Efficient computation

of updated lower expectations for
imprecise continuous-time hidden
Markov chains




Arno
Siebes




Imprecise continuous-time Markov chain



Imprecise continuous-time Markov chain

A



Imprecise continuous-time Markov chain

A

updated lower
expectations

E(f(Xt)D/tl S Ot17 R 7Y;5n S Otn)

Oy, O, O,
\y Ny \y
Yi, Yi, Yy



Imprecise continuous-time Markov chain

A

updated lower
expectations

E(f(X)|Y:, € Oy, Y, € Oy,) efficient
algorithms
Otl OtQ Otn
Ny, Ny Ny,
Yi, Yi, Yi



Imprecise continuous-time Markov chain

A

updated lower
expectations

E(f( XY, =gty -, Yo, = Ut,,) point

observations




Want
to know
more?

See you

Efficient Computation of Updateq Lower Expectations for
Imprecise Continuous-Time Hidden m kov

Thomas Krak, Jasper pe

performing amounts to computing lower €Xpectations of functions
Imprecise cantmuous-tirne hidden Marko On the sty €-Space of the ¢f in, given observations of
chains, that IS, imprecise contmuous—time Markoy chain; the output Variables, We dey lop ang nvestigate this
that are 4, SMmenteq With ra m outpyt Variables whose Problem ery fe SSUMptions on the output
distribution depends on thy idden sta f the chain variables, in particu(ar, they can be chosen to be either
€ prefix mprecise’ refers to the fact that We do not discrete o continuoys random Variables, oy, main
consider 4 classica( continuous-time Markoy chain, but sult is g Polynomia( runtime algorithm to Compute the
replace a robust extension that allows s to lower €Xpectation of functions on the state-space at
represent various types of Mode( uncertainty, using the any given time~pm’nt, givey
theory of imprecise prababilities. The inference Problem

“Precise” Contin

Uous-Time Markoy ¢
State-space x (eg, x= g

ealthy, sick))
Continuous-time oy chain p g,
Mber of time-poins, S90<t<r<s ping
Vesian network.

=@

Satisfies Markoy Property: Px, 1%, x,

) = p(x, %)

Imprecise cT Hidden Mar
t cannot pe directly observed, Insteaq we
“correlates” witp, X (eg., SYmptoms of disease)

D) Q

kov Chains

US OUtput modey:
L0 1x) = py, 1%) = pey |y, €Ryy
We are interestey in inferey

o5 about the states giye Observations,
For example, given Some 0 'y, ye Want to knoy, Elf(x,) Yieo].
Continuous Outputs
Ify,

is Continuouys, then Usually Pt =y) = Oforalipep
Assume 5 (conditionai) Probabiity density function DY xx, R:

POE0 X = 4y~ [ 010
o
Take a sequence Oy such tha 1m0 = (3}, Then define
Bl |y, =y

B0 | e g
THIS it exists e, Suitable assumptions, i Bl 1 x)] > 0.
=3 = Bl gy 1y
Elf ) 1, < ) 2 W

Solving the G

€neraliseq Bayes’ R,
In both Cases, we have o

ule(s)
generalised Bayeg rule:
ErGo) ve 0 < max{y e g, Elr(r, e o 1% (e, - W] =0}

B 1y, =y < maxu € R g, 1200 <) 5 Y]

See the Paper for 5 Polynomiaj funtime g|

hains

Pecifies 1.v.., at each fime teR,,

luces a

M a collection of Observations
of the output Variables,

Imprecise Contin

Uous-Time Markoy Chains
Now a set Pof dismbuticns

Bach P & P specifies V- X at each time ; ¢ Ry
For any finite numpe of time

SPoints, e.9.0 < ¢ <, S Pinduces
Credal networ-

D@ )

Satisfies Imprecise Markoy Property: Pxg |

Xo,

XoX) = 20X 1x,)

Outpuyts With Pogsit

ive (Upper} Probabiiity
I the obseryation, (¥ € 0) has positye Probabiity, e ;s Bayes’
rule;
PUhi=xreq
Bl [y e 0) Z””(P(n*;n)
&

Elf (o, e 0] = Inf{Ea [ (x,))y,

E{)J:PSP,P(}QEU)>O),
Whenever Py, e 0)> o,

€O01X)(r(x,) W] 0}
Continuous Outputs, imprecise Case

For the imprecise case, when Elp(vix1> o we define

Elrtx)y, = I = InfE,[£(x,) | Yo=ylipe P}

This lower EXpectation satisfies 5 limit imerpreia!ion

EF U1y =y 2 lmEF(x) |y, e ]

and a generajisey Bayes' rule ror (1

finite) mixtures of, densities:
Elrroy,

SV =mauep, Elotr1x)(rcx, ~Wl=0)
=
I
Universitese Utreche GHENT
UNIVERSITY




