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Abstract. Dynamic classifier selection is a classification technique that,
for every new instance to be classified, selects and uses the most compe-
tent classifier among a set of available ones. In this way, a new classifier is
obtained, whose accuracy often outperforms that of the individual classi-
fiers it is based on. We here present a version of this technique where, for
a given instance, the competency of a classifier is based on the robustness
of its prediction: the extent to which the classifier can be altered without
changing its prediction. In order to define and compute this robustness,
we adopt methods from the theory of imprecise probabilities. As a proof
of concept, we here apply this idea to the simple case of naive Bayes clas-
sifiers. Based on our preliminary experiments, we find that the resulting
classifier outperforms the individual classifiers it is based on.

1 Introduction

In machine learning and statistics, classification is the problem of predicting the
class of a new instance, using only its features and a given data set with labelled
instances. A model for performing this task is called a classifier.

The usual approach to solving such problems is to consider some tractable
family of possible classifiers and to try to select from among them the classifier
that achieves the highest classification accuracy on all instances. The method
of Dynamic Classifier Selection [2] switches this around: instead of selecting
a single classifier to be used on all instances, it selects a (possibly) different
classifier for each and every instance, and then uses the result of this classifier
to predict the class of that instance. If all goes well, the resulting combined
classifier outperforms each of the individual classifiers it is based on.

The key to the success of this Dynamic Classifier Selection method is to find
a way to assess, for a given instance, which classifier is most likely to classify
it correctly. We here propose to base this assessment on imprecise-probabilistic
measures for the robustness of a prediction: the extent to which a classifier can
be altered without changing its prediction. Our main reason for this proposal is
the recent discovery that these measures of robustness correlate surprisingly well
with the accuracy of their classifier (when evaluated on instances with similar
robustness) [3].
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To the best of our knowledge, this idea has never been tried before. For that
reason, we here start by applying it to the case of the Naive Bayes Classifier, as it
is a simple but well-known and surprisingly performant classifier. Furthermore,
since the Naive Bayes topology is a special case of the imprecise graphical models
that are considered in Reference [3], this will allow us to compute the required
robustness measures with existing algorithms.

The rest of this paper is organized as follows. After a brief introduction to the
Naive Bayes Classifier in Section 2, Section 3 goes on to introduce its imprecise-
probabilistic extension, called the Naive Credal Classifier, and the critical pertur-
bation threshold that can be derived from it. Next, in Section 4, we explain how
these thresholds can be used as a tool to choose, for a given instance, between
two different classifiers. Experiments on real data sets from the UCI Machine
Learning Repository are reported on in Section 5. We conclude the paper in
Section 6, where we also hint at possible avenues for future research.

2 Naive Bayes classifiers

A Naive Bayes Classifier (NBC) is a simple probabilistic model that is used to
estimate the class of an instance based on the value of its features. The class
variable is denoted by C and takes values c in a finite set C. If C is binary, as will
be the case in our experiments, we denote its elements by c and c. The number
of features is denoted by m. For every i ∈ {1, . . . ,m}, the i-th feature variable is
denoted by Fi and takes values fi in a finite set Fi. For notational convenience,
we gather all feature variables in a single vector F = (F1, . . . , Fm) that takes
values f = (f1, . . . , fm) in F1 × · · · × Fm.

For any given feature vector f, a Naive Bayes Classifier will return as its
estimate the class ĉ that has the highest probability P (ĉ|f ) given the features f.
In fact, it has this in common with every other probabilistic classifier. In the case
of a Naive Bayes Classifier, the computation of these probabilities is facilitated
by the (naive) assumption that the features are independent given the class; see
Fig. 1.
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Fig. 1: Example of a Naive Bayes Classifier
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Due to this assumption, the conditional probability that is to be maximised is
given by

P (ĉ|f) =
P (ĉ)

∏m
i=1 P (fi|ĉ)∑

c∈C P (c)
∏m

i=1 P (fi|c)
.

In this expression, the (conditional) probabilities that appear on the right hand
side are typically learned from data. To avoid probability zero, we adopt Laplace
smoothing, meaning that for all i ∈ {1, . . . ,m}, c ∈ C and fi ∈ Fi:

P (c) =
n(c) + 1

n + |C|
and P (fi|c) =

n(c, fi) + 1

n(c) + |Fi|
,

with n the total number of data points, n(c) the number of data points with
class c and n(c, fi) the number of data points with class c and i-th feature fi.

Example 1. Most of our experiments further on will be conducted on the Bal-
loons data set of the UCI Machine Learning Repository [4]. It has two possible
class values, which we denote by c and c and 4 features, which we denote by
F1, F2, F3 and F4. For the purposes of this contribution, the meaning of these
features is irrelevant.

The data set consists of 76 instances, which we randomly split in a training
set (70%) and a testing set (30%). The training set is used to learn the local
probabilities of a Naive Bayes Classifier (using Laplace smoothing), and this
classifier is then used to predict the class of the instances in the testing set.
This process is repeated a hundred times, and the average accuracy over these
hundred runs is reported.

For an NBC that uses all four features, the obtained (average) accuracy is
0.776502. We refer to this classifier as ‘Classifier 1’. We also consider a second
classifier, called ‘Classifier 2’, that only uses F1, F3 and F4. For that classifier,
the obtained accuracy is 0.746948. After performing feature selection using the
Sequential Forward Selection (SFS) method, these two classifiers came out first
and second, respectively.

For a given instance, these two classifiers may of course yield different predic-
tions. For didactic purposes and future reference, we here mention one particular
unspecified instance where, in the first of our hundred runs, Classifier 1 predicted
c while Classifier 2 predicted c.

3 Naive Credal Classifiers and their thresholds

The Naive Credal Classifier (NCC) [5] is an extension of the Naive Bayes Clas-
sifier to the framework of imprecise probabilities that can be used to robustify
the inferences of an NBC. Basically, the idea is to consider an NBC whose local
probabilities are only partially specified.

In particular, instead of considering a probability mass function P (C) that
contains the probabilities P (c) of each of the classes c ∈ C, an NCC considers a set
of such probability mass functions, which we denote by P(C). Similarly, for every
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class c ∈ C and every i ∈ {1, . . . ,m}, it considers a set P(Fi|c) of conditional
probability mass functions. In general, these local sets can be learned from data,
elicited from experts, or obtained by considering neighbourhoods around the
local models of an NBC. We here consider the first option. In particular, we use
a version of the Imprecise Dirichlet Model (IDM) [1], suitably adapted such that
it is guaranteed to contain the result of Laplace smoothing. In particular, P (C)
is taken to belong to P(C) if and only if there is a probability mass function t
on C such that

P (c) =
n(c) + 1 + st(c)

n + |C|+ s
for all c ∈ C,

where s is a fixed hyperparameter that determines the degree of imprecision. For
every i ∈ {1, . . . ,m} and c ∈ C, the local set P(Fi|c) is defined similarly.

If we now choose a single probability mass function P (C) in P(C) and, for
every c ∈ C and i ∈ {1, . . . ,m}, a single conditional probability mass function
P (Fi|c) in P(Fi|c), we obtain a single NBC. By doing this in every possible way,
we obtain a set of NBCs. This set is a Naive Credal Classifier (NCC) [5].

Classification for such an NCC is done by performing classification with each
of the NBCs it consists of separately. If all these NBCs agree on which class
to return, then the output of the NCC will be that class. If they do not agree,
the result of the NCC is indeterminate and consists of a set of possible classes,
amongst which it is unable to choose.

Example 2. For the particular instance at the end of Example 1, for the same
first run, using s = 0.6 makes Classifier 2 indeterminate, in the sense that it
then returns the uninformative set {c, c}, while for that value of s, the NCC
that corresponds to Classifier 1 continuous to predict class c.

For our present purposes, however, we are not interested in the indetermi-
nate predictions of an NCC. Instead, we are interested in the maximum value
of s for which it still remains determinate. This value is a particular case of the
critical perturbation threshold in Reference [3]. Quite remarkably, it has been
observed that for any given instance, the corresponding critical perturbation
threshold serves as a good indicator for the performance of the original NBC:
instances with higher thresholds are classified correctly more often [3]. Further-
more, this threshold can be computed efficiently using the algorithms in that
same reference.

Example 3. Continuing with Example 2, we find that for that same instance and
that same run, the critical perturbation threshold for Classifier 1 is 0.63, while
that for Classifier 2 is 0.52. This explains why, for s = 0.6, Classifier 1 continued
to be informative whereas Classifier 2 was indeterminate.

4 A Dynamic Classifier Selection Method

The main takeway message of the previous section was that, for a given instance
and classifier, the corresponding critical perturbation threshold serves as a good
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indicator for the performance of that classifier on this instance, in the sense
that instances with higher thresholds have a higher chance of being classified
correctly. Inspired by this observation, we will now try to use this threshold to
perform dynamic classifier selection, that is, to derive a method that, for every
new instance to be classified, is able to select the most competent classifier among
a set of available ones.

As a first idea, one could consider to simply choose the classifier with the
highest threshold. The problem with that approach, however, is that it does not
make sense to directly compare the thresholds of different classifiers, because the
empirical relation between threshold and performance differs from classifier to
classifier. Classifiers with more features, for example, tend to have lower thresh-
olds for all instances, but this does not mean that they achieve lower accuracies.
In general, the only thing that we know is that for a given classifier, instances
with higher thresholds are classified correctly more often.

What we need, therefore, is a method for determining the empirical relation
between the thresholds of different classifiers and their probabilities of correctly
classifying the instance that is considered. In particular, for the case of two clas-
sifiers that we will here consider, we need a method for determining the empirical
relation between a pair of thresholds—one for each of the two classifiers—and
the corresponding probabilities of successful classification. Given such a relation,
for any given instance, we can use its pair of thresholds to estimate which of the
two considered classifiers has the highest probability of successful classification,
and then use that classifier to predict the instance’s class. We propose to do this
in the following way.

For every new test instance that is to be classified, we start by searching the
training set for instances that have a similar pair of thresholds. In particular, we
choose those k training instances whose pair of thresholds is closest to that of
the test instance, according to some given distance measure. In our experiments,
we consider two different distance measures: the Euclidean distance and the
Chebyshev distance. On the chosen subset of training instances, we then compare
the success rate of each of the two classifiers, select the classifier with the highest
success rate, and use that classifier to perform the classification. The resulting
classifier is a combination of the two classifiers it is based on: for every test
instance, it uses the one that is expected to perform best.

Fig. 2 illustrates this idea with a fictitious example that is imagined to have
fifty training instances, whose pairs of thresholds are depicted on the plane. The
threshold value of Classifier 1 and 2 are the x- and y-coordinate, respectively.
Every instance in the training set corresponds to a black point. Consider now a
test instance whose pair of thresholds corresponds to the red dot and let k = 10.
Our method then starts by considering the ten points that are closest to the red
dot, according to the chosen distance measure. In Fig. 2, the green diamonds
correspond to the Euclidean distance, while the purple stars are for Chebyshev
distance. Next, we compare the accuracy of both classifiers on this set of points.
Whichever classifier performs best on them is the one that we will use to classify
this particular test instance.
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Fig. 2: Illustration of the chosen k-nearest instances, using a fictituous data set
with fifty training points, and for k = 10 and two different distance measures

Our next example tests this method on the Balloons data set that we con-
sidered before.

Example 4. We consider the two classifiers that were discussed in Example 1
and compare them with two new classifiers that are obtained by the method
that we introduced above, one for each of the two considered distance measures.
As before, we randomly split the data into training and testing instances and
report average accuracies over hundred such runs. In order to study the effect
of the parameter k, we vary it from 2 to 20. The results are depicted in Fig. 3.
The pink line shows the accuracy of the combined classifier with the Chebyshev
distance (ACch), while the green one depicts the accuracy for the Euclidean
distance (ACeu). The purple line and the orange line correspond to the constant
accuracy of Classifier 1 (ACC1) and Classifier 2 (ACC2), respectively.

A first important observation is that our new classifiers outperform the in-
dividual classifiers on which they are based, regardless of the value of k. We
also see that the difference between using the Euclidean or Chebychev distance
seems negligible. For k = 3, both of our new classifiers reach their peak accura-
cies, which is given by ACch = 0.788485 and ACeu = 0.788961, respectively. The
accuracy of the original classifiers are ACC1 = 0.776502 and ACC2 = 0.746948.

5 Additional Experiments

As a final test, we apply our method to four more data sets, again from the UCI
Machine Learning Repository [4]. The Breast Cancer Wisconsin (original) data
set (BCW), the Statlog (Australian Credit Approval) data set (ACA), the Auto
MPG data set (MPG) and the Tic-Tac-Toe Endgame Data Set (TIC). A brief
description of these data sets is given in Table 1, along with the Balloons data
set that we considered before. For the sake of simplicity, instances with missing
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Fig. 3: The achieved accuracy as a function of the parameter k, for four different
classifiers: the two original ones (which do not depend on k) and two combined
classifiers (one for each of the considered distance measures)

values and features with string values were ignored and continuous variables
were discretized by their median. For the remaining features, feature selection
was performed to select the best set of features. Here too, the corresponding
classifier is called ‘Classifier 1’ (C1). ‘Classifier 2’ (C2) is a suboptimal classifier
with slightly different features. The features of these two classifiers are reported
in Table 1.

Table 1: Description of data sets

Name # Data # Class values # Features Features C1 Features C2

Balloons 76 2 4 (1, 2, 3, 4) (1, 3, 4)
BCW 699 2 9 (1, 2, 5, 6, 8) (1, 2, 6, 8)
ACA 690 2 14 (3, 4, 6, 13) (1, 3, 4, 6, 7)
MPG 398 2 8 (1, 5, 6) (1, 4, 5, 6)
TIC 958 2 9 (1, 5, 7, 8) (1, 2, 5, 7, 8)

The results of our experiments are given in Table 2. In contrast with Exam-
ple 4, the parameter k was not kept constant over all runs. Rather, for each run,
an optimal value of k was determined through cross-validation on the training
set. Once more, our combined classifiers consistently outperform the individual
ones on which they are based. Here too, the choice of distance measure seems to
have very little effect.
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Table 2: A comparison of all four classifiers

Data Set ACC1 ACC2 ACeu ACch

Balloons 0.776502 0.746948 0.781039 0.781970
BCW 0.974221 0.972496 0.974710 0.974710
ACA 0.723675 0.723190 0.724884 0.724884
MPG 0.920696 0.917610 0.921039 0.920697
TIC 0.724366 0.724363 0.733661 0.732731

6 Conclusions and future work

The main conclusion of this contribution is that imprecise-probabilistic robust-
ness measures, such as the critical perturbation threshold that we here consid-
ered, can be used to develop dynamic classifier selection methods that outper-
form the individual classifiers they select from. Given the restricted scope of our
experiments, this conclusion is of course preliminary. We regard our results as a
proof of concept, and hope that they will inspire some of you to apply similar
techniques to other—perhaps more advanced—types of classifiers as well.

In our own future work, we intend to start by deepening our study of the case
of the Naive Bayes Classifier. In particular, we will study the performance of our
method on classification problems with more than two classes, and will extend it
to allow for dynamic classifier selection among more than two classifiers. Finally,
we would like to explore the effect of the specific set of classifiers among which
our method chooses. In our current experiments, the classifiers that we started
from had similar features and accuracies; it might very well be beneficial to start
from classifiers that are more diverse.
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