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Abstract We consider the problem of performing
inference with imprecise continuous-time hidden Markov
chains, that is, imprecise continuous-time Markov chains
that are augmented with random output variables whose
distribution depends on the hidden state of the chain.
The prefix “imprecise' refers to the fact that we do not
consider a classical continuous-time Markov chain, but
replace it with a robust extension that allows us to
represent various types of model uncertainty, using the
theory of imprecise probabilities. The inference problem

“Precise” Continuous-Time Markov Chains
State-space X (e.g., X = {healthy, sick})
Continuous-time Markov chain P specifiesr.v. X; at each time t € Ry,

For any finite number of time-points, e.g. 0 < t < r < s, P induces a

Bayesian network:

Satisfies Markov property: P(X; | Xo, Xz, X;) = P(X, | X;)

Imprecise CT Hidden Markov Chains

States X, cannot be directly observed. Instead we observe Y; , which
“correlates” with X; (e.g., symptoms of a disease).

For simplicity, we use a precise, homogeneous output model:
P 1X) =Py | X)) = P(Y | X),t € Ry

We are interested in inferences about the states given observations.
For example, given some 0 c Y, we want to know E[f(X;) | Y; € O].

Continuous Outputs

If Y, is continuous, then usually P(Y; =y) =0 forallP € P.
Assume a (conditional) probability density function ¢: ¥ X X - R:

PO e0lx == | s0kdy
Take a sequence {0;};cy such that 11m 0; = {y}. Then define
Eplf(Xo) | Ve = y] = Im Ep[f(Xs) | Y, € O/]
This limit exists under suitable assumptions; if Ep[¢(y | X,)] > 0:

Ep[f(X)p(y | Xp)]

Eplf(Xo) 1Y = ¥l = — 0 o vl

Solving the Generalised Bayes’ Rule(s)

In both cases, we have a generalised Bayes' rule:

E[f(X,)| Y; € 0] = max{u € R: E[P(Y; € 0| X)(f(X,) — )] = 0}
E[f(X,) | Y, = y] = max{u € R : E[¢(y | X)(F(Xs) — )] = 0}

See the paper for a polynomial runtime algorithm to solve these.

amounts to computing lower expectations of functions
on the state-space of the chain, given observations of
the output variables. We develop and investigate this
problem with very few assumptions on the output
variables; in particular, they can be chosen to be either
discrete or continuous random variables. Our main
result is a polynomial runtime algorithm to compute the
lower expectation of functions on the state-space at
any given time-point, given a collection of observations
of the output variables.

Imprecise Continuous-Time Markov Chains
Now a set P of distributions.
Each P € P specifiesr.v. X; at each time t € Ry,

For any finite number of time-points, e.g. 0 < t < r < s, P induces a

credal network:

Satisfies imprecise Markov property: P(X; | Xo, X¢, X)) = P(Xs | X;)

Outputs with Positive (Upper) Probability
If the observation (Y; € 0) has positive probability, we use Bayes’
rule:

P(X; =x,Y, €0)

Eplf(X) | Y, € 0] = Zf QAT

x€eX
For the imprecise model, we use regular extension:
E[f(Xo|Y; € 0] = inf{Ep[f(X,)IY, €0]: P € P, P(Y, € 0) >0},
whenever P(Y, € 0) > 0.
This lower expectation satisfies a generalised Bayes’ rule:

E[f(X.)|Y; € 0] = max{u € R: E[P(Y; € 0 | X)(f(X,) — )] = 0}

Continuous Outputs, Imprecise Case

For the imprecise case, when E[¢(y | X;)] > 0 we define

E[f(X) | Ye =y] = inf{Ep[f(Xs) |V =y]: PEP}

This lower expectation satisfies a limit interpretation
E[f(X;) | Yo =] = lim E[f(X)) | Y; € 0]
and a generalised Bayes’ rule for (finite) mixtures of densities:

E[f(X) | Y; = y] = max{u € R: E[¢p(y | X)(F(Xs) — w)] = 0}
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