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We provide simple methods for computing exact bounds on expected first-passage and 
return times in finite-state birth–death chains, when the transition probabilities are 
imprecise, in the sense that they are only known to belong to convex closed sets of 
probability mass functions. In order to do that, we model these so-called imprecise birth–
death chains as a special type of time-homogeneous imprecise Markov chain, and use 
the theory of sub- and supermartingales to define global lower and upper expectation 
operators for them. By exploiting the properties of these operators, we construct a simple 
system of non-linear equations that can be used to efficiently compute exact lower and 
upper bounds for any expected first-passage or return time. We also discuss two special 
cases: a precise birth–death chain, and an imprecise birth–death chain for which the 
transition probabilities belong to linear-vacuous mixtures. In both cases, our methods 
simplify even more. We end the paper with some numerical examples.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Birth–death chains [27, Section 9.4] are a special type of time-homogeneous Markov chains, where transitions from a 
given state are only possible to that state or to adjacent ones. They are used in various scientific fields, including evo-
lutionary biology [1, Chapter 3] and queueing theory [16]. We consider the generalised case of an imprecise birth–death 
chain, which, basically, is a birth–death chain whose transition probabilities are not specified exactly, but are only known 
to belong to some given closed convex set of probability mass functions. This may be the case because the transition prob-
abilities are based on partial expert knowledge or limited data, or for the purposes of conducting a sensitivity analysis. 
Similar models have already been considered in Reference [6], which presented results on limiting conditional distributions 
for imprecise birth–death chains with one absorbing state. Imprecise birth–death chains are themselves a special case of 
so-called (time-homogeneous) imprecise Markov chains, which were studied in—amongst others—References [11,18,25].

This paper focuses on—upward and downward—first-passage and return times.1 For precise birth–death chains, these 
have for example been studied in Reference [23]. For the more general case of imprecise birth–death chains, we are not 
aware of any previous discussion in the literature. Our most important contributions are simple methods for computing 
exact lower and upper bounds for any expected first-passage and return time in finite-state imprecise birth–death chains. 
We also consider two special cases: precise birth–death chains and imprecise birth–death chains whose local models are 
linear-vacuous mixtures. In those cases, our methods lead to closed-form expressions.
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1 These are often called recurrence times as well.
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We start in Section 2 with a brief introduction to the framework of imprecise probabilities, restricting our attention to 
the simple case of finite state spaces. We introduce credal sets as closed and convex sets of probability mass functions, 
provide a number of examples, and establish a connection with lower and upper probabilities. This section also introduces 
the concept of a lower and upper expectation operator, and explains that these operators are mathematically equivalent to 
credal sets.

Next, we explain what a birth–death chain is in Section 3, and then introduce an imprecise version in Section 4. As 
we will see, an imprecise birth–death chain is just a special type of a time-homogeneous imprecise Markov chain [11], 
which, basically, can be regarded as birth–death chain whose local models are credal sets. However, as we will explain, this 
should not be taken to mean that an imprecise birth–death chain is a collection of birth–death chains. Instead, an imprecise 
birth–death chain can be regarded as a set of probability trees, only some of which are birth–death chains.

Section 5 defines the global lower and upper expectations that correspond to these imprecise birth–death chains, using 
the notions of sub- and supermartingales. For real-valued functions that only depend on a finite number of variables, 
these lower and upper expectations are just the minimum and maximum expectations of this function, with respect to 
the probability trees in the imprecise birth–death chain. For more general—possibly extended real-valued—functions on the 
infinite sequence of all variables, the expressions become more intricate. We also recall some convenient properties of the 
definitions that we adopt, including a global Markov property and a generalised version of the law of iterated expectations.

With all this machinery in place, Section 6 then finally introduces our main topic of interest: return and—upward and 
downward—first-passage times, and in particular, their lower and upper expectations. As we will see, these lower and upper 
expected first-passage and return times satisfy a relatively simple system of non-linear equations. The next three sections of 
the paper are concerned with solving this system, and by doing so, we obtain a simple method for computing the lower and 
upper expected first-passage and return times that we are interested in. In Sections 7 and 8, we develop recursive methods 
for computing lower and upper expected upward and downward first-passage times, respectively, and Section 9 explains 
how these results can be used to compute lower and upper expected return times.

The next two sections are concerned with special cases. Section 10 considers the special case of precise birth–death 
chains and establishes closed-form expressions for their expected first-passage and return times. It also proves that even 
though an imprecise birth–death chain is more than just a collection of precise birth–death chains, nevertheless, the 
lower and upper value of an expected first-passage or return time can always be obtained by a precise birth–death 
chain. Section 11 discusses the special case where the local models are linear-vacuous mixtures, that is, when they are 
ε-contaminated. Here too, we are able to obtain closed-form expressions.

Section 12 presents some numerical results. We apply our methods for lower and upper first-passage times to a general 
example, and illustrate our methods for lower and upper return times on an example with local models that are linear-
vacuous mixtures.

Finally, Section 13 briefly concludes the paper and mentions some possible avenues for future research. The proofs of 
our main results are gathered in Appendix A.

2. A brief introduction to imprecise probabilities

We start by presenting some basic concepts from the theory of imprecise probabilities. For more information, we refer 
the reader to Walley’s book [26], and to more recent textbooks [2,24].

Consider a variable X that takes values in some non-empty finite set X . A common approach to describe a subject’s 
uncertainty about the actual value of X is then to consider a probability mass function p on X , that is, an element of the 
set

�X :=
{

p ∈R
X :

∑
x∈X

p(x) = 1 and (∀x ∈ X ) p(x) ≥ 0

}
.

For any real-valued function f on X —also called a gamble—the corresponding expectation of f is then given by

E p( f ) :=
∑

x∈X

p(x) f (x).

If we now let G (X ) be the set of all gambles, then the expectation operator E p : G (X ) → R can be regarded as an 
alternative, equivalent representation for p. Indeed, E p can clearly be inferred from p and, conversely, if we know E p , then 
for all x ∈ X , p(x) is equal to the expectation E p(Ix) of the indicator Ix ∈ G (X ) of x, as defined by

Ix(y) :=
{

1 if y = x

0 if y �= x
for all y ∈ X .

The success of this approach depends crucially on the assumption that our uncertainty about X can be described by a 
probability mass function p, and furthermore requires that p is specified precisely. However, in practice, eliciting such a 
probability function can be difficult, especially if it is based on—possibly disagreeing—expert opinions, or when it has to 
be learned from small amounts of data. Whenever this is the case, the theory of imprecise probabilities [2,24,26] does not 
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Fig. 1. The grey area depicts the linear-vacuous credal set �1 of Example 1.

Fig. 2. The grey area depicts the credal set �2 of Example 2.

insist on using a single probability mass function p, but instead allows for using sets of probabilities. The central object of 
study then becomes a credal set �: a non-empty, convex and closed subset of �X .

For any such credal set �, the corresponding lower and upper probability mass of x ∈ X are defined by

p(x) := min{p(x) : p ∈ �} and p(x) := max{p(x) : p ∈ �}, (1)

respectively. The following example illustrates these concepts.

Example 1. Let X := {a, b, c}, consider a probability mass function

p∗ = (p∗(a), p∗(b), p∗(c)) = (2/5, 2/5, 1/5)

and let ε := 1/2. The corresponding so-called linear-vacuous [26, Section 2.9.2] (or ε-contaminated) credal set is then defined 
by

�1 := �ε
p∗ := {(1 − ε)p∗ + εp : p ∈ �X }, (2)

which can be regarded as neighbourhood model for the probability mass function p∗ .
Since the state space X is ternary, this credal set can be depicted easily. We first represent �X by an equilateral 

triangle of height one. The elements p = (p(a), p(b), p(c)) of �X then correspond to points in this triangle. For every such 
p, the value of p(a) is equal to the perpendicular distance from p to the edge that opposes the corner that corresponds to 
a, and similarly for p(b) and p(c). In this way, the credal set �1 corresponds to the grey area in Fig. 1. As can be seen from 
this figure, �1 is the convex hull of the three extreme points (p(a), p(b), p(c)), (p(a), p(b), p(c)), and (p(a), p(b), p(c)). The 
numerical values of the lower and upper masses in these expressions are

p(a) = p(b) = 1/5, p(a) = p(b) = 7/10, p(c) = 1/10, and p(c) = 3/5.

They are easily obtained by combining Equations (1) and (2). ♦

It is not necessary for a credal set to be defined directly, as was the case in Example 1. It can also be specified indirectly, 
by means of partial constraints on probabilities. A particularly appealing way of doing so is to specify a probability interval 
for every x in X , and to let � be the largest subset of �X that satisfies these constraints. We illustrate this in our next 
example.

Example 2. Let X := {a, b, c} and consider the following probability constraints:

p(a) ∈ [1/5, 8/15], p(b) ∈ [1/5, 8/15] and p(c) ∈ [1/10, 13/30].
The largest set of probability mass functions p ∈ �X that satisfies these constraints is then a credal set, which we denote 
by �2; see Fig. 2. This credal set �2 has six extreme points, the elements of which consist of a lower probability, an upper 
probability and their complement. These extreme points
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Fig. 3. The grey zone depicts the credal set �3 of Example 2. The credal set �3 tangents to each side of the credal set �2 that was described earlier in the 
same example.

(8/15, 1/5, 8/30), (8/15, 11/30, 1/10), (11/30, 8/15, 1/10),

(1/5, 8/15, 8/30), (1/5, 11/30, 13/30), (11/30, 1/5, 13/30)

can be identified in the above order by starting from the upper left corner of the polygon in Fig. 2 and moving clockwise. ♦

However, as our next example should clarify, a credal set is not always completely characterised by such lower and upper 
probability masses.

Example 3. Let �3 be the circular credal set that is depicted in Fig. 3, which has an infinite number of extreme points. In 
order to allow for an easy comparison, Fig. 3 also depicts the credal set �2 of Example 2. These two credal sets clearly have 
the same lower and upper probability masses. ♦

Therefore, we will not restrict our attention to lower and upper probability masses, but will instead focus on lower and 
upper expectations.

With any credal set �, we can associate a lower expectation operator E : G (X ) →R and an upper expectation operator 
E : G (X ) →R, defined by

E( f ) := min{E p( f ) : p ∈ �} and E( f ) := max{E p( f ) : p ∈ �} for all f ∈ G (X ). (3)

Lower and upper expectations are related by conjugacy: for any f ∈ G (X ), we have that E( f ) = −E(− f ). Therefore, it 
suffices to consider only one of them. We will focus on lower expectations.

For any credal set �, the corresponding lower expectation operator E can easily be shown to satisfy the following 
so-called coherence axioms:

C1. E( f ) ≥ min f for all f ∈ G (X ); [bounds]
C2. E( f + g) ≥ E( f ) + E(g) for all f , g ∈ G (X ); [superadditivity]
C3. E(λ f ) = λE( f ) for all f ∈ G (X ) and real λ ≥ 0, [non-negative homogeneity]

and, if we let E be the corresponding conjugate upper expectation operator, then as a consequence of C1–C3, we also find 
that

C4. E( f ) ≤ E(g) and E( f ) ≤ E(g) for all f , g ∈ G (X ) with f ≤ g;
C5. min f ≤ E( f ) ≤ E( f ) ≤ max f for all f ∈ G (X );
C6. E( f + μ) = E( f ) + μ and E( f + μ) = E( f ) + μ for all f ∈ G (X ) and μ ∈R.

The reason we refer to C1–C3 as axioms is because they capture the essence of what it means to be the lower expectation 
operator of a credal set. Indeed, as proved in Reference [17], for any operator E : G (X ) →R that satisfies properties C1–C3,2

the corresponding credal set

� := {p ∈ �X : E p( f ) ≥ E( f ) for all f in G (X )}
completely characterises E , in the sense that E can be derived from � by means of Equation (3), and this credal set is 
furthermore the only credal set for which this is the case. Hence, a credal set � and its lower expectation operator E are 
mathematically equivalent, and therefore, we can—and will—use them interchangeably.

2 Such an operator is sometimes also called a coherent lower prevision, and is then usually given a different interpretation and notation: E( f ) is then de-
noted by P( f ), is called the lower prevision of f , and is interpreted as a subject’s supremum buying price for the uncertain payoff f (X); see References [20,
24,26] for more information.
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All of the above concepts and results apply when G (X ) consists of real-valued functions on finite spaces, and when the 
lower expectation operators that we consider are unconditional. However, although the basic ideas remain similar, techni-
calities arise when we deal with—possibly unbounded—real-valued functions on infinite spaces, with extended real-valued 
functions, or with conditional operators; see for example Reference [24, Part II] for a very general treatment. Fortunately, 
this will not be an issue here, because in the context of stochastic processes, these technicalities can be dealt with in a spe-
cific way. We will discuss this in Section 5. For now, a basic understanding of credal sets and lower expectation operators 
is sufficient.

3. Birth–death chains

The main type of model that we will consider in this paper is an imprecise birth–death chain, which is a special stochas-
tic process whose local models are credal sets. Before we discuss this model, we introduce the special case of ‘precise’ 
birth–death chains, which are themselves a special type of time-homogeneous Markov chains.

3.1. Notation

A birth–death chain models the time-evolution of a system that takes values in a state space X that is linearly ordered. 
We will restrict attention to finite state spaces that—in order to avoid trivialities—consist of at least two elements. Therefore, 
without loss of generality, we have that X = {0, . . . , L} with L ∈N.3 At any time n ∈N, the state of the chain is represented 
by a random variable, denoted by Xn , which takes values in X . For every n ∈ N, the sequence of variables X1, . . . , Xn is 
denoted by X1:n and also, for every k ∈ N such that k ≤ n, we denote by Xk:n the sequence of variables from time k to n. 
A sequence X1:n takes values x1:n := (x1, . . . , xn) in X n , and similarly for Xk:n . We call any finite sequence of state values 
x1:n ∈ X n a situation and denote the set of all situations by �♦ . For the special case of n = 0, we have the so-called initial 
situation, denoted by �. Therefore, X 0 := {�} and x1:0 is the empty sequence. We also allow concatenation of situations 
with state values or variables. For all n ∈ N0, given a situation x1:n ∈ X n and a state i ∈ X , the concatenation of x1:n and i, 
denoted by (x1:n, i), is a situation in X n+1. Similarly, for any m > n, we write (x1:n, Xn+1:m) to denote the concatenation of 
the situation x1:n and the sequence of variables Xn+1:m .

3.2. Stochastic processes

A birth–death chain is a special type of (time-homogeneous) Markov chain and therefore a stochastic process, so it 
is completely determined by its local conditional probability mass functions. For every n ∈ N and every situation x1:n in 
X n , we need a local probability mass function p(Xn+1|x1:n) which, for every xn+1 ∈ X , provides us with the probability 
p(xn+1|x1:n) that the state Xn+1 takes the value xn+1, conditional on the information that the current situation of the process 
is x1:n . Similarly, for n = 0, we need a local (unconditional) initial model p(X1|�). If these local models are available, then 
for any n ∈N and m ∈N0 such that m < n, the probability p(xm+1:n|x1:m) that Xm+1:n assumes the value xm+1:n , conditional 
on the information that the current situation of the process is x1:m , is easily seen to be given by

p(xm+1:n|x1:m) =
n−1∏
k=m

p(xk+1|x1:k). (4)

3.3. Time-homogeneous Markov chains

A stochastic process is called a Markov chain if its local models satisfy the Markov condition:

p(Xn+1|x1:n) = p(Xn+1|xn) for all n ∈N and x1:n ∈ X n, (5)

where p(Xn+1|xn) is the probability of Xn+1, conditional on Xn = xn . For the case of homogeneous Markov chains, p(Xn+1|xn)

furthermore does not depend on n, but only on xn . In that case, for every x ∈ X , there is some probability mass function 
ϕx such that

p(Xn+1|xn) = ϕxn (Xn+1) for all n ∈N and xn ∈ X . (6)

If we then let ϕ� be the unique probability mass function such that ϕ�(X1) = p(X1|�), Equation (4) reduces to

p(xm+1:n|x1:m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ�(x1)

n−1∏
k=1

ϕxk (xk+1) if m = 0;
n−1∏
k=m

ϕxk (xk+1) if m > 0.

(7)

3 Zero is excluded from N and we let N0 := N ∪ {0}.
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Fig. 4. The initial part of the probability tree of a time-homogeneous Markov chain with state space X := {0,1}.

Fig. 5. A birth–death chain with state space X = {0, . . . , L}.

By depicting the situations x1:n of such a time-homogeneous Markov chain in a tree, and attaching local models to these 
situations, we obtain a so-called probability tree [21]. At each time n ∈ N0 we then have a set of possible situations x1:n in 
X n , each of which is associated with a local model p(Xn+1|x1:n) = ϕxn (Xn+1). Fig. 4 depicts the initial part of an example 
of such a probability tree, for a time-homogeneous Markov chain with state space X = {0, 1}.

3.4. Birth–death chains

Since the transition probabilities p(Xn+1|xn) = ϕxn (Xn+1) of a Markov chain do not depend on n, they can be conve-
niently summarised by means of a single stochastic matrix P of dimension L + 1, the elements of which are defined by 
letting Pij := ϕi( j) for all i, j ∈ X . In the special case of a birth–death chain, this stochastic matrix is tridiagonal, which 
expresses that transitions are only possible between adjacent states. Hence, in that case, P is of the form

P =

⎛
⎜⎜⎜⎜⎜⎝

r0 p0 0 · · · · · · 0
q1 r1 p1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 qL−1 rL−1 pL−1
0 · · · · · · 0 qL rL

⎞
⎟⎟⎟⎟⎟⎠ (8)

where the elements of each row sum to 1. For all i ∈ X /{0, L}, we will assume that the probabilities pi , qi and ri are 
strictly positive, and similarly for r0, p0, qL, rL . Such a birth–death chain can be depicted as a probability tree, as in Fig. 4, 
but it also has a chainlike representation, as depicted in Fig. 5.
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4. Imprecise birth–death chains

Imprecise birth–death chains are similar to precise birth death chains. The main difference is that the probability mass 
functions that make up the matrix P do not need to be specified exactly. They are only known to belong to convex closed 
sets of probability mass functions—credal sets.

4.1. Local credal sets

For every i ∈ X \ {0, L}, we consider a credal set Qi on Xm := {	, e, u}, where—for reasons that should become clear 
soon—m stands for middle and 	, e and u stand for lower, equal and upper, respectively. For the individual probability mass 
functions πi ∈ Qi , we will make frequent use of the notational convention that

(qi, ri, pi) = (
πi(	),πi(e),πi(u)

)
,

thereby establishing an intuitive connection with the matrix P that characterises a precise birth–death chain. Similarly, Q0
and QL are taken to be credal sets on X0 := {e, u} and XL := {	, e}, respectively. For their elements π0 ∈ Q0 and πL ∈ QL , 
we adopt the following analogous notational conventions:

(r0, p0) = (
π0(e),π0(u)

)
and (qL, rL) = (

πL(	),πL(e)
)
.

Similar notational conventions are also adopted for the lower and upper probabilities that correspond to the credal sets Qi : 
in accordance with Equation (1), we define

(∀i ∈ X ) ri := min{ri : πi ∈ Qi} and ri := max{ri : πi ∈ Qi};
(∀i ∈ X \ {0}) q

i
:= min{qi : πi ∈ Qi} and qi := max{qi : πi ∈ Qi}; (9)

(∀i ∈ X \ {L}) p
i
:= min{pi : πi ∈ Qi} and pi := max{pi : πi ∈ Qi}. (10)

For reasons of mathematical convenience, we will restrict ourselves to credal sets Qi that satisfy the following positivity 
assumption.

Assumption 1 (Positivity assumption). For every i ∈ X , the local credal set Qi consists of strictly positive probability mass 
functions.

This positivity assumption implies—amongst other useful consequences such as Theorem 4—that 0 < p
i
≤ pi < 1 for all 

i ∈ X \ {L} and that 0 < q
i
≤ qi < 1 for all i ∈ X \ {0}.

We now use the credal sets Qi to define corresponding local credal sets �i on X . For all i ∈ X \ {0, L}, a probability 
mass function φi ∈ �X belongs to �i if and only if there is some πi ∈ Qi such that

φi( j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi if j = i − 1

ri if j = i

pi if j = i + 1

0 otherwise

for all j ∈ X . (11)

Similarly, φ0 belongs to �0 if and only if there is some π0 ∈ Q0 such that

φ0( j) =

⎧⎪⎨
⎪⎩

r0 if j = 0

p0 if j = 1

0 otherwise

for all j ∈ X (12)

and φL belongs to �L if and only if there is some πL ∈ QL such that

φL( j) =

⎧⎪⎨
⎪⎩

qL if j = L − 1

rL if j = L

0 otherwise

for all j ∈ X . (13)

Finally, �� is taken to be an arbitrary credal set on X .
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Fig. 6. The initial part of one of the probability trees that is compatible with an imprecise Markov chain with state space X := {0,1}.

4.2. Imprecise birth–death chains

The local credal sets that we have just introduced can now be used to define an imprecise birth–death chain. Simply 
put, we just replace the initial probability mass function ϕ� by the initial credal set �� and, for all i ∈ X , we replace the 
transition probability mass functions ϕi by the local credal sets �i .

More specifically, we consider a probability tree that is partially specified, in the sense that all that we know about it is 
that it is compatible with these local credal sets, in the sense that

p(X1|�) ∈ �� (14)

and, for all n ∈ N and x1:n ∈ X n ,

p(Xn+1|x1:n) ∈ �xn . (15)

We will use T � to denote the set of all probability trees that are compatible with these constraints. Fig. 6 depicts the 
initial part of a generic element of this set.

Note that the probability trees in T � may not correspond to a (time-homogeneous) Markov chain: we do not require 
p(Xn+1|x1:n) and p(Xn+1|xn) to be equal, nor do we enforce that p(Xn+1|xn) should not depend on n. This is easily under-
stood by comparing Fig. 4 with Fig. 6. If ϕ� ∈ �� , ϕ0 ∈ �0 and ϕ1 ∈ �1, then clearly, the time-homogeneous Markov chain 
that is depicted in Fig. 4 is a special case of the generic probability tree that is depicted in Fig. 6. However, the probability 
tree that is depicted in Fig. 6 need not be of the type that is depicted in Fig. 4. Consequently, an imprecise Markov chain is 
not just a set of imprecisely specified birth–death chains. Instead, as we are about to show, T � is a set of probability trees 
that satisfies an imprecise Markov condition.

4.3. In terms of lower expectation operators

As explained in Section 2, every credal set has a corresponding lower (and upper) expectation operator, which serves as 
an alternative—mathematically equivalent—representation for this credal set. Therefore, the local credal sets �i , i ∈ X , and 
�� can be equivalently represented by means of lower or upper expectation operators.

For any i ∈ X , we denote the lower and upper expectation operator that corresponds to �i by Q
i

and Q i , respectively. 
For any f ∈ G (X ), they are given by
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Q
i
( f ) := min

φi∈�i

Eφi ( f ) = min
φi∈�i

∑
j∈X

φi( j) f ( j) (16)

and

Q i( f ) := max
φi∈�i

Eφi ( f ) = max
φi∈�i

∑
j∈X

φi( j) f ( j). (17)

The lower and upper expectation operators Q � and Q � that correspond to �� are defined similarly.
In more or less the same way, we can also associate conditional lower expectation operators with the imprecise birth–

death chain T � . For example, for every n ∈N0 and x1:n ∈ X n , we can consider the conditional lower expectation operator 
En+1(·|x1:n), as defined by

En+1( f |x1:n) := E( f (Xn+1)|x1:n) := min
p∈T �

∑
j∈X

p( j|x1:n) f ( j) for all f ∈ G (X ), (18)

and the conditional upper expectation operator En+1(·|x1:n), which is defined similarly. For n = 0, we also write E1(·) :=
E1(·|�) and E1(·) := E1(·|�). As a rather straightforward consequence of Equation (15), we then find that E1 = Q � and 
E1 = Q � and, for all n ∈ N and x1:n ∈ X n , that

En+1(·|x1:n) = Q
xn

(·) and En+1(·|x1:n) = Q xn (·). (19)

As this equation illustrates, an imprecise birth–death chain T � satisfies an imprecise time-homogeneous Markov condition, in 
the sense that lower and upper expectations of functions of the state at time n + 1, conditional on the value x1:n of the 
state at all previous times, only depend on the value xn of the last state; they do not depend on the previous states, nor do 
they depend on the time n. However, as explained before, this is not the case for the individual elements of T � , which are 
not required to be Markov chains.

Because they satisfy this imprecise Markov condition, the imprecise birth–death chains that we consider in this paper are 
a special case of the imprecise Markov chains that were introduced in Reference [11]. Hence, an imprecise birth–death chain 
is simply an imprecise Markov chain that has the lower and upper expectation operators Q

i
and Q i —see Equations (16)

and (17)—as its local models, or equivalently, the credal sets �i .
Imposing Equation (19) rather than Equation (5) can also be regarded as adopting a weaker notion of independence: 

one could say that we are adopting a notion of ‘almost’-independence. To use a specific imprecise-probabilistic terminology: 
we impose epistemic irrelevance rather than strong independence. From this perspective, and for a finite time horizon, an 
imprecise birth–death chain can be regarded as a very special case of a credal network (an imprecise version of a Bayesian 
network) under epistemic irrelevance [3,7,8,12]. More information on the various independence concepts that are used in 
imprecise probabilities can be found in References [4,5,9,13].

5. Global lower and upper expectations

So far, the only lower and upper expectations that we have associated with an imprecise birth–death chain T � are local 
ones, for real-valued functions on finite spaces. However, in order to be able to study first-passage and return times, we 
also need to consider global lower and upper expectations of extended real-valued functions on the infinite set of all paths. 
We introduce these global lower and upper expectations in this section. Since they are connected through conjugacy, we 
focus on lower expectations.

5.1. Global models for real-valued functions on finite spaces

As a first intermediate step, we consider lower expectations of real-valued functions that depend on a finite number of 
variables. For such functions, their lower expectation is simply the lower envelope of all the expectations that correspond 
to a probability tree in T �: for all n ∈ N, we have that

E(h(X1:n)) := min
p∈T �

∑
x1:n∈X n

p(x1:n)h(x1:n) for all h ∈ G (X n)

and, for all m ∈N0 such that m < n and all x1:m ∈ X m , we have that

E(h(X1:n)|x1:m) := min
p∈T �

∑
xm+1:n∈X n

p(xm+1:n|x1:m)h(x1:n) for all h ∈ G (X n).

In these expressions, p(x1:n) := p(x1:n|�) and p(xm+1:n|x1:m) can be computed as in Equation (4). The upper expectations 
E(h(X1:n)) and E(h(X1:n)|x1:m), are defined similarly, and are related to the lower expectations through conjugacy.
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In principle, similar definitions could also be used for functions that depend on an infinite number of variables, by 
making an assumption of countable additivity and using the resulting probability measures to define expectation operators. 
However, unfortunately, not much is known about the global lower expectation operators that would result from such an 
approach. For that reason, we will instead consider an alternative approach that is based on submartingales [14], and which 
is inspired by the game-theoretic probability framework of Shafer and Vovk [22]. The properties of this alternative approach 
are (at least for now) better understood, and it has the additional advantage that it does not require any measurability 
conditions, and that it can be applied easily to extended-real valued functions. In the following three subsections, we 
provide a brief summary of this approach, applied to our specific context of imprecise birth–death chains.

5.2. Sub- and supermartingales

A real process F is a real-valued map defined on �♦ , which associates a real number F (x1:n) ∈ R with any situation 
x1:n ∈ X n , for all n ∈ N0. A gamble process is a map from �♦ to G (X), which associates with any situation x1:n ∈ X n a 
gamble in G (X), for all n ∈N0.

With any real process F , we can always associate a corresponding gamble process �F , called the process difference. For 
every situation x1:n ∈ X n , the corresponding gamble �F (x1:n) ∈ G (X) is defined by

�F (x1:n)(xn+1) := F (x1:n+1) − F (x1:n) for all xn+1 ∈ X .

In the specific case of an imprecise birth–death chain, a submartingale M is then a real process such that 
Q �(�M (�)) ≥ 0 and

Q
xn

(�M (x1:n)) ≥ 0 for all n ∈ N and x1:n ∈ X n. (20)

A supermartingale is a real process M such that −M is a submartingale, or equivalently, because of conjugacy, such that 
Q �(�M (�)) ≤ 0 and

Q xn (�M (x1:n)) ≤ 0 for all n ∈ N and x1:n ∈ X n. (21)

A submartingale is uniformly bounded above if there is some B ∈ R, such that M (x1:n) ≤ B for all n ∈ N0 and x1:n ∈ X n . 
A supermartingale M is uniformly bounded below if −M is uniformly bounded above, or equivalently, if there is some B ∈ R, 
such that M (x1:n) ≥ B for all n ∈ N0 and x1:n ∈ X n . The set of all uniformly bounded above submartingales is denoted by 
M, and the set of all uniformly bounded below supermartingales is denoted by M; clearly, we have that M = −M.

5.3. General global models

For every n in N, we use Xn:∞ to denote the infinite sequence of variables (Xn, Xn+1, . . .). An instantiation x1:∞ =
(x1, x2, . . .) of X1:∞ is called a path and is also denoted by ω. We call sample space the set of all paths and we denote it by 
� := X N . For any path ω ∈ �, the initial sequence that consists of its first n elements is a situation in X n , and we denote 
it by ωn . Its n-th element belongs to X and is denoted by ωn . We let its 0-th element be the initial situation ω0 = ω0 = �. 
Furthermore, with any situation x1:n ∈ X n , we associate a set

�(x1:n) := {ω ∈ � : ωn = x1:n}
that consists of all the paths ω ∈ � whose initial part is equal to x1:n . For n = 0, we have that �(x1:0) = �(�) = �.

The global models that we are about to construct will provide lower and upper expectations of extended real-valued
functions on �, where by extended real-valued, we mean that these functions take values in the set R∗ := R ∪ {−∞, +∞}. 
For any such extended real-valued function g on �, we will often explicitly indicate that its value depends on the variables 
{Xi}i∈N , by writing g(X1:∞). The advantage of this notational convention is that it also allows us to create new functions. 
For example, for any n ∈ N, we can write g(Xn+1:∞) to denote a shifted version of g(X1:∞). Similarly, for any f ∈ G (X)

and n ∈N, we can write f (Xn) to denote a real-valued function on � whose value in ω ∈ � is equal to f (ωn).
The link between the lower and upper expectations of these extended real-valued functions and the local models of our 

imprecise birth death-chain is now established by means of the sub- and supermartingales of the previous subsection. First, 
for any real process F (and therefore, in particular, for any sub- or supermartingale), we consider the extended real-valued 
functions lim inf F and lim sup F , defined for all ω ∈ � by

lim inf F (ω) := lim inf
n→∞ F (ωn) and lim sup F (ω) := lim sup

n→∞
F (ωn).

Next, we use these functions to define global conditional lower and upper expectations. For any n ∈ N0, any x1:n ∈ X n and 
any extended real-valued function g on X N , the conditional lower expectation of g is defined as

E(g|x1:n) := sup{M (x1:n) : M ∈M and lim sup M (ω) ≤ g(ω) for all ω ∈ �(x1:n)}. (22)

Similarly, the conjugate conditional upper expectation of g is defined as
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E(g|x1:n) := inf{M (x1:n) : M ∈M and lim inf M (ω) ≥ g(ω) for all ω ∈ �(x1:n)}. (23)

Detailed technical and philosophical discussions about these and other closely related so-called game-theoretic defini-
tions of lower and upper expectations can be found in References [10,14,22]. Basically, the starting point is the observation 
that a supermartingale M can be interpreted as a capital process (it represents the evolution of your monetary capital) of 
which the local changes �M (x1:n) are expected (on ‘average’) to either increase your capital or keep it steady (because 
their local lower expectation Q

xn
(�M (x1:n)) is non-negative). The assumption is then that, since all these local increases 

are expected to be at least non-negative, the value of lim supM (x1:n, Xn+1:∞) should be expected to be at least M (x1:n). 
Since this assumption applies to all M in M, we arrive at Equation (22). Equation (23) follows from a similar argument or 
from conjugacy. A more detailed discussion—including the reason why we only consider submartingales that are bounded 
above—can be found in Reference [14].

For our present purposes, it suffices to know that the lower and upper expectations in Equations (22) and (23) are a 
proper generalisation of the lower and upper expectations that we considered earlier on in this paper. For example, it can 
be shown that the lower expectations E(h(X1:n)) and E(h(X1:n)|x1:m) that we defined in Section 5.1 correspond to special 
cases of Equation (22), with g = h(X1:n). Similarly, the lower expectation E( f (Xn+1)|x1:n) that was defined in Equation (18)
is also a special case of Equation (22), with g = f (Xn+1), and therefore, it follows from the imprecise Markov condition (19)
that

E( f (Xn+1)|x1:n) = Q
xn

( f ) for all n ∈N, x1:n ∈ X n and f ∈ G (X). (24)

Proofs of these results, as well as further discussions on the connection between Equations (22) and (23) and the probability 
trees in T � can be found in Reference [14].

5.4. Properties of the general global models

We end this section by presenting a number of technical properties of the global expectations that we have just defined. 
Proofs for these—as well as other and more general—properties can be found in Reference [14].4

First of all, our global models satisfy generalised versions of the coherence properties C1–C6 that were discussed in 
Section 2. The generalised versions of C5 and C6 look as follows:

C5. inf{ f (ω) : ω ∈ �(x1:n)} ≤ E( f |x1:n) ≤ E( f |x1:n) ≤ sup{ f (ω) : ω ∈ �(x1:n)};
C6. E(g + μ|x1:n) = μ + E(g|x1:n) and E(g + μ|x1:n) = μ + E(g|x1:n),

for all extended real-valued functions g on �, all n ∈ N0, all x1:n ∈ X n and all μ ∈ R. Generalised versions of C1–C4 can 
also be stated, but since we will not need them in this paper, we restrict attention to the generalised versions of C5 and C6.

Secondly, as a rather immediate consequence of Equation (22), we obtain the following basic proposition.

Proposition 1. Consider any n ∈N. Then for any extended real-valued function g on �:

E(g(X1:∞)|x1:n) = E(g(x1:n, Xn+1:∞)|x1:n).

Thirdly, as the following result establishes, the conditional lower expectations in Equation (22) satisfy a global Markov 
property: the lower expectation of a (possibly extended) real-valued function of the future variables Xn+1:∞ , conditional on 
the value of the past and present variables X1:n , depends only on the value of the present variable Xn , and not on the value 
of the past variables, nor on the specific time n.

Proposition 2. Consider any n ∈N, x1:n−1 ∈ X n−1 and i ∈ X . Then for any extended real-valued function g on �:

E(g(Xn+1:∞)|x1:n−1, i) = E(g(X2:∞)|i).

Finally, if we regard the conditional lower expectation E(g|x1:m) as a function of x1:m , and we interpret this function 
E(g|X1:m) as a (possibly extended) real-valued function on �, then we obtain the following result, which can be regarded 
as a generalised version of the law of iterated expectations.

Proposition 3. Consider any n, m ∈N0 such that m ≥ n and any x1:n ∈ X n. Then for any extended real-valued function g on �:

E(g|x1:n) = E(E(g|X1:m)|x1:n).

4 C5 and C6 follow from [14, Proposition 14]; Proposition 1 is identical to [14, Proposition 15]; Proposition 2 is a special case of [14, Proposition 19]; 
Proposition 3 is identical to [14, Theorem 16].
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The conditional upper expectations of Equation (23) satisfy suitably adapted versions of Propositions 1–3; they follow 
immediately from conjugacy and the respective version for lower expectations.

Hence, in summary, we have found that the conditional lower and upper expectation operators that we defined in 
Equations (22) and (23) not only extend the finite models in Section 5.1, but also satisfy suitably extended versions of the 
coherence properties in Section 2 as well as a number of other powerful properties—see Propositions 1–3. The results for 
first-passage and return times that we are about to present are derived directly from these properties; the only result that 
explicitly uses Equations (22) and (23) directly, is Theorem 4. Any other (for example measure-theoretic) global lower and 
upper expectation operator that satisfies Theorem 4 and the properties in this section, will therefore lead to completely 
identical results.

6. First passage and return times

Consider a time n ∈ N and two—possibly identical—states i and j in X . Suppose that the value of the current state Xn is 
equal to i, that the values of the previous states X1:n−1 are given by x1:n−1, and consider the number of time-steps required 
to reach j, or equivalently, the value of τ→ j(Xn+1:∞), where the extended real-valued function τ→ j is defined by5

τ→ j(ω) := inf{m ∈N : ωm = j}. (25)

We call this number of time-steps the first-passage time of j conditional on X1:n = (x1:n−1, i), and when i = j, we 
call it the return time of i. The so-called upward and downward first-passage times correspond to the cases i < j and 
i > j, respectively. The goal of this paper is to compute the lower and upper expectations E(τ→ j(Xn+1:∞)|x1:n−1, i) and 
E(τ→ j(Xn+1:∞)|x1:n−1, i) of these first-passage and return times.

For the lower expected first-passage time of j conditional on X1:n = (x1:n−1, i), it follows from Proposition 2—with g =
τ→ j —that

E(τ→ j(Xn+1:∞)|x1:n−1, i) = E(τ→ j(X2:∞)|i).
Hence, for all i, j in X , the lower expected first-passage time E(τ→ j(Xn+1:∞)|x1:n−1, i) neither depends on n nor on x1:n−1, 
and we can therefore simply refer to it as the lower expected first-passage time from i to j. Similarly, by combining 
Proposition 2 with conjugacy, it can be shown that E(τ→ j(Xn+1:∞)|x1:n−1, i) only depends on i and j, and therefore, we can 
refer to it as the upper expected first-passage time from i to j.

In order to reflect these findings in our notation, we will from now on denote the lower and upper expected first-passage 
time from i to j by τ i→ j and τ i→ j , respectively; they are defined by

τ i→ j := E(τ→ j(X2:∞)|i) = E(τ→ j(Xn+1:∞)|x1:n−1, i) (26)

and

τ i→ j := E(τ→ j(X2:∞)|i) = E(τ→ j(Xn+1:∞)|x1:n−1, i). (27)

The following theorem establishes a first convenient property of τ i→ j and τ i→ j that follows from Assumption 1; see Ap-
pendix A for a proof.

Theorem 4. For all i, j ∈ X , the lower and upper first-passage times τ i→ j and τ i→ j are real-valued and strictly positive.

In the rest of this section, we will derive a system of non-linear equations for these lower and upper expected first-
passage times. The starting point for this derivation is the fact that

τ i→ j = E(τ→ j(X2:∞)|i) = E(E(τ→ j(X2:∞)|X1:2)|i), (28)

which is a direct consequence of Proposition 3. Next, in order to express E(τ→ j(X2:∞)|X1:2) in terms of lower expected 
first-passage times, we start by observing that

τ→ j(X2:∞) =
{

1 if X2 = j

1 + τ→ j(X3:∞) if X2 �= j
= 1 + I¬ j(X2)τ→ j(X3:∞), (29)

where we let I¬ j := 1 − I j and we adopt the convention that 0 · +∞ = 0. If we now consider any x1:2 ∈ X 2, then it follows 
from Equation (29) that

5 The reason why this function is extended real-valued is because τ→ j(ω) = +∞ if ωm �= j for all m ∈N.
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E(τ→ j(X2:∞)|x1:2) = E(1 + I¬ j(X2)τ→ j(X3:∞)|x1:2)
= 1 + E(I¬ j(X2)τ→ j(X3:∞)|x1:2) = 1 + E(I¬ j(x2)τ→ j(X3:∞)|x1:2),

where the second equality is a consequence of C6 and the last equality follows from Proposition 1. Furthermore, since C5
implies that E(0|x1:2) = 0, it follows from Equation (26)—with n = 2—that

E(I¬ j(x2)τ→ j(X3:∞)|x1:2)

=
{

E(0|x1:2) if x2 = j

E(τ→ j(X3:∞)|x1:2) if x2 �= j
=

{
0 if x2 = j

τ x2→ j if x2 �= j
= I¬ j(x2)τ x2→ j .

Hence, we find that E(τ→ j(X2:∞)|x1:2) = 1 + I¬ j(x2)τ x2→ j . Since x1:2 ∈ X 2 was arbitrary, this implies that

E(τ→ j(X2:∞)|X1:2) = 1 + I¬ j(X2)τ X2→ j = 1 + I¬ j(X2)τ •→ j(X2),

with τ •→ j ∈ G (X) defined by τ •→ j(x) := τ x→ j for all x ∈ X ; the fact that τ •→ j is indeed an element of G (X)—is 
real-valued rather than extended real-valued—is a consequence of Theorem 4. In combination with Equation (28), this 
implies that

τ i→ j = E(1 + I¬ j(X2)τ •→ j(X2)|i) = Q
i
(1 + I¬ jτ •→ j) = 1 + Q

i
(I¬ jτ •→ j),

where we use Equation (24) to establish the second equality, and where the last equality follows from C6. Because of 
Equations (11)–(13), we now finally obtain the following system of non-linear equations: for all j ∈ X , we have that

τ 0→ j = 1 + min
π0∈Q0

{
r0I¬ j(0)τ 0→ j + p0I¬ j(1)τ 1→ j

}
(30)

and

τ L→ j = 1 + min
πL∈QL

{
qLI¬ j(L − 1)τ L−1→ j + rLI¬ j(L)τ L→ j

}
(31)

and, for all i ∈ X /{0, L}, we have that

τ i→ j = 1 + min
πi∈Qi

{
qiI¬ j(i − 1)τ i−1→ j + riI¬ j(i)τ i→ j + piI¬ j(i + 1)τ i+1→ j

}
. (32)

Using a completely analogous derivation, we also find that

τ i→ j = 1 + Q i(I¬ jτ •→ j), (33)

which gives rise to a similar system of non-linear equations.
The main goal of the rest of this paper is to solve these systems of equations in order to compute τ i→ j and τ i→ j for all 

i, j ∈ X . However, since the equations in these systems are non-linear, it is not feasible to solve them directly. Fortunately, 
as we will show in the following three sections, it is possible to transform them into simple recursive expressions, which 
can then be used to compute τ i→ j and τ i→ j for all i, j ∈ X .

7. Lower and upper expected upward first-passage times

We start by computing lower expectations of upward first-passage times, that is, for all i, j ∈ X such that i < j, we 
will compute τ i→ j . We initially focus on computing τ i→i+1, for i ∈ X \ {L}, and then show that any lower expected 
upward first-passage time can be obtained as a sum of such terms. Similar results are obtained for upper expected upward 
first-passage times.

Finding τ 0→1 is easy. It follows from Equation (30), with j = 1, that

τ 0→1 = 1 + min
π0∈Q0

r0τ 0→1 = 1 + min
π0∈Q0

(1 − p0)τ 0→1

= 1 + τ 0→1 − max
π0∈Q0

p0τ 0→1 = 1 + τ 0→1 − p0τ 0→1,

where the second equality holds because π0 is a probability mass function on a binary set and the last equality holds 
because we know from Theorem 4 that τ 0→1 is real-valued and therefore finite. Hence, since we know from Theorem 4
that τ 0→1 is strictly positive and real-valued, it follows that

τ 0→1 = 1
. (34)
p0
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Finding τ 0→ j , for j ∈ {2, . . . , L}, is more involved. We start by establishing a connection with τ 1→ j . By applying Equa-
tion (30), we find that

τ 0→ j = 1 + min
π0∈Q0

{r0τ 0→ j + p0τ 1→ j} = 1 + min
π0∈Q0

{(1 − p0)τ 0→ j + p0τ 1→ j}
= 1 + τ 0→ j + min

π0∈Q0
p0(τ 1→ j − τ 0→ j),

which implies, due to Theorem 4, that

min
π0∈Q0

p0(τ 1→ j − τ 0→ j) = −1. (35)

Since the minimum in Equation (35) is negative and p0 is a probability and therefore non-negative, it must be that 
τ 1→ j − τ 0→ j < 0. Therefore, Equation (35) is minimised for p0 = p0 and we find that

τ 0→ j = 1

p0
+ τ 1→ j. (36)

By combining Equations (34) and (36), we see that

τ 0→ j = τ 0→1 + τ 1→ j for all j ∈ {2, . . . , L}. (37)

Since we already know τ 0→1—see Equation (34)—we are now left to find τ 1→ j .
We first consider the case j = 2. In that case, it follows from Equation (32), with i = 1 and j = 2, that

τ 1→2 = 1 + min
π1∈Q1

{q1τ 0→2 + r1τ 1→2} = 1 + min
π1∈Q1

{q1τ 0→2 + (1 − q1 − p1)τ 1→2}
= 1 + τ 1→2 + min

π1∈Q1
{q1(τ 0→2 − τ 1→2) − p1τ 1→2},

which implies, due to Theorem 4, that

min
π1∈Q1

{q1(τ 0→2 − τ 1→2) − p1τ 1→2} = −1.

By applying Equation (37) for j = 2 we then find that

min
π1∈Q1

{q1τ 0→1 − p1τ 1→2} = −1. (38)

Therefore, and because we already know τ 0→1, it follows from Assumption 1 and the following lemma that τ 1→2 is the 
unique solution to Equation (38).

Proposition 5. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real constant. 
Then

min
π∈Q

{qc − pμ}
is a strictly decreasing function of μ.

This unique solution τ 1→2 is furthermore easy to compute. It follows from Proposition 5 that a simple bisection method 
suffices.

Next, we consider the case j ∈ {3, . . . , L}. By applying Equation (32), for such a j and with i = 1, we find that

τ 1→ j = 1 + min
π1∈Q1

{q1τ 0→ j + r1τ 1→ j + p1τ 2→ j}
= 1 + min

π1∈Q1
{q1τ 0→ j + (1 − q1 − p1)τ 1→ j + p1τ 2→ j}

= 1 + τ 1→ j + min
π1∈Q1

{q1(τ 0→ j − τ 1→ j) + p1(τ 2→ j − τ 1→ j)},

which implies, due to Theorem 4, that

min
π1∈Q1

{q1(τ 0→ j − τ 1→ j) + p1(τ 2→ j − τ 1→ j)} = −1.

In combination with Equation (37), this results in
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min
π1∈Q1

{q1τ 0→1 + p1(τ 2→ j − τ 1→ j)} = −1. (39)

Since we know from Assumption 1 and Proposition 5 that the equation

min
π1∈Q1

{q1τ 0→1 + p1μ} = −1

has a unique solution μ, it follows directly from Equations (38) and (39) that

τ 1→ j = τ 1→2 + τ 2→ j for all j ∈ {3, . . . , L}. (40)

At this point, we already know how to compute τ 0→1 and τ 1→2 and we have also established the following additivity 
property:

τ i→ j = τ i→i+1 + τ i+1→ j

for all i ∈ {0, 1} and j ∈ {i + 2, . . . , L}. By continuing in this way, we obtain the following two results; see Appendix A for a 
proof.

Proposition 6. For any i ∈ X \ {0, L}, we have that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1. (41)

Proposition 7. For all i, j ∈ X such that i + 1 < j, we have that

τ i→ j = τ i→i+1 + τ i+1→ j.

For all i ∈ X \ {L}, the value of τ i→i+1 can therefore be computed recursively. For i = 0, we simply apply Equation (34). 
For any other i ∈ X \ {0, L}, it follows from Assumption 1 and Propositions 5 and 6 that τ i→i+1 is the unique solution to 
Equation (41), which can be obtained by means of a bisection method. In this equation, the value of τ i−1→i has already 
been computed earlier on in this recursive procedure.

The following additivity result is a direct consequence of Proposition 7.

Corollary 8. For all i, j ∈ X such that i < j, we have that

τ i→ j =
j−1∑
k=i

τ k→k+1.

It implies that the recursive techniques that we developed in this section can be used to compute any lower expected 
upward first-passage time.

Similar results can be proved for upper expectations of upward first-passage times. We only provide the final expressions; 
the derivation is completely analogous. In this case, the starting point is that

τ 0→1 = 1

p
0

. (42)

For all i ∈ X \ {0, L}, the value of τ i→i+1 can then be computed recursively, due to Assumption 1 and the following two 
results.

Proposition 9. For all i ∈ X \ {0, L}, we have that

max
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1. (43)

Proposition 10. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real constant. 
Then

max
π∈Q

{qc − pμ}

is a strictly decreasing function of μ.
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Due to our next result, this recursive technique allows us to compute arbitrary upper expected upward first-passage 
times.

Proposition 11. For all i, j ∈ X such that i < j, we have that

τ i→ j =
j−1∑
k=i

τ k→k+1.

8. Lower and upper expected downward first-passage times

Lower and upper expectations of downward first-passage times can be computed in more or less the same way. The 
main difference is that the recursive expressions now start from the other side, that is, from i = L.6 We find that

τ L→L−1 = 1

qL
and τ L→L−1 = 1

q
L

. (44)

For all i ∈ X \ {0, L}, due to Assumption 1, the values of τ i→i−1 and τ i→i−1 can now be computed recursively, using the 
following two results.

Proposition 12. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1 and max
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1.

Proposition 13. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real constant. 
Then

min
π∈Q

{−qμ + pc} and max
π∈Q

{−qμ + pc}
are strictly decreasing functions of μ.

Once we have computed τ i→i−1 and τ i→i−1 for all i ∈ X \ {L}, the following result enables us to easily obtain all other 
lower and upper expected downward first-passage times.

Proposition 14. For all i, j ∈ X such that i > j, we have that

τ i→ j =
i−1∑
k= j

τ k+1→k and τ i→ j =
i−1∑
k= j

τ k+1→k.

9. Lower and upper expected return times

Given the results in the previous two sections, lower and upper expected return times can now be computed very easily. 
By applying Equations (30)–(32), with j equal to 0, L and i, respectively, we find that

τ 0→0 = 1 + min
π0∈Q0

p0τ 1→0 = 1 + p
0
τ 1→0 (45)

and

τ L→L = 1 + min
πL∈QL

qLτ L−1→L = 1 + q
L
τ L−1→L (46)

and, for all i ∈ X \ {0, L}, that

τ i→i = 1 + min
πi∈Qi

{qiτ i−1→i + piτ i+1→i}. (47)

In these expressions, the lower expected first-passage times τ 1→0, τ L−1→L , τ i−1→i and τ i+1→i can be computed using the 
recursive techniques that we developed in the previous two sections. Similarly, for the upper case, we find that

6 Our presentation of—and proofs for—the results in this section are adapted versions of the ones in Section 7. An alternative method would be to observe 
that a downward first-passage time from i to j is the same as an upward first-passage time from L − i to L − j in a new imprecise birth–death chain, 
obtained by reversing the order of the states, and by switching the role of p and q accordingly.
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τ 0→0 = 1 + max
π0∈Q0

p0τ 1→0 = 1 + p0τ 1→0 (48)

and

τ L→L = 1 + max
πL∈QL

qLτ L−1→L = 1 + qLτ L−1→L (49)

and, for all i ∈ X \ {0, L}, that

τ i→i = 1 + max
πi∈Qi

{qiτ i−1→i + piτ i+1→i}. (50)

Again, the upper expected first-passage times τ 1→0, τ L−1→L , τ i−1→i and τ i+1→i that appear in these expressions can be 
computed with the recursive techniques that were introduced above.

10. The precise case and its connection with the imprecise one

Since birth–death chains are a special case of imprecise birth–death chains, our results for imprecise birth–death chains 
can also be applied to birth–death chains. As we will now show, in that case, lower and upper expected first-passage and 
return times coincide, and our recursive methods then lead to closed-form expressions for them. Furthermore, although an 
imprecise birth–death chain is not the same as a set of birth death chains—see Section 4.2—we will see that for the purposes 
of computing lower and upper expected first-passage and return times, it so happens that this makes no difference.

10.1. Expected first-passage and return times in precise birth–deaths chains

Clearly, a birth–death chain can be regarded as a special type of imprecise birth–death chain. It corresponds to the case 
where all the local credal sets are singletons, that is, �� = {ϕ�} and, for all i ∈ X , Qi = {πi}. We refer to this special type 
of imprecise birth–death chain as a precise birth–death chain. For these precise birth–death chains, as the following result 
implies, lower and upper expected first-passage and return times coincide.

Proposition 15. Consider any imprecise birth–death chain such that, for all i ∈ X , Qi = {πi}. Then

τ i→ j = τ i→ j for all i, j ∈ X .

Notice that this result does not require that the initial credal set �� should be a singleton. This is not surprising: since 
none of the methods in Sections 7–9 require the use of �� , it follows that �� does not have any effect on first-passage or 
return times. Therefore, for our present purposes, all the relevant parameters of a birth–death chain can be represented by 
a single stochastic matrix P , the form of which is given by Equation (8). Due to Proposition 15, with any such matrix P , we 
can associate a unique expected first-passage time from i ∈ X to j ∈ X , defined by

τ P
i→ j := τ i→ j = τ i→ j for all i, j ∈ X . (51)

If i = j, then τ P
i→i is called an expected return time. As it turns out, we can derive closed-form expressions for these 

expected first-passage and return times. The following lemma presents such an expression for a specific type of expected 
upward first-passage times.

Proposition 16. Consider a precise birth–death chain of which the stochastic matrix P is given by Equation (8). Then for all i ∈ X \{L}, 
we have that

τ P
i→i+1 =

i∑
k=0

∏i
	=k+1 q	∏i
m=k pm

. (52)

Based on this result, it is now easy to obtain expressions for all the other expected upward first-passage times, because 
it follows from Corollary 8 and Equation (51) that

τ P
i→ j =

j−1∑
k=i

τ P
k→k+1 for all i, j ∈ X such that i < j. (53)

Similarly, for expected downward first-passage times, it follows from Proposition 14 and Equation (51) that

τ P
i→ j =

i−1∑
k= j

τ P
k+1→k for all i, j ∈ X such that i > j, (54)

where the individual terms in the summation are given by Proposition 17.
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Proposition 17. Consider a precise birth–death chain of which the stochastic matrix P is given by Equation (8). Then for all i ∈ X \{0}, 
we have that

τ P
i→i−1 =

L∑
k=i

∏k−1
	=i p	∏k
m=i qm

.

Closed-form expressions for expected return times can now be derived from Equations (45)–(50), which, for precise 
birth–death chains, reduce to the following simple expressions:

τ P
0→0 = 1 + p0τ

P
1→0 and τ P

L→L = 1 + qLτ
P
L−1→L (55)

and

τ P
i→i = 1 + qiτ

P
i−1→i + piτ

P
i+1→i for all i ∈ X \ {0, L}. (56)

We conclude from this section that the expected first-passage and return times of a precise birth–death chain are easy to 
compute. However, this is not surprising. In fact, the closed-form expressions that we have obtained are—although we did 
not find a reference that states them explicitly—essentially well known from the traditional theory of precise birth–death 
chains. The only difference is that the traditional theory of precise birth–death chains adopts a measure-theoretic definition 
for its global expectation operator, whereas we define it by means of the game-theoretic framework that was discussed in 
Section 5. The main result of this section is therefore that for the purpose of computing expected first-passage and return 
times in precise birth–death chains, these two definitions are identical.

10.2. Connecting imprecise birth–death chains with precise ones

As explained in Section 4.2, an imprecise birth–death chain is not just a set of precise birth–death chains. Of course, 
clearly, any precise birth–death chain for which the initial model ϕ� belongs to �� and each of the transition probabil-
ities ϕi , i ∈ X , belongs to �i is an element of the imprecise birth–death chain T � . However, the imprecise birth–death 
chain T � also contains other probability trees, which do not correspond to a (time-homogeneous and Markovian) precise 
birth–death chain.

However, for the purposes of computing lower and upper expected first-passage or return times, these extra probability 
trees are not essential, because as we will now show, for first-passage and return times, the lower and upper expectations 
are achieved by (time-homogeneous and Markovian) precise birth–death chains in T � .

Since we already know from Section 10.1 that the initial model ϕ� ∈ �� of these precise birth–death chains does not 
influence their expected first-passage and return times, we can conveniently represent them by means of their stochas-
tic matrix P . Depending on the type of bound that we are considering, a different type of stochastic matrix P will be 
needed to achieve the bound. We will specify the essential features of these different types by means of selection meth-
ods. For any given imprecise birth–death chain, such a selection method describes a specific way of choosing a stochastic 
matrix P .

For lower expected upward first-passage times, we use the following selection method.

Selection Method LUk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= 0, then p0 = p0;
(2) for all 	 ∈ {1, . . . , k − 1}, (q	, r	, p	) ∈ arg minπ	∈Q	

{q	τ 	−1→	 − p	τ 	→	+1}.

Indeed, as our next result establishes, for any given imprecise birth–death chain, its lower expected upward first-passage 
time can be obtained by a precise birth–death chain whose stochastic matrix P is selected according to the method 
above.

Theorem 18. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P is 
obtained from this imprecise birth–death chain by means of Selection Method LUk. Then for all i, j ∈ X such that i < j ≤ k, τ i→ j =
τ P

i→ j .

This result is at its most powerful if we choose k = L. In that case, it follows that all the lower expected upward 
first-passage times τ i→ j , with i, j ∈ X such that i < j, can be obtained by the same precise birth–death chain.

Similar results also hold for upper expected upward first-passage times.
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Selection Method UUk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= 0, then p0 = p
0

;
(2) for all 	 ∈ {1, . . . , k − 1}, (q	, r	, p	) ∈ arg maxπ	∈Q	

{q	τ 	−1→	 − p	τ 	→	+1}.

Theorem 19. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method UUk. Then for all i, j ∈ X such that i < j ≤ k, 
τ i→ j = τ P

i→ j .

As before, this result is most powerful if we choose k = L, because it then implies that every upper expected upward 
first-passage time can be obtained by the same precise birth–death chain.

At first sight, it seems as though Theorems 18 and 19 could provide us with a simple method for computing lower 
and upper expected upward first-passage times, thereby providing an alternative for the recursive equations in Section 7. 
All we have to do is (a) construct a stochastic matrix P according to an appropriate selection method and then (b) use 
this matrix P to apply the closed-form expressions in Section 10.1. However, this method is not practical. The issue here 
is step (a). For example, executing Selection Method LUk (2) is not just a matter of choosing p	 = p	 and q	 = q

	
, be-

cause, depending on the shape of Q	 , it may not be possible to attain these extrema simultaneously. Therefore, finding 
the optimal tuples (p	, r	, q	) requires us to know the value of τ 	→	+1 for all 	 ∈ {0, . . . , k − 1}. However, in practice, we 
don’t know these values yet. In fact, the whole point of computing lower expected upward first-passage times is to ob-
tain these values. Therefore, Theorems 18 and 19 should not be regarded as the basis of a computational method. Instead, 
their main importance is the theoretical insight that the lower and upper expected upward first-passage times that cor-
respond to an imprecise birth death chain are achieved by (time-homogeneous and Markovian) precise birth–death chains 
in T � .

Completely analogous conclusions can be drawn for lower and upper downward first-passage times, using the following 
selection methods and results.

Selection Method LDk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= L, then qL = qL ;
(2) for all 	 ∈ {k + 1, . . . , L − 1}, (q	, r	, p	) ∈ arg minπ	∈Q	

{−q	τ 	→	−1 + p	τ 	+1→	}.

Theorem 20. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method LDk. Then for all i, j ∈ X such that k ≤ j < i, 
τ i→ j = τ P

i→ j .

Selection Method UDk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= L, then qL = q
L
;

(2) for all 	 ∈ {k + 1, . . . , L − 1}, (q	, r	, p	) ∈ arg maxπ	∈Q	
{−q	τ 	→	−1 + p	τ 	+1→	}.

Theorem 21. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method UDk. Then for all i, j ∈ X such that k ≤ j < i, 
τ i→ j = τ P

i→ j .

These results are at their most powerful if we choose k = 0. In that case, all the lower expected upward first-passage 
times τ i→ j , with i, j ∈ X such that j < i, can be obtained by the same precise birth–death chain.

This is not the case for lower and upper expected return times: there may not be a single precise birth–death chain 
for which all lower expected return times are obtained, nor is there guaranteed to be a single precise birth–death chain 
for which all the upper expected return times are obtained. Nevertheless, as we show in Theorems 22 and 23 below, it 
is always possible to select one precise birth–death chain for each specific lower expected return time and one for each 
specific upper expected return time, using the following selection methods.
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Selection Method LRk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= 0, then p0 = p0, and if k = 0, then p0 = p
0

;
(2) for all 	 ∈ {1, . . . , k − 1}, (q	, r	, p	) ∈ arg minπ	∈Q	

{q	τ 	−1→	 − p	τ 	→	+1}.
(3) if k �= 0 and k �= L, then (qk, rk, pk) ∈ arg minπk∈Qk

{qkτ k−1→k + pkτ k+1→k};
(4) for all 	 ∈ {k + 1, . . . , L − 1}, (q	, r	, p	) ∈ arg minπ	∈Q	

{−q	τ 	→	−1 + p	τ 	+1→	}.
(5) if k �= L, then qL = qL , and if k = L, then qL = q

L
.

Theorem 22. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P is 
obtained from this imprecise birth–death chain by means of Selection Method LRk. Then τ k→k = τ P

k→k.

Selection Method URk
Let P be any stochastic matrix of the form in Equation (8) and such that

(1) if k �= 0, then p0 = p
0

, and if k = 0, then p0 = p0;
(2) for all 	 ∈ {1, . . . , k − 1}, (q	, r	, p	) ∈ arg maxπ	∈Q	

{q	τ 	−1→	 − p	τ 	→	+1}.
(3) if k �= 0 and k �= L, then (qk, rk, pk) ∈ arg maxπk∈Qk

{qkτ k−1→k + pkτ k+1→k};
(4) for all 	 ∈ {k + 1, . . . , L − 1}, (q	, r	, p	) ∈ arg maxπ	∈Q	

{−q	τ 	→	−1 + p	τ 	+1→	}.
(5) if k �= L, then qL = q

L
, and if k = L, then qL = qL .

Theorem 23. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P is 
obtained from this imprecise birth–death chain by means of Selection Method URk. Then τ k→k = τ P

k→k.

11. Linear-vacuous mixtures

Precise birth–death chains are not the only special case for which it is possible to obtain closed-form expressions. As we 
are about to show, such expressions can also be obtained for the special case that all the local models are linear-vacuous 
mixtures.

In order to define this type of model, we start from given strictly positive probability mass functions π∗
0 = (r∗

0, p∗
0) ∈ �X0 , 

π∗
L = (q∗

L, r
∗
L ) ∈ �XL and, for all i ∈ X \ {0, L}, π∗

i = (q∗
i , r

∗
i , p∗

i ) ∈ �Xm . Furthermore, for all i ∈ X , we consider some 
real-valued εi ∈ [0, 1). We use these parameters to define linear-vacuous local credal sets. Similarly to Equation (2) in 
Section 2, our local credal sets are defined as follows:

Q0 = Q
ε0
π∗

0
:= {(1 − ε0)π

∗
0 + ε0π

′
0 : π ′

0 ∈ �X0}
and

QL = QεL
π∗

L
:= {(1 − εL)π

∗
L + εLπ

′
L : π ′

L ∈ �XL }
and, for all i ∈ X \ {0, L},

Qi = Q
εi
π∗

i
:= {(1 − εi)π

∗
i + εiπ

′
i : π ′

i ∈ �Xm }.
Furthermore, due to (9), for all i ∈ X \ {0}, we have that

q
i
:= (1 − εi)q

∗
i and qi := (1 − εi)q

∗
i + εi

and, due to (10), for all i ∈ X \ {L}, we have that

p
i
:= (1 − εi)p∗

i and pi := (1 − εi)p∗
i + εi .

In this special case, Equation (41) can be solved analytically. For all i ∈ X \ {0, L}, we find that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1} (57)

= min
π ′∈�Xm

{[(1 − εi)q
∗
i + εiq

′
i]τ i−1→i − [(1 − εi)p∗

i + εi p′
i]τ i→i+1

}
(58)

= (1 − εi)(q
∗
i τ i−1→i − p∗

i τ i→i+1) + εi min
π ′

i ∈�Xm

{
q′

iτ i−1→i − p′
iτ i→i+1

}
= (1 − εi)(q

∗τ − p∗τ ) − εiτ = q τ − piτ ,
i i−1→i i i→i+1 i→i+1 i i−1→i i→i+1
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where the third equation holds because we know from Theorem 4 that τ i−1→i and τ i→i+1 are real-valued and positive. 
Therefore, for all i ∈ X \ {0, L}, it follows directly from Equation (41) that

τ i→i+1 = 1

pi
+ q

i

pi
τ i−1→i .

By combining this recursive expression with Equation (34), we can derive explicit expressions. For all i ∈ X \ {L}, we find 
that:

τ i→i+1 =
i∑

k=0

∏i
	=k+1 q

	∏i
m=k pm

. (59)

In combination with Corollary 8, this equation allows us to easily compute all lower expected upward first-passage times 
for the linear-vacuous case.

Similar results can be obtained for upper expected upward first-passage times and for lower and upper expected down-
ward first-passage times. For all i ∈ X \ {0, L}, we find that

τ i→i+1 = 1

p
i

+ qi

p
i

τ i−1→i , τ i→i−1 = 1

qi
+ p

i

qi
τ i+1→i and τ i→i−1 = 1

q
i

+ pi

q
i

τ i+1→i .

By combining these recursive equations with Equations (42) and (44), we can obtain explicit expressions. For all i ∈ X \ {L}, 
we find that

τ i→i+1 =
i∑

k=0

∏i
	=k+1 q	∏i
m=k p

m

and, for all i ∈ X \ {0}, we find that

τ i→i−1 =
L∑

k=i

∏k−1
	=i p

	∏k
m=i qm

and τ i→i−1 =
L∑

k=i

∏k−1
	=i p	∏k
m=i q

m

. (60)

In combination with Proposition 11 and 14, these equations allow us to easily compute all upper expected upward first-
passage times and all lower and upper expected downward first-passage times for the linear-vacuous case.

For the lower and upper return times, we still use Equations (45) and (46) if i = 0 and Equations (48) and (49) if i = L. 
If i ∈ X \ {0, L}, then, for this linear-vacuous case, Equations (47) and (50) can be simplified. We find that

τ i→i = 1 + min
πi∈Qi

{
qiτ i−1→i + piτ i+1→i

}
= 1 + min

π ′
i ∈�Xm

{[(1 − εi)q
∗
i + εiq

′
i]τ i−1→i + [(1 − εi)p∗

i + εi p′
i]τ i+1→i

}
= 1 + (1 − εi)(q

∗
i τ i−1→i + p∗

i τ i+1→i) = 1 + q
i
τ i−1→i + p

i
τ i+1→i (61)

and that

τ i→i = 1 + (1 − εi)(q
∗
i τ i−1→i + p∗

i τ i+1→i) + εi max{τ i−1→i, τ i+1→i}
= 1 + max{qiτ i−1→i + p

i
τ i+1→i,q

i
τ i−1→i + piτ i+1→i}.

12. Numerical results

In order to illustrate our computational methods, we will now calculate lower and upper expected first-passage and 
return times for two examples of imprecise birth–death chains. The first is a general example of an imprecise birth–death 
chain and the second one is an imprecise birth–death chain with linear-vacuous local models. In both examples, we take 
Qi to be identical for all i ∈ X \ {0, L}, and simply denote it by Q, which is a credal set on Xm . Some of the lower and 
upper expectations we compute have many digits after the decimal points; we round them off to the third decimal.

12.1. A general example

Consider an imprecise birth–death chain with state space X = {0, . . . , 4}, that is, with L = 4. Let Q0 be the unique credal 
set on X0 such that p

0
= 0.15 and p0 = 0.4 and let QL be the unique credal set on XL such that q

L
= 0.2 and qL = 0.6. 

The credal set Q is taken to be the convex hull of the following 7 extreme points, which are of the form π = (q, r, p).
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Fig. 7. The grey zone depicts the credal set Q from the birth–death chain in the general example.

Table 1
Final results for the general example.

τ 0→4 12.227
τ 0→4 1420
τ 4→0 8.094
τ 4→0 965

Table 2
Intermediate results for the general example.

τ 0→1 2.5 τ 4→3 1.667
τ 1→2 3.125 τ 3→2 2.051
τ 2→3 3.281 τ 2→1 2.170
τ 3→4 3.320 τ 1→0 2.206
τ 0→1 6.667 τ 4→3 5
τ 1→2 43.333 τ 3→2 40
τ 2→3 226.667 τ 2→1 180
τ 3→4 1143.333 τ 1→0 740

(0.65,0.15,0.2), (0.6,0.25,0.15), (0.5,0.4,0.1), (0.05,0.75,0.2),

(0.1,0.5,0.4), (0.4,0.1,0.5), (0.55,0.1,0.35).

Fig. 7 provides a graphical representation of this credal set Q.
For this particular example, we now compute τ 0→4, τ 0→4, τ 4→0 and τ 4→0. Due to Corollary 8, we know that

τ 0→4 = τ 0→1 + τ 1→2 + τ 2→3 + τ 3→4, (62)

where, using Equation (34),

τ 0→1 = 1/p0 = 2.5.

By plugging this value for τ 0→1 into Equation (41), for i = 1, we find that

min
π1∈Q

{2.5q1 − p1τ 1→2} = −1. (63)

As we know from Proposition 5, this equality has a unique solution that can for example be obtained by means of a bisection 
method. We find that τ 1→2 = 3.125. Similarly, in a recursive fashion, we find that τ 2→3 = 3.281 and τ 3→4 = 3.320. A final 
application of Equation (62) tells us that τ 0→4 = 12.227. τ 0→4, τ 4→0 and τ 4→0 can be computed analogously; the results 
are given in Table 1. Intermediate results can be found in Table 2.

This example also illustrates that optimising expected first passage or return times is not just a matter of assigning 
extreme values to the parameters qi , ri and pi . For example, in order to obtain the lower expected upward first passage 
time τ 1→2, one might think that it suffices to maximise p1 and minimise q1, as this leads us to move to higher states more 
quickly, and hence should result in a lower upward first passage time. However, despite the fact that this intuition is correct, 
it is not always possible to apply it. The problem is that it will sometimes be impossible to maximise p1 and minimise q1
simultaneously, and a tradeoff between these two optimisation criteria is then required. For example, in this case, the 
minimum in Equation (63) is obtained by the probability mass function (0.1, 0.5, 0.4), whereas the maximal value for p1
is 0.5 and the minimal value for q1 is 0.05. Similar examples can be constructed for upper expected upward first-passage 
times, for lower and upper downward first-passage times, and for lower and upper return times.
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Fig. 8. The grey zone depicts the credal set Qε
π∗ from the birth–death chain in the linear-vacuous example.

Table 3
Lower and upper expected return times for the 
birth–death chain in the linear-vacuous mix-
ture example.

i τ i→i τ i→i

0 1.585 91.411
1 1.525 24.956
2 1.679 17.846
3 1.656 79.711
4 2.037 503.725

12.2. Linear-vacuous example

Consider a precise birth–death chain with state space X = {0, 1, 2, 3, 4}—L = 4—and the following probability matrix:

P∗ =

⎛
⎜⎜⎜⎝

0.55 0.45 0 0 0
0.3 0.5 0.2 0 0
0 0.3 0.5 0.2 0
0 0 0.3 0.5 0.2
0 0 0 0.6 0.4

⎞
⎟⎟⎟⎠ ,

which is completely characterised by the probability mass functions π∗
0 = (0.55, 0.45), π∗

L = (0.6, 0.4) and π∗
i = π∗ =

(0.3, 0.5, 0.2) for all i ∈ X \ {0, L}.
We now let εi = ε = 0.4 for all i ∈ X and consider the imprecise birth–death chain that has the corresponding linear-

vacuous credal sets as its local models. In this way, we obtain the following lower and upper probabilities:

p
0
= 0.27, p0 = 0.67, q

L
= 0.36 and qL = 0.76

and, for all i ∈ X \ {0, L}:

q
i
= 0.18, qi = 0.58, p

i
= 0.12 and pi = 0.52.

For all i ∈ X \ {0, L}, the credal set Qi is equal to Qε
π∗ , which is the convex hull of the following three extreme points:

(0.58,0.3,0.12), (0.18,0.7,0.12) and (0.18,0.3,0.52).

Fig. 8 provides a graphical representation of this credal set Qε
π∗ .

The lower and upper expected return times that correspond to this imprecise birth–death chain can be found in Table 3. 
For the sake of this example, we compute τ 1→1 explicitly. We start by applying Equation (61) for i = 1, which tells us that

τ 1→1 = 1 + q
1
τ 0→1 + p

1
τ 2→1 = 1 + 0.18τ 0→1 + 0.12τ 2→1.

Therefore, and because we know from Equations (59) and (60) that

τ 0→1 = 1

p0
= 1.493 and τ 2→1 = 1

q2
+ p

2

q2q3
+ p

2
p

3

q2q3q4
= 2.137,

we find that τ = 1.525.
1→1
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13. Conclusion and future work

The main conclusion of this paper is that the lower and upper expected—upward and downward—first-passage times 
and return times of an imprecise birth–death chain can be computed easily. In particular, by exploiting the properties of 
the global lower expectation operator of such an imprecise birth–death chain, it is possible to derive a simple system of 
non-linear equations, and by solving this system, we can then compute any lower or upper expected first-passage or return 
time through a simple recursive scheme. If the local models of the imprecise birth–death chain are precise or linear vacuous, 
a simple closed-form expression even suffices. The feasibility of these methods was confirmed by numerical examples. 
Furthermore, even though an imprecise birth–death chain is not just a set of precise birth–death chains, we have shown 
that a lower or upper expected first-passage or return time is always achieved by a precise birth–death chain.

For now, our methods impose a strict positivity assumption on the local models of the imprecise birth–death chain. In 
future work, we would like to drop this local positivity assumption, thereby allowing us to consider some other impor-
tant types of discrete time imprecise Markov chains, such as pure birth processes, pure death processes and birth–death 
chains with absorbing states. Finally, we would like to try and apply—suitably adapted versions of—our methods to the 
Bonus–Malus systems that are described in Reference [15], and to continuous-time imprecise birth–death chains.
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Appendix A. Proofs of results

Theorem 4. For all i, j ∈ X , the lower and upper first-passage times τ i→ j and τ i→ j are real-valued and strictly positive.

Proof. Since it follows from Equation (25) that inf{τ→ j(ω) : ω ∈ �(i)} ≥ 1 and from Equations (26) and (27) that

τ i→ j = E(τ→ j(X2:∞)|i) and τ i→ j = E(τ→ j(X2:∞)|i), (64)

C5 implies that 1 ≤ τ i→ j ≤ τ i→ j , and therefore, the only thing that we still need to prove is that τ i→ j < +∞. We will do 
this by showing that

(∃M ∈M) lim inf M (ω) ≥ τ 1
→ j(ω) for all ω ∈ �(i), (65)

where τ 1
→ j is an extended real-valued function on � that is defined by7

τ 1
→ j(ω) = τ 1

→ j(x1:∞) := τ→ j(x2:∞) = inf{m ∈ N : ωm+1 = j} for all ω = x1:∞ ∈ �. (66)

Indeed, since it follows from Equations (64), (66) and (23)—in that order—that

τ i→ j = E(τ 1
→ j|i) := inf{M (i) : M ∈M and lim inf M (ω) ≥ τ 1

→ j(ω) for all ω ∈ �(i)},
Equation (65) clearly implies that τ i→ j < +∞.

Consider the values εu
0 := 1/p

0
and εd

L := 1/q
L
. Using εu

0 and εd
L , we now define recursively, for all x ∈ X \ {0, L}:

εu
x := 1

p
x

+ qx

p
x

εu
x−1 and εd

x := 1

q
x

+ px

q
x

εd
x+1. (67)

Due to Assumption 1, we have that εu
0 and εd

L , as well as εu
x and εd

x , for all x ∈ X \{0, L}, are strictly positive and real-valued. 
Now let � j ∈ G (X) be defined by

� j(i′) :=

⎧⎪⎨
⎪⎩

0 if i′ = j∑ j−1
	=i′ ε

u
	 if i′ < j∑i′

	= j+1 εd
	 if i′ > j

for all i′ ∈ X , (68)

7 Basically, τ 1
→ j is just a shifted version of τ→ j . If x1 �= j, τ 1

→ j(x1:∞) provides us with the time immediately before the first occurrence of j (and is equal 
to +∞ if it never occurs). If x1 = j, τ 1

→ j(x1:∞) provides us with the time immediately before the second occurrence of j (and is equal to +∞ if it does 
not occur a second time).
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and consider a real process M , defined for all m ∈ N0 and x1:m ∈ X m by

M (x1:m) :=

⎧⎪⎨
⎪⎩

1 + Q i(� j) if m ∈ {0,1} or x1 �= i;

m − 1 + � j(xm) if x1 = i, m ≥ 2 and (∀k ∈ {2, . . . ,m − 1}) xk �= j;

M (x1:m−1) if x1 = i, m ≥ 2 and (∃k ∈ {2, . . . ,m − 1}) xk = j.

(69)

In the remainder of this proof, we show that (65) holds, by proving that M ∈ M and that lim inf M (ω) ≥ τ 1
→ j(ω) for all 

ω ∈ �(i).
We start by proving that lim inf M (ω) ≥ τ 1

→ j(ω) for all ω ∈ �(i). We consider two cases: τ 1
→ j(ω) < +∞ and 

τ 1
→ j(ω) = +∞. If τ 1

→ j(ω) < +∞, then with m := τ 1
→ j(ω) + 1, Equation (66) implies that

ωm = j and (∀k ∈ {2, . . . ,m − 1})ωk �= j

and therefore, because of Equations (69) and (68), for all n ≥ m, it follows that

M (ωn) = M (ωm) = m − 1 + � j( j) = τ 1
→ j(ω),

which implies that lim infn→∞ M (ωn) = τ 1
→ j(ω). If τ 1

i→ j(ω) = +∞, Equation (66) implies that ωk �= j for all k ≥ 2, and 
therefore, it follows from Equation (69) that

lim inf
n→∞ M (ωn) = lim inf

n→∞ (n − 1 + � j(ωn)) ≥ lim inf
n→∞ (n − 1) = +∞ = τ 1

→ j(ω),

where the inequality holds because it follows from Equation (68) that � j(ωn) ≥ 0.
We now prove that M belongs to M. From Equation (68), we infer that � j ≥ 0 and therefore, it follows from C5 that 

Q i(� j) ≥ 0. Hence, due to Equation (69), it follows that M is bounded below by 0. Therefore, in order to prove that M ∈M, 
it remains now to prove that M is a supermartingale, or equivalently, that Q �(�M (�)) ≤ 0 and Q xm (�M (x1:m)) ≤ 0 for 
all m ∈N and x1:m ∈ X m .

The first inequality is easily proved: since Equation (69) implies that �M (�) = 0, it follows from C5 that
Q �(�M (�)) = 0. So consider any m ∈ N and x1:m ∈ X m . We need to prove that Q xm (�M (x1:m)) ≤ 0. We distinguish 
among three types of situations x1:m .

If x1 �= i or xk = j for at least one k in {2, . . . , m}, then as before, Equation (69) implies that �M (x1:m) = 0, and therefore, 
it follows from C5 that Q xm (�M (x1:m)) = 0.

If m = 1 and x1 = i, then

Q i(�M (i)) = Q i(1 + � j − [1 + Q i(� j)])
= Q i(� j − Q i(� j)) = Q i(� j) − Q i(� j) = 0,

where the first equality follows from Equation (69) and the third equality from C6.
The remaining type of situations x1:m are those for which m ≥ 2, x1 = i and xk �= j for all k in {2, . . . , m}. Before tackling 

this type of situation, we first present some useful equations. For all x ∈ X , it follows from Equation (69) that

�M (x1:m)(x) = (m + 1) − 1 + � j(x) − (m − 1 + � j(xm)) = 1 + � j(x) − � j(xm). (70)

Combining Equation (70) with Equation (68) results in

�M (x1:m)(xm) = 1. (71)

Also, if xm �= L, then since xm �= j, we find that

�M (x1:m)(xm + 1) = 1 + � j(xm + 1) − � j(xm) =
{

1 − εu
xm

if xm < j;

1 + εd
xm+1 if xm > j;

(72)

similarly, if xm �= 0, we have that

�M (x1:m)(xm − 1) = 1 + � j(xm − 1) − � j(xm) =
{

1 + εu
xm−1 if xm < j;

1 − εd
xm

if xm > j.
(73)

We now consider three cases: xm = 0, xm = L and xm /∈ {0, L}.
If xm = 0, it follows from Equations (12) and (17) that

Q xm (�M (x1:m)) = max
π0∈Q0

{(1 − p0)�M (x1:m)(0) + p0�M (x1:m)(1)}
= max

π0∈Q0
{(1 − p0) + p0(1 − εu

0 )} = max
π0∈Q0

{−p0ε
u
0 } + 1 = −p

0
εu

0 + 1 = 0,

where the second equality follows from Equations (71) and (72) and the fourth holds because εu is strictly positive.
0
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If xm = L, it follows from Equations (13) and (17) that

Q xm (�M (x1:m)) = max
πL∈QL

{qL�M (x1:m)(L − 1) + (1 − qL)�M (x1:m)(L)}

= max
πL∈QL

{qL(1 − εd
L) + (1 − qL)} = max

πL∈QL

{−qLε
d
L} + 1 = −q

L
εd

L + 1 = 0,

where the second equality follows from Equations (71) and (73) and the fourth holds because εd
L is strictly positive.

If xm /∈ {0, L}, it follows from Equations (11) and (17) that

Q xm (�M (x1:m)) = max
πxm ∈Qxm

{qxm�M (x1:m)(xm − 1)

+(1 − qxm − pxm )�M (x1:m)(xm) + pxm�M (x1:m)(xm + 1)}

=

⎧⎪⎨
⎪⎩

max
πxm ∈Qxm

{qxmεu
xm−1 − pxmεu

xm
} + 1 if xm < j;

max
πxm ∈Qxm

{−qxmεd
xm

+ pxmεd
xm+1} + 1 if xm > j,

where the last equality holds because of Equations (71)–(73). Hence, if xm < j, we find that

Q xm (�M (x1:m)) = max
πxm ∈Qxm

{qxmεu
xm−1 − pxmεu

xm
} + 1

≤ max
πxm ∈Qxm

{qxmεu
xm−1} + max

πxm ∈Qxm

{−pxmεu
xm

} + 1

= qxm
εu

xm−1 − p
xm

εu
xm

+ 1 = 0,

where the second equality holds because εu
xm−1 and εu

xm
are strictly positive and the third equality follows from (67). 

Similarly, if xm > j, we find that

Q xm (�M (x1:m)) = max
πxm ∈Qxm

{−qxmεd
xm

+ pxmεd
xm+1} + 1

≤ max
πxm ∈Qxm

{−qxmεd
xm

} + max
πxm ∈Qxm

{pxmεd
xm+1} + 1

= −q
xm

εd
xm

+ p
xm

εd
xm+1 + 1 = 0. �

Proposition 5. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real constant. 
Then

min
π∈Q

{qc − pμ}
is a strictly decreasing function of μ.

Proof. Consider any μ1, μ2 ∈ R, such that μ2 > μ1. Then,

min
π∈Q

{qc − pμ1} = min
π∈Q

{qc − pμ2 + p(μ2 − μ1)}
≥ min

π∈Q
{qc − pμ2} + min

π∈Q
{p(μ2 − μ1)} > min

π∈Q
{qc − pμ2}

where the last inequality holds because, since μ2 − μ1 > 0,

min
π∈Q

{p(μ2 − μ1)} = (μ2 − μ1) min
π∈Q

{p},
where minπ∈Q{p} > 0 because Q is a credal set that consists of strictly positive probability mass functions. �
Lemma 24. For all k ∈ X \ {0, L}, we have that

min
πk∈Qk

{qkτ k−1→k − pkτ k→k+1} = −1,

and that, for all 	 in X such that 	 > k:

τ k−1→	 = τ k−1→k + τ k→	.
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Proof. For k = 1, we have proved in the main text that the lemma holds; see Equations (37) and (38). We will now 
generalise it using induction. Assuming that the lemma is true for k − 1, with k ∈ X \ {0, 1, L}, we prove that it is also true 
for k.

Consider any 	 > k. By taking Equation (32), for i = k − 1 and j = 	, we find that

τ k−1→	 = 1 + min
πk−1∈Qk−1

{qk−1τ k−2→	 + rk−1τ k−1→	 + pk−1τ k→	}
= 1 + min

πk−1∈Qk−1

{qk−1τ k−2→	 + (1 − qk−1 − pk−1)τ k−1→	 + pk−1τ k→	}
= 1 + τ k−1→	 + min

πk−1∈Qk−1

{qk−1(τ k−2→	 − τ k−1→	) − pk−1(τ k−1→	 − τ k→	)},

which, due to Theorem 4, implies that

min
πk−1∈Qk−1

{qk−1(τ k−2→	 − τ k−1→	) − pk−1(τ k−1→	 − τ k→	)} = −1.

In combination with the induction hypothesis, which implies that τ k−2→	
= τ k−2→k−1 + τ k−1→	

, the equation above results 
in

min
πk−1∈Qk−1

{qk−1τ k−2→k−1 − pk−1(τ k−1→	 − τ k→	)} = −1. (74)

Due to Proposition 5 and the induction hypothesis, which implies that

min
πk−1∈Qk−1

{qk−1τ k−2→k−1 − pk−1τ k−1→k} = −1,

we infer from Equation (74) that τ k−1→	
− τ k→	

= τ k−1→k , and therefore that

τ k−1→	 = τ k−1→k + τ k→	. (75)

By taking now Equation (32), for i = k and j = k + 1, we find that

τ k→k+1 = 1 + min
πk∈Qk

{qkτ k−1→k+1 + rkτ k→k+1}
= 1 + min

πk∈Qk

{qkτ k−1→k+1 + (1 − qk − pk)τ k→k+1}
= 1 + τ k→k+1 + min

πk∈Qk

{qk(τ k−1→k+1 − τ k→k+1) − pkτ k→k+1},

which, due to Theorem 4, implies that

min
πk∈Qk

{qk(τ k−1→k+1 − τ k→k+1) − pkτ k→k+1} = −1.

By combining this with Equation (75), for 	 = k + 1, we find that

min
πk∈Qk

{qkτ k−1→k − pkτ k→k+1} = −1. �
Proposition 6. For any i ∈ X \ {0, L}, we have that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1.

Proof. This result follows trivially from Lemma 24. �
Proposition 7. For all i, j ∈ X such that i + 1 < j, we have that

τ i→ j = τ i→i+1 + τ i+1→ j.

Proof. This result follows trivially from Lemma 24. �
Corollary 8. For all i, j ∈ X such that i < j, we have that

τ i→ j =
j−1∑

τ k→k+1.
k=i
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Proof. For j = i + 1, this result is trivial. For j = i + 2, it follows from Proposition 7 that

τ i→i+2 = τ i→i+1 + τ i+1→i+2.

Similarly, for j > i + 2, by applying Proposition 7 multiple times, we find that

τ i→ j = τ i→i+1 + τ i+1→ j = τ i→i+1 + τ i+1→i+2 + τ i+2→ j

= τ i→i+1 + τ i+1→i+2 + . . . + τ j−1→ j =
j−1∑
k=0

τ k→k+1. �

Lemma 25. For all k ∈ X \ {0, L}, we have that

max
πk∈Qk

{qkτ k−1→k − pkτ k→k+1} = −1,

and that, for all 	 in X such that 	 > k:

τ k−1→	 = τ k−1→k + τ k→	.

Proof. For any k, 	 ∈ X \ {0, L}, applying Equation (33) for i = k and j = 	 yields

τ k→	 = 1 + Q k(I¬	τ •→	)

= 1 + max
πk∈Qk

{qkI¬	(k − 1)τ k−1→	 + rkI¬	(k)τ k→	 + pkI¬	(k + 1)τ k+1→	}. (76)

We now first prove the case k = 1. By applying Equation (33) for i = 0, we find that

τ 0→ j = 1 + Q 0(I¬ jτ •→ j) = 1 + max
π0∈Q0

{
r0I¬ j(0)τ 0→ j + p0I¬ j(1)τ 1→ j

}
. (77)

Consider any 	 ∈ X such that 	 > 1. By applying Equation (77) for j = 	, we then find that

τ 0→	 = 1 + max
π0∈Q0

{
r0τ 0→	 + p0τ 1→	} = 1 + max

π0∈Q0

{
(1 − p0)τ 0→	 + p0τ 1→	}

= 1 + τ 0→	 + max
π0∈Q0

{ − p0(τ 0→	 − τ 1→	)},

which, due to Theorem 4, implies that

max
π0∈Q0

{ − p0(τ 0→	 − τ 1→	)} = −1 ⇒ τ 0→	 = 1

p
0

+ τ 1→	.

By combining this with Equation (42), we find that

τ 0→	 = τ 0→1 + τ 1→	. (78)

By taking Equation (76), for k = 1 and 	 = 2, we find that

τ 1→2 = 1 + max
π1∈Q1

{q1τ 0→2 + r1τ 1→2} = 1 + max
π1∈Q1

{q1τ 0→2 + (1 − q1 − p1)τ 1→2}
= 1 + τ 1→2 + max

π1∈Q1
{q1(τ 0→2 − τ 1→2) − p1τ 1→2}

which, due to Theorem 4, implies that

max
π1∈Q1

{q1(τ 0→2 − τ 1→2) − p1τ 1→2} = −1.

By combining this with Equation (78), for 	 = 2, we find that

max
π1∈Q1

{q1τ 0→1 − p1τ 1→2} = −1.

We will now generalise our proof using induction. Assuming that the lemma is true for k − 1, with k ∈ X \ {0, 1, L}, we 
prove that it is also true for k. Consider any 	 > k. By taking Equation (76), for i = k − 1 and j = 	, we find that



S. Lopatatzidis et al. / International Journal of Approximate Reasoning 80 (2017) 137–173 165
τ k−1→	 = 1 + max
πk−1∈Qk−1

{qk−1τ k−2→	 + rk−1τ k−1→	 + pk−1τ k→	}
= 1 + max

πk−1∈Qk−1

{qk−1τ k−2→	 + (1 − qk−1 − pk−1)τ k−1→ j + pk−1τ k→	}
= 1 + τ k−1→	 + max

πk−1∈Qk−1

{qk−1(τ k−2→	 − τ k−1→	) − pk−1(τ k−1→	 − τ k→	)},
which, due to Theorem 4, implies that

max
πk−1∈Qk−1

{qk−1(τ k−2→	 − τ k−1→	) − pk−1(τ k−1→	 − τ k→	)} = −1.

In combination with the induction hypothesis, which implies that τ k−2→	 = τ k−2→k−1 + τ k−1→	 , the equation above results 
in

max
πk−1∈Qk−1

{qk−1τ k−2→k−1 − pk−1(τ k−1→	 − τ k→	)} = −1. (79)

Due to Proposition 10 (proved further on) and the induction hypothesis, which implies that

max
πk−1∈Qk−1

{qk−1τ k−2→k−1 − pk−1τ k−1→k} = −1,

we infer from Equation (79) that τ k−1→	 − τ k→	 = τ k−1→k , and therefore that

τ k−1→	 = τ k−1→k + τ k→	. (80)

By taking now Equation (76), for 	 = k + 1, we find that

τ k→k+1 = 1 + max
πk∈Qk

{qkτ k−1→k+1 + rkτ k→k+1}
= 1 + max

πk∈Qk

{qkτ k−1→k+1 + (1 − qk − pk)τ k→k+1}
= 1 + τ k→k+1 + max

πk∈Qk

{qk(τ k−1→k+1 − τ k→k+1) − pkτ k→k+1},
which, due to Theorem 4, implies that

max
πk∈Qk

{qk(τ k−1→k+1 − τ k→k+1) − pkτ k→k+1} = −1.

By combining this with Equation (80), for 	 = k + 1, we find that

max
πk∈Qk

{qkτ k−1→k − pkτ k→k+1} = −1. �
Proposition 9. For all i ∈ X \ {0, L}, we have that

max
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1.

Proof. This result follows trivially from Lemma 25. �
Proposition 10. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real 
constant. Then

max
π∈Q

{qc − pμ}
is a strictly decreasing function of μ.

Proof. Consider any μ1, μ2 ∈R, such that μ2 > μ1. Then,

max
π∈Q

{qc − pμ2} = max
π∈Q

{qc − pμ1 + p(μ1 − μ2)}
≤ max

π∈Q
{qc − pμ1} + max

π∈Q
{p(μ1 − μ2)} < max

π∈Q
{qc − pμ1}

where the last inequality holds because

max
π∈Q

{p(μ1 − μ2)} = (μ1 − μ2) max
π∈Q

{p}
where maxπ∈Q{p} > 0 because Q is a credal set that consists of strictly positive probability mass functions. �
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Proposition 11. For all i, j ∈ X such that i < j, we have that

τ i→ j =
j−1∑
k=i

τ k→k+1.

Proof. For j = i + 1, this result is trivial. For j = i + 2, it follows from Lemma 25 that

τ i→i+2 = τ i→i+1 + τ i+1→i+2.

Similarly, for j > i + 2, by applying Lemma 25 multiple times, we find that

τ i→ j = τ i→i+1 + τ i+1→ j = τ i→i+1 + τ i+1→i+2 + τ i+2→ j

= τ i→i+1 + τ i+1→i+2 + . . . + τ j−1→ j =
j−1∑
k=0

τ k→k+1. �

Lemma 26. For all k ∈ X \ {0, L}, we have that

min
πk∈Qk

{−qkτ k→k−1 + pkτ k+1→k} = −1,

and that, for all 	 in X such that k > 	:

τ k+1→	 = τ k+1→k + τ k→	.

Proof. We first prove the case k = L − 1. Consider any 	 ∈ X such that 	 < L − 1. By taking Equation (31), for j = 	, we 
find that

τ L→	 = 1 + min
πL∈QL

{
qLτ L−1→	 + rLτ L→	} = 1 + min

πL∈QL

{
qLτ L−1→	 + (1 − qL)τ L→	}

= 1 + τ L→	 + min
πL∈QL

{ − qL(τ L→	 − τ L−1→	)},

which, due to Theorem 4, implies that

min
πL∈QL

{ − qL(τ L→	 − τ L−1→	)} = −1 ⇒ τ L→	 = 1

qL
+ τ L−1→	.

By combining this with Equation (44), we find that

τ L→	 = τ L→L−1 + τ L−1→	. (81)

By applying Equation (32) for i = L − 1 and j = L − 2, we find that

τ L−1→L−2 = 1 + min
πL−1∈QL−1

{rL−1τ L−1→L−2 + pL−1τ L→L−2}
= 1 + min

πL−1∈QL−1
{(1 − qL−1 − pL−1)τ L−1→L−2 + pL−1τ L→L−2}

= 1 + τ L−1→L−2 + min
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1(τ L→L−2 − τ L−1→L−2)}

which, due to Theorem 4, implies that

min
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1(τ L→L−2 − τ L−1→L−2)} = −1.

Combining the equation above with Equation (81), for 	 = L − 2, we find that

min
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1τ L→L−1} = −1.

We will now generalise the proof using induction. Assuming that the lemma is true for k + 1, with k ∈ X \ {0, L − 1, L}, 
we prove that it is also true for k.

Consider any 	 ∈ X such that 	 < k. By applying Equation (32) for i = k + 1 and j = 	, we find that
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τ k+1→	 = 1 + min
πk+1∈Qk+1

{qk+1τ k→	 + rk+1τ k+1→	 + pk+1τ k+2→	}
= 1 + min

πk+1∈Qk+1

{qk+1τ k→	 + (1 − qk+1 − pk+1)τ k+1→	 + pk+1τ k+2→	}
= 1 + τ k+1→	 + min

πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1(τ k+2→	 − τ k+1→	)},

which, due to Theorem 4, implies that

min
πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1(τ k+2→	 − τ k+1→	)} = −1.

In combination with the induction hypothesis, which implies that τ k+2→	
= τ k+2→k+1 + τ k+1→	

, the equation above results 
in

min
πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1τ k+2→k+1} = −1. (82)

Due to Proposition 13 (proved further on) and the induction hypothesis, which implies that

min
πk+1∈Qk+1

{−qk+1τ k+1→k + pk+1τ k+2→k+1} = −1,

we infer from Equation (82) that τ k+1→	
− τ k→	

= τ k+1→k , and therefore that

τ k+1→	 = τ k+1→k + τ k→	. (83)

By taking now Equation (32), for i = k and j = k − 1, we find that

τ k→k−1 = 1 + min
πk∈Qk

{rkτ k→k−1 + pkτ k+1→k−1}
= 1 + min

πk∈Qk

{(1 − qk − pk)τ k→k−1 + pkτ k+1→k−1}
= 1 + τ k→k−1 + min

πk∈Qk

{−qkτ k→k−1 + pk(τ k+1→k−1 − τ k→k−1)},

which, due to Theorem 4, implies that

min
πk∈Qk

{−qkτ k→k−1 + pk(τ k+1→k−1 − τ k→k−1)} = −1.

By combining this with Equation (83), for 	 = k − 1, we find that

min
πk∈Qk

{−qkτ k−1→k + pkτ k+1→k} = −1. �
Lemma 27. For all k ∈ X \ {0, L}, we have that

max
πk∈Qk

{−qkτ k→k−1 + pkτ k+1→k} = −1,

and that, for all 	 in X such that k > 	:

τ k+1→	 = τ k+1→k + τ k→	.

Proof. We first prove the case k = L − 1. By taking Equation (33), for i = L, we find that

τ L→ j = 1 + Q L(I¬ jτ •→ j) = 1 + max
πL∈QL

{
qLI¬ j(L − 1)τ L−1→ j + rLI¬ j(L)τ L→ jqL

}
. (84)

Consider any 	 ∈ X such that 	 < L − 1. By applying Equation (84) for j = 	, we find that

τ L→	 = 1 + max
πL∈QL

{
qLτ L−1→	 + rLτ L→	} = 1 + max

πL∈QL

{
qLτ L−1→	 + (1 − qL)τ L→	}

= 1 + τ L→	 + max
πL∈QL

{ − qL(τ L→	 − τ L−1→	)},

which, due to Theorem 4, implies that

max
πL∈QL

{ − qL(τ L→	 − τ L−1→	)} = −1 ⇒ τ L→	 = 1

q
+ τ L−1→	.
L
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By combining this with Equation (44), we find that

τ L→	 = τ L→L−1 + τ L−1→	. (85)

By taking Equation (76), for k = L − 1 and 	 = L − 2, we find that

τ L−1→L−2 = 1 + max
πL−1∈QL−1

{rL−1τ L−1→L−2 + pL−1τ L→L−2}
= 1 + max

πL−1∈QL−1
{(1 − qL−1 − pL−1)τ L−1→L−2 + pL−1τ L→L−2}

= 1 + τ L−1→L−2 + max
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1(τ L→L−2 − τ L−1→L−2)}

which, due to Theorem 4, implies that

max
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1(τ L→L−2 − τ L−1→L−2)} = −1.

Combining the equation above with Equation (85), for 	 = L − 2, we find that

max
πL−1∈QL−1

{−qL−1τ L−1→L−2 + pL−1τ L→L−1} = −1.

We will now generalise the proof using induction. Assuming that the lemma is true for k + 1, with k ∈ X \ {0, L − 1, L}, 
we prove that it is also true for k.

Consider any 	 < k. By taking Equation (33), for i = k + 1 and j = 	, we find that

τ k+1→	 = 1 + max
πk+1∈Qk+1

{qk+1τ k→	 + rk+1τ k+1→	 + pk+1τ k+2→	}
= 1 + max

πk+1∈Qk+1

{qk+1τ k→ j + (1 − qk+1 − pk+1)τ k+1→ j + pk+1τ k+2→	}
= 1 + τ k+1→	 + max

πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1(τ k+2→	 − τ k+1→	)},

which, due to Theorem 4, implies that

max
πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1(τ k+2→	 − τ k+1→	)} = −1.

In combination with the induction hypothesis, which implies that τ k+2→	 = τ k+2→k+1 + τ k+1→	 , the equation above results 
in

max
πk+1∈Qk+1

{−qk+1(τ k+1→	 − τ k→	) + pk+1τ k+2→k+1} = −1. (86)

Due to Proposition 13 (proved further on) and the induction hypothesis, which implies that

max
πk+1∈Qk+1

{−qk+1τ k+1→k + pk+1τ k+2→k+1} = −1,

we infer from Equation (86) that τ k+1→	 − τ k→	 = τ k+1→k , and therefore that

τ k+1→	 = τ k+1→k + τ k→	. (87)

By taking Equation (33), for i = k and j = k − 1, we find that

τ k→k−1 = 1 + min
πk∈Qk

{rkτ k→k−1 + pkτ k+1→k−1}
= 1 + max

πk∈Qk

{(1 − qk − pk)τ k→k−1 + pkτ k+1→k−1}
= 1 + τ k→k−1 + max

πk∈Qk

{−qkτ k→k−1 + pk(τ k+1→k−1 − τ k→k−1)},

which, due to Theorem 4, implies that

max
πk∈Qk

{−qkτ k→k−1 + pk(τ k+1→k−1 − τ k→k−1)} = −1.

By combining this with Equation (87), for 	 = k − 1, we find that

min {−qkτ k−1→k + pkτ k+1→k} = −1. �

πk∈Qk
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Proposition 12. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1 and max
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1.

Proof. This result follows trivially from Lemmas 26 and 27. �
Proposition 13. Consider a credal set Q on Xm that consists of strictly positive probability mass functions and let c be a real 
constant. Then

min
π∈Q

{−qμ + pc} and max
π∈Q

{−qμ + pc}
are strictly decreasing functions of μ.

Proof. Consider any μ1, μ2 ∈R, such that μ2 > μ1. Then

min
π∈Q

{−qμ1 + pc} = min
π∈Q

{q(μ2 − μ1) − qμ2 + pc}
≥ min

π∈Q
{q(μ2 − μ1)} + min

π∈Q
{−qμ2 + pc} > min

π∈Q
{−qμ2 + pc},

where the last inequality holds because

min
π∈Q

{q(μ2 − μ1)} = (μ2 − μ1) min
π∈Q

{q}
where minπ∈Q{q} > 0 because Q is a credal set that consists of strictly positive probability mass functions.

Similarly,

max
π∈Q

{−qμ2 + pc} = max
π∈Q

{q(μ1 − μ2) − qμ1 + pc}
≤ max

π∈Q
{q(μ1 − μ2)} + max

π∈Q
{−qμ1 + pc} < max

π∈Q
{−qμ1 + pc},

where the last inequality holds because

max
π∈Q

{q(μ1 − μ2)} = (μ1 − μ2) max
π∈Q

{q},
where maxπ∈Q{q} > 0 because Q is a credal set that consists of strictly positive probability mass functions. �
Proposition 14. For all i, j ∈ X such that i > j, we have that

τ i→ j =
i−1∑
k= j

τ k+1→k and τ i→ j =
i−1∑
k= j

τ k+1→k.

Proof. We prove first the lower case. For j = i − 1, this result is trivial. For j = i − 2, it follows from Lemma 26 that

τ i→i−2 = τ i→i−1 + τ i−1→i−2.

Similarly, for j < i − 2, by applying Lemma 26 multiple times, we find that

τ i→ j = τ i→i−1 + τ i−1→ j = τ i→i−1 + τ i−1→i−2 + τ i−2→ j

= τ i→i−1 + τ i−1→i−2 + . . . + τ j+1→ j =
i−1∑
k= j

τ k+1→k.

Now we prove the upper case. For j = i − 1, this result is trivial. For j = i − 2, it follows from Lemma 27 that

τ i→i−2 = τ i→i−1 + τ i−1→i−2.

Similarly, for j < i − 2, by applying Lemma 27 multiple times, we find that

τ i→ j = τ i→i−1 + τ i−1→ j = τ i→i−1 + τ i−1→i−2 + τ i−2→ j

= τ i→i−1 + τ i−1→i−2 + . . . + τ j+1→ j =
i−1∑

τ k+1→k. �

k= j
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Proposition 15. Consider any imprecise birth–death chain such that, for all i ∈ X , Qi = {πi}. Then

τ i→ j = τ i→ j for all i, j ∈ X .

Proof. This result is an immediate consequence of the fact that, in this case, our recursive equations for computing τ i→ j
become identical to the equations that we use to compute τ i→ j . For example, for upward first-passage times, Equation (34)
is now identical to Equation (42) because p

0
= p0 = p0, and Equation (41) is now identical to Equation (43) because, 

since Qi = {πi}, the minimum and maximum disappear. Similar observations can also be made for all the other recursive 
equations in Sections 7–9. �
Proposition 16. Consider a precise birth–death chain of which the stochastic matrix P is given by Equation (8). Then for all i ∈
X \ {L}, we have that

τ P
i→i+1 =

i∑
k=0

∏i
	=k+1 q	∏i
m=k pm

.

Proof. We provide a proof by induction. Since p0 = p0, it follows from Equations (51) and (34) that τ P
0→1 = τ 0→1 = 1/p0 =

1/p0, proving Equation (52) for i = 0.
Consider now any i ∈ X \ {0, L} and let us assume, as our induction hypothesis, that the result is true for i − 1. Since 

Qi = {πi}, it follows from Proposition 6 and Equation (51) that qiτ
P

i−1→i − piτ
P

i→i+1 = −1, and therefore, Assumption (1)
implies that

τ P
i→i+1 = 1

pi
+ qi

pi
τ P

i−1→i = 1

pi
+ qi

pi

i−1∑
k=0

∏i−1
	=k+1 q	∏i−1
m=k pm

= 1

pi
+

i−1∑
k=0

∏i
	=k+1 q	∏i
m=k pm

=
i∑

k=0

∏i
	=k+1 q	∏i
m=k pm

,

where the second equality follows from the induction hypothesis. �
Proposition 17. Consider a precise birth–death chain of which the stochastic matrix P is given by Equation (8). Then for all i ∈
X \ {0}, we have that

τ P
i→i−1 =

L∑
k=i

∏k−1
	=i p	∏k
m=i qm

.

Proof. This proof is completely analogous to the proof of Proposition 17. Again, we provide a proof by induction. Since 
qL = qL , it follows from Equations (51) and (44) that τ P

L→L−1 = τ L→L−1 = 1/qL = 1/qL , proving the result for i = L.
Consider now any i ∈ X \ {0, L} and let us assume, as our induction hypothesis, that the result is true for i + 1. Since 

Qi = {πi}, it follows from Proposition 12 and Equation (51) that −qiτ
P

i→i−1 + piτ
P

i+1→i = −1, and therefore, Assumption (1)
implies that

τ P
i→i−1 = 1

qi
+ pi

qi
τ P

i+1→i = 1

qi
+ pi

qi

L∑
k=i+1

∏k−1
	=i+1 p	∏k

m=i+1 qm

= 1

qi
+

L∑
k=i+1

∏k−1
	=i p	∏k
m=i qm

=
L∑

k=i

∏k−1
	=i p	∏k
m=i qm

,

where the second equality follows from the induction hypothesis. �
Theorem 18. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method LUk. Then for all i, j ∈ X such that i < j ≤ k,
τ i→ j = τ P

i→ j .

Proof. Due to Corollary 8 and Equation (53), it clearly suffices to prove that

τ i→i+1 = τ P
i→i+1 for all i < k. (88)

We provide a proof by induction. Since we know from Selection Method LUk (1) that p0 = p0, it follows from Equation (34)
and Proposition 16 that τ 0→1 = 1/p0 = 1/p0 = τ P

0→1, which proves Equation (88) for i = 0.
Consider now any i ∈ {1, . . . , k − 1} and let us assume, as our induction hypothesis, that Equation (88) is true for i − 1, 

that is, τ i−1→i = τ P
i−1→i . Then on the one hand, if we apply Proposition 6 to the imprecise birth–death chain, it follows 

from Selection Method LUk (2) that qiτ i−1→i − piτ i→i+1 = −1. On the other hand, if we apply Proposition 6 to the precise 
birth–death chain with stochastic matrix P , we find that qiτ

P − piτ
P = −1. By combining these two statements 
i−1→i i→i+1
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with the induction hypothesis, it follows that piτ i→i+1 = piτ
P

i→i+1, which, because of Assumption (1), implies that τ i→i+1 =
τ P

i→i+1, as required. �
Theorem 19. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method UUk. Then for all i, j ∈ X such that i < j ≤ k,
τ i→ j = τ P

i→ j .

Proof. Due to Proposition 11 and Equation (53), it suffices to prove that

τ i→i+1 = τ P
i→i+1 for all i < k. (89)

We provide a proof by induction. Since we know from Selection Method UUk (1) that p
0
= p0, it follows from Equation (42)

and Proposition 16 that τ 0→1 = 1/p
0
= 1/p0 = τ P

0→1, which proves Equation (89) for i = 0.
Consider now any i ∈ {1, . . . , k − 1} and let us assume, as our induction hypothesis, that Equation (89) is true for i − 1, 

that is, τ i−1→i = τ P
i−1→i . Then on the one hand, if we apply Proposition 9 to the imprecise birth–death chain, it follows 

from Selection Method UUk (2) that qiτ i−1→i − piτ i→i+1 = −1. On the other hand, if we apply Proposition 9 to the precise 
birth–death chain with stochastic matrix P , we find that qiτ

P
i−1→i − piτ

P
i→i+1 = −1. By combining these two statements 

with the induction hypothesis, it follows that piτ i→i+1 = piτ
P

i→i+1, which, because of Assumption (1), implies that τ i→i+1 =
τ P

i→i+1, as required. �
Theorem 20. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method LDk. Then for all i, j ∈ X such that k ≤ j < i,
τ i→ j = τ P

i→ j .

Proof. Due to Proposition 14 and Equation (54), it suffices to prove that

τ i→i−1 = τ P
i→i−1 for all i > k. (90)

We provide a proof by induction. Since we know from Selection Method LDk (1) that qL = qL , it follows from Equation (44)
and Proposition 17 that τ L→L−1 = 1/qL = 1/qL = τ P

L→L−1, which proves Equation (90) for i = L.
Consider now any i ∈ {k + 1, . . . , L − 1} and let us assume, as our induction hypothesis, that Equation (90) is true for 

i + 1, that is, τ i+1→i = τ P
i+1→i . Then on the one hand, if we apply Proposition 12 to the imprecise birth–death chain, it 

follows from Selection Method LDk (2) that −qiτ i→i−1 + piτ i+1→i = −1. On the other hand, if we apply Proposition 12 to 
the precise birth–death chain with stochastic matrix P , we find that −qiτ

P
i→i−1 + piτ

P
i+1→i = −1. By combining these two 

statements with the induction hypothesis, it follows that qiτ i→i−1 = qiτ
P

i→i−1, which, because of Assumption (1), implies 
that τ i→i−1 = τ P

i→i−1, as required. �
Theorem 21. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P
is obtained from this imprecise birth–death chain by means of Selection Method UDk. Then for all i, j ∈ X such that k ≤ j < i,
τ i→ j = τ P

i→ j .

Proof. Due to Proposition 14 and Equation (54), it suffices to prove that

τ i→i−1 = τ P
i→i−1 for all i > k. (91)

We provide a proof by induction. Since we know from Selection Method UDk (1) that q
L
= qL , it follows from Equation (44)

and Proposition 17 that τ L→L−1 = 1/q
L
= 1/qL = τ P

L→L−1, which proves Equation (91) for i = L.
Consider now any i ∈ {k + 1, . . . , L − 1} and let us assume, as our induction hypothesis, that Equation (90) is true for 

i + 1, that is, τ i+1→i = τ P
i+1→i . Then on the one hand, if we apply Proposition 12 to the imprecise birth–death chain, it 

follows from Selection Method LDk (2) that −qiτ i→i−1 + piτ i+1→i = −1. On the other hand, if we apply Proposition 12 to 
the precise birth–death chain with stochastic matrix P , we find that −qiτ

P
i→i−1 + piτ

P
i+1→i = −1. By combining these two 

statements with the induction hypothesis, it follows that qiτ i→i−1 = qiτ
P

i→i−1, which, because of Assumption (1), implies 
that τ i→i−1 = τ P

i→i−1, as required. �
Theorem 22. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P is 
obtained from this imprecise birth–death chain by means of Selection Method LRk. Then τ k→k = τ P

k→k.

Proof. First observe that, since Selection Method LRk implies Selection Method LUk and LDk , we can use Theorem 18 and 20
to find that
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(
k �= 0 ⇒ τ k−1→k = τ P

k−1→k

)
and

(
k �= L ⇒ τ k+1→k = τ P

k+1→k

)
. (92)

We now prove the theorem for k = 0. Since we know from Selection Method LRk (1) that p
0

= p0, it follows from 
Equations (45) and (92) that

τ 0→0 = 1 + p
0
τ 1→0 = 1 + p0τ 1→0 = 1 + p0τ

P
1→0

and therefore, due to Equation (55), we infer that τ 0→0 = τ P
0→0.

The case k = L is proved similarly. Since we know from Selection Method LRk (5) that q
L

= qL , it follows from Equa-
tions (46) and (92) that

τ L→L = 1 + q
L
τ L−1→L = 1 + qLτ L−1→L = 1 + qLτ

P
L−1→L

and therefore, due to Equation (55), we find that τ L→L = τ P
L→L .

It remains now to prove the theorem for the case k ∈ {1, . . . , L − 1}. Since we know from Selection Method LRk (3) that 
(qk, rk, pk) ∈ arg minπk∈Qk

{qkτ k−1→k + pkτ k+1→k}, it follows from Equations (47) and (92) that

τ k→k = 1 + qkτ k−1→k + pkτ k+1→k = 1 + qkτ
P

k−1→k + pkτ
P

k+1→k

and therefore, Equation (56) implies that τ k→k = τ P
k→k , as required. �

Theorem 23. Consider an imprecise birth–death chain, some k ∈ X , and a precise birth death chain whose stochastic matrix P is 
obtained from this imprecise birth–death chain by means of Selection Method URk. Then τ k→k = τ P

k→k.

Proof. First observe that, since Selection Method URk implies Selection Method UUk and UDk , we can use Theorem 19
and 21 to find that(

k �= 0 ⇒ τ k−1→k = τ P
k−1→k

)
and

(
k �= L ⇒ τ k+1→k = τ P

k+1→k

)
. (93)

We now prove the theorem for k = 0. Since we know from Selection Method URk (1) that p0 = p0, it follows from 
Equations (48) and (93) that

τ 0→0 = 1 + p0τ 1→0 = 1 + p0τ 1→0 = 1 + p0τ
P

1→0

and therefore, due to Equation (55), we infer that τ 0→0 = τ P
0→0.

The case k = L is proved similarly. Since we know from Selection Method URk (5) that qL = qL , it follows from Equa-
tions (49) and (93) that

τ L→L = 1 + qLτ L−1→L = 1 + qLτ L−1→L = 1 + qLτ
P
L−1→L

and therefore, due to Equation (55), we find that τ L→L = τ P
L→L .

It remains now to prove the theorem for the case k ∈ {1, . . . , L − 1}. Since we know from Selection Method LRk (3) that 
(qk, rk, pk) ∈ arg maxπk∈Qk

{qkτ k−1→k + pkτ k+1→k}, it follows from Equations (50) and (93) that

τ k→k = 1 + qkτ k−1→k + pkτ k+1→k = 1 + qkτ
P

k−1→k + pkτ
P

k+1→k

and therefore, Equation (56) implies that τ k→k = τ P
k→k , as required. �
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