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Abstract We consider the problem of performing 
inference with imprecise continuous-time hidden Markov 
chains, that is, imprecise continuous-time Markov chains 
that are augmented with random output variables whose 
distribution depends on the hidden state of the chain. 
The prefix `imprecise' refers to the fact that we do not 
consider a classical continuous-time Markov chain, but 
replace it with a robust extension that allows us to 
represent various types of model uncertainty, using the 
theory of imprecise probabilities. The inference problem  
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State-space 𝑿𝑿 (e.g., 𝑿𝑿 = {healthy, sick}) 
 
Continuous-time Markov chain 𝑃𝑃 specifies r.v. 𝑋𝑋𝑡𝑡 at each time 𝑡𝑡 ∈ ℝ≥0 
 
For any finite number of time-points, e.g. 0 < 𝑡𝑡 < 𝑟𝑟 < 𝑠𝑠, 𝑃𝑃 induces a 
Bayesian network:  
 
 
 
 
Satisfies Markov property: 𝑃𝑃 𝑋𝑋𝑠𝑠  𝑋𝑋0,𝑋𝑋𝑡𝑡,𝑋𝑋𝑟𝑟) = 𝑃𝑃 𝑋𝑋𝑠𝑠  𝑋𝑋𝑟𝑟) 
 
 
 

 
Now a set Ƥ of distributions. 
 
Each 𝑃𝑃 ∈ Ƥ specifies r.v. 𝑋𝑋𝑡𝑡 at each time 𝑡𝑡 ∈ ℝ≥0  
 
For any finite number of time-points, e.g. 0 < 𝑡𝑡 < 𝑟𝑟 < 𝑠𝑠, Ƥ induces a 
credal network: 
 
 

 
Satisfies imprecise Markov property: 𝑃𝑃 𝑋𝑋𝑠𝑠  𝑋𝑋0,𝑋𝑋𝑡𝑡,𝑋𝑋𝑟𝑟) =  𝑃𝑃 𝑋𝑋𝑠𝑠  𝑋𝑋𝑟𝑟) 

amounts to computing lower expectations of functions 
on the state-space of the chain, given observations of 
the output variables. We develop and investigate this 
problem with very few assumptions on the output 
variables; in particular, they can be chosen to be either 
discrete or continuous random variables. Our main 
result is a polynomial runtime algorithm to compute the 
lower expectation of functions on the state-space at 
any given time-point, given a collection of observations 
of the output variables. 
 

 
 
States 𝑋𝑋𝑡𝑡 cannot be directly observed. Instead we observe 𝑌𝑌𝑡𝑡 , which 
“correlates” with 𝑋𝑋𝑡𝑡 (e.g., symptoms of a disease). 
 

 
 
 
 
 
For simplicity, we use a precise, homogeneous output model: 
 

𝑃𝑃 𝑌𝑌𝑡𝑡  𝑋𝑋𝑡𝑡) = 𝑃𝑃 𝑌𝑌𝑡𝑡  𝑋𝑋𝑡𝑡) = 𝑃𝑃 𝑌𝑌  𝑋𝑋), 𝑡𝑡 ∈ ℝ≥0 
 

We are interested in inferences about the states given observations. 
For example, given some 𝑂𝑂 ⊆ 𝒀𝒀, we want to know 𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 . 

 
 
If the observation 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  has positive probability, we use Bayes’ 
rule: 

𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  ≔  �𝑓𝑓(𝑥𝑥)
𝑃𝑃 𝑋𝑋𝑠𝑠 = 𝑥𝑥,𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂

𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂𝑥𝑥∈𝐗𝐗

 

 
For the imprecise model, we use regular extension: 
 

𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠 |𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  ≔  inf 𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠 |𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 ∶ 𝑃𝑃 ∈ Ƥ, 𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 > 0 , 
 
whenever 𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 > 0. 
 
This lower expectation satisfies a generalised Bayes’ rule: 
 
𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠 |𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 =  max 𝜇𝜇 ∈ ℝ ∶  𝔼𝔼 𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  𝑋𝑋𝑡𝑡) 𝑓𝑓 𝑋𝑋𝑠𝑠 − 𝜇𝜇 ≥ 0   
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If 𝑌𝑌𝑡𝑡 is continuous, then usually 𝑃𝑃 𝑌𝑌𝑡𝑡 = 𝑦𝑦 = 0 for all 𝑃𝑃 ∈ Ƥ. 
Assume a (conditional) probability density function 𝜙𝜙:𝒀𝒀 ×𝑿𝑿 → ℝ: 

𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  𝑋𝑋𝑡𝑡 = 𝑥𝑥 =  � 𝜙𝜙(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑦𝑦
𝑂𝑂

 

Take a sequence 𝑂𝑂𝑖𝑖 𝑖𝑖∈ℕ such that lim
𝑖𝑖→∞

𝑂𝑂𝑖𝑖 = 𝑦𝑦 . Then define 
 

𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦  ≔  lim
𝑖𝑖→∞

𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠  |  𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂𝑖𝑖  
 

This limit exists under suitable assumptions; if 𝔼𝔼𝑃𝑃 𝜙𝜙 𝑦𝑦 | 𝑋𝑋𝑡𝑡 > 0: 
 

𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦 =
𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠 𝜙𝜙 𝑦𝑦  𝑋𝑋𝑡𝑡)
𝔼𝔼𝑃𝑃 𝜙𝜙 𝑦𝑦  𝑋𝑋𝑡𝑡)

 

 

 
 
For the imprecise case, when 𝔼𝔼 𝜙𝜙 𝑦𝑦  𝑋𝑋𝑡𝑡) > 0 we define 
 

𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦  ≔ inf 𝔼𝔼𝑃𝑃 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦 ∶ 𝑃𝑃 ∈ Ƥ  
 
This lower expectation satisfies a limit interpretation 
 

𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦 =  lim
𝑖𝑖→∞

𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂𝑖𝑖  
 
and a generalised Bayes’ rule for (finite) mixtures of densities: 
 

𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦 = max 𝜇𝜇 ∈ ℝ ∶  𝔼𝔼 𝜙𝜙 𝑦𝑦  𝑋𝑋𝑡𝑡) 𝑓𝑓 𝑋𝑋𝑠𝑠 − 𝜇𝜇 ≥ 0  

 

Continuous Outputs Continuous Outputs, Imprecise Case 

“Precise” Continuous-Time Markov Chains Imprecise Continuous-Time Markov Chains 

X0 Xr Xs Xt 

X0 Xr Xs Xt 

X0 Xr Xs Xt 

Y0 Yr Ys Yt 

 
 
 

In both cases, we have a generalised Bayes’ rule: 
 
𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠 |  𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂 =  max 𝜇𝜇 ∈ ℝ ∶  𝔼𝔼 𝑃𝑃 𝑌𝑌𝑡𝑡 ∈ 𝑂𝑂  𝑋𝑋𝑡𝑡) 𝑓𝑓 𝑋𝑋𝑠𝑠 − 𝜇𝜇 ≥ 0  
𝔼𝔼 𝑓𝑓 𝑋𝑋𝑠𝑠  | 𝑌𝑌𝑡𝑡 = 𝑦𝑦 = max 𝜇𝜇 ∈ ℝ ∶  𝔼𝔼 𝜙𝜙 𝑦𝑦  𝑋𝑋𝑡𝑡) 𝑓𝑓 𝑋𝑋𝑠𝑠 − 𝜇𝜇 ≥ 0  

 
See the paper for a polynomial runtime algorithm to solve these. 

 

Solving the Generalised Bayes’ Rule(s) 
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