.77 711-712; Palev T D 1982J. Math. Phys.23
1778-1784


