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Abstract. We investigate the time evolution of a single spin excitation state in certain linear
spin chains, as a model for quantum communication. We consider first the simplest possible spin
chain, where the spin chain data (the nearest neighbour interaction strengths and the magnetic
field strengths) are constant throughout the chain. The time evolution of a single spin state is
determined, and this time evolution is illustrated by means of an animation. Some years ago
it was discovered that when the spin chain data are of a special form so-called perfect state
transfer takes place. These special spin chain data can be linked to the Jacobi matrix entries
of Krawtchouk polynomials or dual Hahn polynomials. We discuss here the case related to
Krawtchouk polynomials, and illustrate the possibility of perfect state transfer by an animation
showing the time evolution of the spin chain from an initial single spin state. Very recently,
these ideas were extended to discrete orthogonal polynomials of q-hypergeometric type. Here, a
remarkable result is a new analytic model where perfect state transfer is achieved: this is when
the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. This case is
discussed here, and again illustrated by means of an animation.

1. Introduction
The transfer of a quantum state (i.e. a qubit) from one site to another is a key requirement in
quantum communication. This process is important for connecting distinct quantum processors
or for the (short distance) mapping of quantum states to elements of a quantum register.

S. Bose [1, 2] introduced linear spin chains as a channel for such short distance quantum
communication. An excellent review paper on the topic was published in 2007 [3]. Since the
pioneering work of Bose, the study of transmission of data in such linear quantum registers has
been the subject of many investigations [1, 4, 5, 6, 7].

The linear spin chains as introduced by Bose consist of a linear sequence of permanently
coupled qubits, i.e. quantum two-state systems. These are realized as spin-1/2 systems, where
|0〉 is the notation for spin down and |1〉 for spin up. The question is whether the chain can
act as a quantum data-bus if the interactions in the chain are permanent (i.e. the couplings are
always “on” and fixed in strength).

From the mathematical point of view, a linear spin chain is determined by its Hamiltonian. A
system of N + 1 interacting qubits (spin 1/2 particles) in a quantum register is usually modeled



by an isotropic Hamiltonian of XY type:

Ĥ =
1

2

N−1∑
k=0

Jk(σ
x
k · σxk+1 + σyk+1 · σ

y
k) +

1

2

N∑
k=0

hk(σ
z
k + 1), (1)

where Jk is the coupling strength between the kth and (k+ 1)th qubit, and hk is the “Zeeman”
energy of the kth qubit. For such Hamiltonians, it is common to use the Jordan-Wigner
transformation, mapping the Pauli matrices to spinless lattice fermions [8, 9]. Then the
Hamiltonian takes the form

Ĥ =

N−1∑
k=0

Jk(a
†
kak+1 + a†k+1ak) +

N∑
k=0

hka
†
kak. (2)

We shall be dealing with the problem in this form; the constants Jk and hk are referred to as
the spin chain data.

Initially, the system is in its completely polarized ground state |0〉 = |00 · · · 0〉 = |0〉⊗|0〉⊗· · ·⊗
|0〉, where |0〉 denotes the spin down state. Let |k) = |00 · · · 010 · · · 0〉 = a†k|0〉 (k = 0, 1, . . . , N)
denote a state in which there is a single fermion at the site k and all other sites are empty, i.e.
|k) describes the state in which the spin at the site k has been flipped to |1〉. These notions are
illustrated in the following figures.

Figure 1. Illustration of the ground state
|0〉 of the linear spin chain, with all spins
down.

Figure 2. Illustration of the single fermion
state |k), with the spin at site k up and all
others down (here k = 3).

The set of states |k) (k = 0, 1, . . . , N) forms a basis for the single-fermion states of the system.

In this single-fermion basis, the Hamiltonian Ĥ takes the matrix form

M =


h0 J0 0 · · · 0
J0 h1 J1 · · · 0

0 J1 h2
. . .

...
...

. . .
. . . JN−1

0 0 JN−1 hN

 . (3)

The dynamics (time evolution) of the system is completely determined by the eigenvalues εj
and eigenvectors ϕj of this matrix M . Once the single-fermion eigenstates ϕj are determined,

the n-fermion eigenstates of Ĥ (n ≤ N) can be constructed using the technique of Slater
determinants [9, 10]. In order to determine the single-fermion states, note that the matrix
M in (3) is real and symmetric, so the spectral theorem [11] implies that it can be written as
M = UDUT , where D is a diagonal matrix and U an orthogonal matrix:

D = diag(ε0, ε1, . . . , εN ), (4)

UUT = UTU = I. (5)



The entries of D are the single-fermion energy eigenvalues, and the columns of the matrix U are
the (orthonormal) eigenvectors of M , i.e. the single-fermion eigenstates ϕj =

∑N
k=0 Ukj |k) with

Ĥϕj = Mϕj = εj ϕj .
The dynamics of the system under consideration is described by the unitary time evolution

operator U(t) ≡ exp(−itĤ). Assume that the “state sender” is located at site s of the spin
chain, and the “state receiver” at site r (s and r are site labels, belonging to {0, 1, . . . , N}). At
time t = 0 the sender turns the system into the single spin state |s). After a certain time t, the
system evolves to the state U(t)|s) which may be expressed as a linear superposition of all the
single spin states. So the transition amplitude of an excitation from site s to site r of the spin
chain is given by the time-dependent correlation function

fr,s(t) = (r|U(t)|s). (6)

Using the orthogonality of the states ϕj , one finds [12]:

fr,s(t) = 〈
N∑
k=0

Urkϕk| exp(−itĤ)
N∑
j=0

Usjϕj〉 =
N∑
j=0

UrjUsje
−itεj . (7)

One says that there is perfect state transfer at time t from one end of the chain to the other
end when |fN,0(t)| = 1. The conditions for perfect state transfer can quite easily be described
in terms of the “mirror symmetry” of the matrix M in (3), see [13, 7]. However, if our aim is to
study analytical solutions, we should also require the conditions that the eigenvalues εj and the
eigenvector components Ukj should be analytic (closed form) expressions, for arbitrary N (i.e.
the value of N is not fixed, and appears as a parameter in the closed form expressions of εj and

Ukj). We shall refer to such cases as “analytically solvable Hamiltonians Ĥ”.
The purpose of this contribution is to present some results and examples of spin chains

allowing perfect state transfer in the context of orthogonal polynomials. These examples are
taken from [12] and [14]. The main addition for the current contribution is that we present some
animations illustrating the ideas of perfect state transfer in this context.

2. Spin chain with constant interaction
The simplest possible example of a Hamiltonian Ĥ that is analytically solvable has zero
background magnetic field (i.e. all hk = 0) and constant nearest-neighbour interaction in the
chain (i.e. all Jk = 1). For an interaction matrix M with these simple spin chain data, there
is indeed an analytically closed form expression for its eigenvalues and eigenvectors [1]. In
particular,

εj = 2 cos

(
(j + 1)π

N + 2

)
, (j = 0, 1, . . . , N) (8)

and the eigenvectors ϕj are the columns of the (orthogonal) matrix U given by

Uij =

√
2

N + 2
sin

(
(i+ 1)(j + 1)π

N + 2

)
(i, j = 0, 1, . . . , N). (9)

Following (7), the correlation function becomes

fr,s(t) =

N∑
j=0

2

N + 2
sin

(
(r + 1)(j + 1)π

N + 2

)
sin

(
(s+ 1)(j + 1)π

N + 2

)
exp

(
−2it cos

(
(j + 1)π

N + 2

))
.

(10)



Let us consider this function in more detail for the case s = 0 (i.e. the sender is at the left end
of the chain). For any time t, one can compute the function fr,0(t) or its absolute value |fr,0(t)|,
and this for all r-values (r = 0, 1, . . . , N). If |fr,0(t)| = 0, the rth spin of the system is spin down
(depicted by an arrow down for site r). If |fr,0(t)| = 1, the rth spin of the system is spin up
(depicted by an arrow up). In general, when 0 < |fr,0(t)| < 1, the rth spin of the system is in a
superposition state of the form

cos(α)|0〉+ eiφ sin(α)|1〉.

Such a state can be depicted by an arrow in the direction of the angle α; following our convention
of spin up and spin down, this means α = −π

2 + π|fr,0(t)|.
We are now in a position to illustrate the time evolution of such a spin chain by means of an

animation. Consider the spin chain with N = 8. In the following figure, we depict the evolution
of the system for time t running from 0 to 3π. At time t = 0, the system is in the initial state |0)
with the leftmost spin in a pure state with spin up, and all the others spin down. Then, at any
time t, we compute fr,0(t) for r = 0, 1, . . . , N , and depict the corresponding arrows according to
the above-mentioned convention. The result is shown in Figure 3, as an animation.

In this case, due to the nature of the correlation function fr,0(t) given by (10), there is
clearly no perfect state transfer. In other words, at any time t > 0 all values fr,0(t) satisfy
0 < |fr,0(t)| < 1.

animation1

Figure 3. Time evolution of a linear spin chain with constant data. Click on the picture to see
the animation running, from t = 0 up to t = 3π.

3. Spin chains allowing perfect state transfer
The previous example did not allow perfect state transfer, due to the simple choice of the spin
chain data. It is known, however, that if the spin chain data Jk and hk are chosen appropriately,
perfect state transfer is possible. Such an example was given in [10, 4], with spin chain data

hk = N/2, Jk =
1

2

√
(k + 1)(N − k). (11)

It turns out that in this case, the eigenvectors of M are related to Krawtchouk polynomial
evaluations. For a second known example allowing perfect state transfer [10], dual Hahn
polynomials play a role. In this context, we studied more generally systems where the spin
chain data is related to the Jacobi matrix of a set of discrete orthogonal polynomials [12]. This
general approach also leads to closed form expressions for the correlation function fr,s(t).

Let us present one example here, based upon the Krawtchouk polynomials. The Krawtchouk
polynomial of degree n (n = 0, 1, . . . , N) in the variable x, with parameter 0 < p < 1 is given by

Kn(x) ≡ Kn(x; p,N) = 2F1

[
−x,−n
−N ;

1

p

]
. (12)
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The function 2F1 is the classical hypergeometric series [15, 16], and in this case it is a terminating
series because of the appearance of the negative integer −n as a numerator parameter.
Krawtchouk polynomials satisfy a (discrete) orthogonality relation [17]:

N∑
x=0

w(x)Kn(x)Km(x) = dnδmn, (13)

where w(x) is the weight function in x and dn is a function depending on n:

w(x) =

(
N

x

)
px (1− p)N−x (x = 0, 1, . . . , N); dn =

1(
N
n

) (1− p
p

)n
. (14)

They also satisfy the following three-term recurrence relation:

− xKn(x) = n(1− p)Kn−1(x)−
[
p(N − n) + n(1− p)

]
Kn(x) + p(N − n)Kn+1(x). (15)

It is convenient to introduce orthonormal Krawtchouk functions by

K̃n(x) ≡
√
w(x)Kn(x)√

dn
, (16)

satisfying
xK̃n(x) = Jn−1 K̃n−1(x) + hn K̃n(x) + Jn K̃n+1(x), (17)

where
hn = Np+ (1− 2p)n, Jn = −

√
p(1− p)

√
(n+ 1)(N − n). (18)

In other words, for the interaction matrix MK with the above spin chain data, and a matrix
U with Ujk = K̃j(k), one has MKU = UD, where D = diag(0, 1, 2, . . . , N) (due to the
recurrence relation), and U is an orthogonal matrix (due to the orthogonality relations of the
polynomials). So the eigenvectors of the Hamiltonian (in the single-fermion case) corresponding
to the quantities (18) have components equal to normalized Krawtchouk polynomials, and the
corresponding energy eigenvalues are εk = k (k = 0, 1, . . . , N). This implies that the correlation
function (7), where we put z = e−it, takes the following form:

fr,s(t) =

N∑
k=0

UrkUskz
εk =

N∑
k=0

K̃r(k)K̃s(k)zk

=
1√
drds

N∑
k=0

w(k)Kr(k)Ks(k)zk (z = e−it). (19)

Now one can use summation formulas for hypergeometric series, leading to [12]

fr,s(t) =

√(
N

r

)(
N

s

)
(
√
p(1− p))r+s(1− z)r+s(1− p+ pz)N−r−s

× 2F1

[
−r,−s
−N ;

−z
p(1− p)(1− z)2

]
. (20)

This is a closed form expression for the general correlation function. Note that it can also
be obtained by means of a group theoretical computation [12]: the Jacobi matrix MK can be



identified with an element of the Lie algebra su(2) in the (N + 1)-dimensional representation.
Then the calculation of

fr,s(t) = (r| exp(−itMK)|s)

simply leads to the computation of a matrix element of an SU(2) group element, and these
are known as d-functions, related to Jacobi polynomials, i.e. expressed as 2F1-functions [18,
Chapter 4].

Let us now consider the possibility of perfect state transfer. From (20), one finds

fN,0(t) =
(√

p(1− p)
)N

(1− e−it)N , (21)

so in particular fN,0(π) = 1 when p = 1/2. In other words, this model allows perfect state
transfer when the parameter p = 1/2, and the transfer takes place at time t = π. This is
illustrated as an animation in Figure 4.

animation2

Figure 4. Time evolution of a linear spin chain (N = 8) with data determined by the Jacobi
matrix of Krawtchouk polynomials (18). Here p = 1/2. Click on the picture to see the animation
running, from t = 0 up to t = π. Note that there is indeed perfect state transfer.

When the parameter p is different from 1/2, one can see from (21) that |fN,0(t)| never reaches
the value 1. Once again, let us illustrate this as an animation, see Figure 5. Note that at time
t = 2π the system is back in its initial state. This is because in general the function (19) is a
periodic function with period 2π.

animation3

Figure 5. Time evolution of a linear spin chain (N = 8) with data determined by the Jacobi
matrix of Krawtchouk polynomials (18). Now we have chosen p = 1/3. Click on the picture
to see the animation running, from t = 0 up to t = 2π, and note that there is no perfect state
transfer.

It should be mentioned that general conditions for perfect state transfer can be set up in
terms of the interaction matrix M [4, 10, 7]. Following this, one can in principle use a numerical
procedure known as the inverse eigenvalue problem, and design spin chains for perfect state
transfer numerically [13]. This is, however, always for a chosen numerical value of N , whereas
here we have worked with arbitrary N .
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In [12] systems for which the interaction matrix coincides with the Jacobi matrix of a set
of orthogonal polynomials were systematically investigated. Although no other solutions with
perfect state transfer were found this way, the theoretical analysis gave rise to a number of
interesting results: explicit formulas for transition amplitudes (or correlation functions), an
explanation of why these two systems discovered in [10] are so special, and a group theoretical
approach of the problem. For the case where the Jacobi matrix coincides with that of
Krawtchouk polynomials (described above), some interesting limiting cases were also discussed
in [12]. When the Jacobi matrix is that of Hahn polynomials (then two parameters α and β are
involved), a compact formula for fr,s(t) was obtained, but no perfect state transfer is possible
(although there were interesting limiting cases). When the Jacobi matrix is that of dual Hahn
polynomials (with two parameters γ and δ), again a compact formula for fr,s(t) was obtained.
This time, perfect state transfer is possible when γ = δ = 2P+1

2Q , P,Q ∈ N, at time t = Qπ.

This corresponds to the second example of [10]. Note that in this case the single-fermion energy
eigenvalues are of the form εk = k(k + γ + δ + 1). Finally, when the Jacobi matrix is that
of Racah polynomials (now four parameters α, β, γ and δ are present), a (more complicated)
formula for fr,s(t) was obtained, but no new transfer results compared to earlier cases followed.

4. Spin chains with q-numbers in the spin chain data
The approach of spin chains with data originating from Jacobi polynomials of discrete orthogonal
polynomials, as initiated in [12], turned out to be very illuminating. Apart from several known
systems of discrete orthogonal polynomials of hypergeometric type in the Askey-scheme [17],
there is also a list of discrete orthogonal polynomials of q-hypergeometric type. So it is a natural
question to ask whether Jacobi matrices of these q-orthogonal polynomials could also function
as interaction matrices for spin chains, and whether they would give rise to new solutions with
perfect state transfer. This topic was treated in [14]. Among the main results there is indeed a
new analytical solution for a spin chain with perfect state transfer. This new solution occurs in
the context of q-Krawtchouk polynomials. In [14] all cases of the q-Askey-scheme were studied,
and their analysis has shown that this is the only new case with perfect state transfer. For
the complete analysis, we refer to [14]. Here, we shall just present the simple case related to
q-Krawtchouk polynomials, that leads to a new model for perfect state transfer.

Let us first fix some notation. In the context of q-series, q is a positive real number with
q 6= 1, and for us it can be considered as an extra parameter in the model. We use the common
notation for q-numbers:

[n] ≡ [n]q =
1− qn

1− q
(n ∈ Z) (22)

and [n]→ n in the limit q → 1. For any complex number a and any nonnegative integer n, the
q-shifted factorial is defined by

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), (23)

and the product is just 1 when n = 0. Sometimes, in the context when 0 < q < 1, one also uses
the infinite product

(a; q)∞ =
∞∏
k=0

(1− aqk). (24)

For products of q-shifted factorials, it is common to use the abbreviation

(a1, a2, . . . , aA; q)n = (a1; q)n(a2; q)n · · · (aA; q)n. (25)



The q-hypergeometric series or basic hypergeometric series AφB depends on A numerator
parameters ai, B denominator parameters bi and a variable z and is defined as [19]:

AφB

[
a1, a2, . . . , aA
b1, . . . , bB

; q, z

]
=
∞∑
n=0

(a1, a2, . . . , aA; q)n
(q, b1, . . . , bB; q)n

[
(−1)nq(

n
2)
]1+B−A

zn. (26)

When the numerator contains a parameter of the form q−m, with m a nonnegative integer, the
series is terminating.

The q-Krawtchouk polynomials Kn (q−x; p,N ; q) are characterized by a positive integer
parameter N and a positive real parameter p: p > 0. This polynomial of degree n in q−x

is defined as [17]

Kn
(
q−x
)
≡ Kn(q−x; p,N ; q) = 3φ2

[
q−n, q−x,−pqn

q−N , 0
; q, q

]
, n = 0, 1, . . . , N. (27)

The q-Krawtchouk polynomials satisfy a discrete orthogonality relation, namely

N∑
x=0

w(x)Km(q−x)Kn(q−x) = dnδmn, (28)

where the weight function is

w(x) =
(q−N ; q)x

(q; q)x
(−p)−x, (29)

and the square norm is

dn =
(q,−pqN+1; q)n
(−p, q−N ; q)n

(1 + p)

(1 + pq2n)
(−pq; q)N p−Nq−(N+1

2 )(−pq−N )nqn
2
. (30)

It is easy to see that dn > 0 for 0 < q < 1 and also for q > 1 (since p > 0). The polynomials
Kn(q−x) also satisfy the following three term recurrence relation:

− (1− q−x)Kn(q−x) = AnKn+1(q
−x)− (An + Cn)Kn(q−x) + CnKn−1(q−x), (31)

with [17]

An =
(1− qn−N )(1 + pqn)

(1 + pq2n)(1 + pq2n+1)
, Cn = −pq2n−N−1 (1 + pqn+N )(1− qn)

(1 + pq2n−1)(1 + pq2n)
. (32)

The corresponding orthonormal q-Krawtchouk functions

K̃n(q−x) ≡

√
w(x)

dn
Kn(q−x) (33)

satisfy the recurrence relation

− [−x]K̃n(q−x) = Jn−1K̃n−1(q−x) + hnK̃n(q−x) + JnK̃n+1(q
−x), (34)

where

Jn =
An

1− q

√
dn+1

dn
, hn = −An + Cn

1− q
. (35)



As in the previous section, for the interaction matrix MqK with the above spin chain data,

and a matrix U with Ujk = K̃j(q−k), one has MqKU = UD, where D = diag(ε0, ε1, ε2, . . . , εN )
with εk = −[−k] (due to the recurrence relation), and U is an orthogonal matrix (due to the
orthogonality relations of the polynomials). In other words, the eigenvectors of the Hamiltonian
(in the single-fermion case) corresponding to the quantities (35) have components equal to
normalized q-Krawtchouk polynomials, and the corresponding energy eigenvalues are

εk = −[−k] = −1− q−k

1− q
= q−1 + q−2 + · · ·+ q−k. (36)

As before, the correlation function becomes

fr,s(t) =
N∑
k=0

UrkUskz
εk =

1√
drds

N∑
k=0

w(k)Kr(q−k)Ks(q−k)z−[−k] (z = e−it). (37)

In order to evaluate this sum, consider first the simple case when sender and receiver are at
different ends of the chain, namely when s = 0 and r = N . One finds:

N∑
k=0

w(k)KN (q−k)K0(q
−k)z−[−k] =

N∑
k=0

(q−N ; q)k
(q; q)k

qNkz−[−k]. (38)

Because of the factor z−[−k], the sum in (38) is not of q-hypergeometric type, hence there is no
hope that it can be simplified any further for arbitrary values of z (i.e. for arbitrary values of
t). For certain specific values, however, simplification does take place. Since z = e−it, one has

z−[−k] = e−it(q
−1+q−2+···+q−k).

Assume now that the deformation parameter q is a rational number of the following form:

q−1 =
P

Q
, with P and Q odd positive integers (having no common factors). (39)

Then, for each value of the index k with k ≤ N :

q−1 + q−2 + · · ·+ q−k =
1

QN
(PQN−1 + P 2QN−2 + · · ·+ P kQN−k)

=
1

QN
× k × (an odd integer). (40)

Suppose now that we consider the system at time

t = T ≡ QNπ,

then
z−[−k] = e−it(q

−1+q−2+···+q−k) = e−iπ(PQ
N−1+P 2QN−2+···+PkQN−k) = (−1)k.

In this case, the expression (38) simplifies drastically, since on can apply the q-binomial
theorem [19, (II.4)]:

N∑
k=0

(q−N ; q)k
(q; q)k

qNk(−1)k = (−1; q)N =

N−1∏
j=0

(1 + qj). (41)



Taking into account the expressions for d0 and dN from (30), one has

fN,0(T ) =
(−1; q)N√
d0dN

= (−1; q)N

√
pNqN(N+1)/2

(−pq,−pqN ; q)N
.

It is easy to see that this expression takes its maximum value when p = q−N , and in that case

fN,0(T )
∣∣∣
p=q−N

=

√
q−N(N−1)/2(−1; q)N

(−q−N+1; q)N
= 1,

allowing perfect state transfer. So the q-Krawtchouk polynomials with parameter p = q−N and
q of the special form (39) yield a new model of a spin chain with perfect state transfer.

Once again, let us illustrate this as an animation, see Figure 6.

animation4

Figure 6. Time evolution of a linear spin chain (N = 8) with data determined by the Jacobi
matrix of q-Krawtchouk polynomials. Here p = q−N = q−8, and q = Q/P = 3. Click on the
picture to see the animation running, from t = 0 up to t = T = QNπ = 38π. Note that there is
perfect state transfer.
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