Imprecise Markov chains

by Jasper De Bock & Thomas Krak

SMPS/BELIEF 2018

September 17

now :-)

Jasper De Bock & Thomas Krak

Imprecise Markov chains

(Walley 1991) (Augustin et al. 2014)

A tutorial on

Imprecise Markov chains

$$P \in \mathbb{P} \longrightarrow \begin{cases} \overline{E}(f) = \sup_{P \in \mathbb{P}} E(f) = -\underline{E}(-f) \\ \underline{E}(f) = \inf_{P \in \mathbb{P}} E(f) \end{cases}$$

Imprecise Markov chains by Jasper De Bock - Thomas Krak September 17

Imprecise Markov chains

by Jasper De Bock & Thomas Krak

SMPS/BELIEF 2018

September 17

now :-)

Imprecise Markov chains

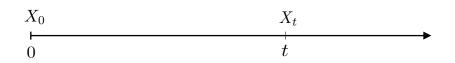
by Jasper De Bock & Thomas Krak

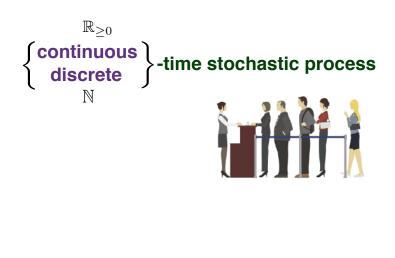
SMPS/BELIEF 2018

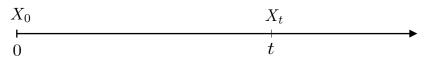
September 17

now :-)

stochastic process

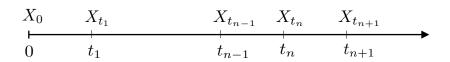






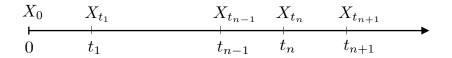
$$\left\{\begin{matrix} \mathbb{R}_{\geq 0} \\ \text{continuous} \\ \text{discrete} \\ \mathbb{N} \end{matrix}\right\} \text{-time stochastic process}$$

$$\begin{split} & P(X_0 = x_0) \\ & P(X_{t_{n+1}} = y \ | X_{t_1} = x_{t_1}, ..., X_{t_{n-1}} = x_{t_{n-1}}, X_{t_n} = x) \end{split}$$



$$\left\{\begin{matrix} \mathbb{R}_{\geq 0} \\ \text{continuous} \\ \text{discrete} \\ \mathbb{N} \end{matrix}\right\} \text{-time Markov chain}$$

 $P(X_0 = x_0)$ $P(X_{t_{n+1}} = y | X_{t_1} = x_{t_1}, ..., X_{t_{n-1}} = x_{t_{n-1}}, X_{t_n} = x)$ $= P(X_{t_{n+1}} = y | X_{t_1} = X_{t_n} = x)$



$$\left\{\begin{matrix} \mathbb{R}_{\geq 0} & \text{homogeneous} \\ \text{continuous} \\ \text{discrete} \\ \mathbb{N} \end{matrix}\right\} \text{-time Markov chain}$$

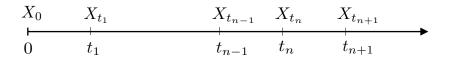
 $P(X_0 = x_0)$ $P(X_{t_{n+1}} = y \mid X_{t_1} = x_{t_1}, ..., X_{t_{n-1}} = x_{t_{n-1}}, X_{t_n} = x)$ only the time difference $\Delta = t_{n+1} - t_n \text{ matters!} \qquad = P(X_{t_{n+1}} = y \mid X_{t_1} = X_{t_n} = x)$ $= T_{\Delta}(x, y)$ $\Delta = t_{n+1} - t_n$ matters! X_0 X_{t_1} $X_{t_{n-1}} \quad X_{t_n} \qquad X_{t_{n+1}}$ t_{n-1} t_n t_{n+1} 0 t_1

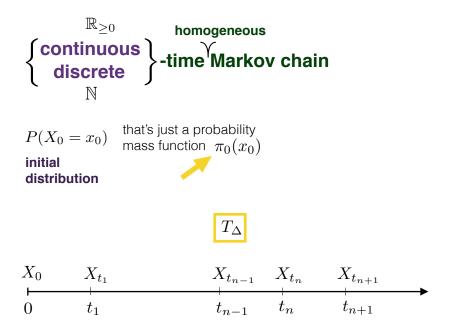
$$\left\{\begin{matrix} \mathbb{R}_{\geq 0} & \text{homogeneous} \\ \textbf{continuous} \\ \textbf{discrete} \\ \mathbb{N} \end{matrix}\right\} \textbf{-time Markov chain}$$

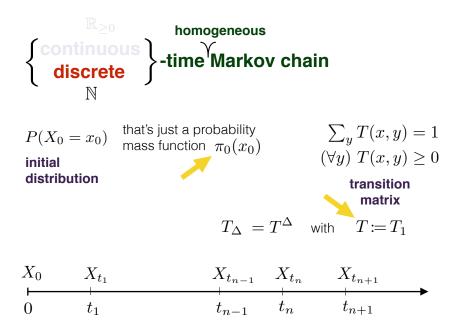
$$P(X_0 = x_0)$$

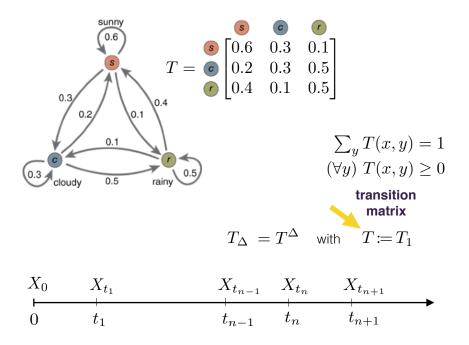
$$P(X_{t_{n+1}} = y | X_{t_1} = x_{t_1}, \dots, X_{t_{n-1}} = x_{t_{n-1}}, X_{t_n} = x)$$

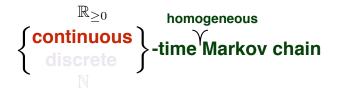
only the time difference $\Delta = t_{n+1} - t_n \text{ matters!} = P(X_{t_{n+1}} = y \mid X_{t_1} = X_{t_n} = x)$ $= T_{\Delta}(x, y)$



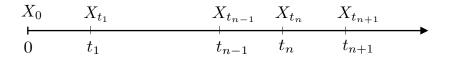




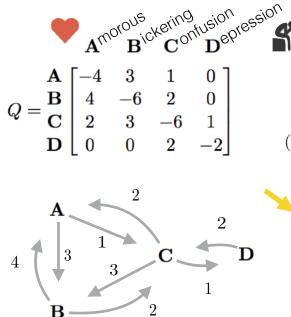




 $P(X_0 = x_0) \quad \begin{array}{l} \text{that's just a probability} \\ \text{mass function} \\ \pi_0(x_0) \end{array}$



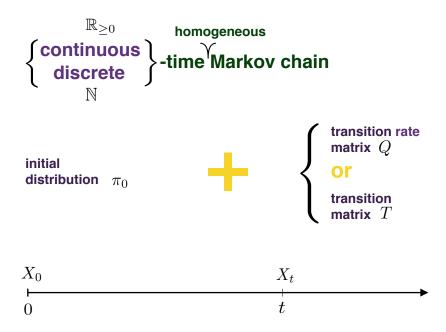
$$\begin{cases} \mathbf{Continuous} \\ \mathbf{discrete} \\ \mathbf{N} \end{cases} \mathbf{homogeneous} \mathbf{-time Markov chain} \\ \mathbf{M} \mathbf{Continuous} \\ \mathbf{M} \mathbf{Continuous} \\ \mathbf{M} \mathbf{Cut} \mathbf{Cut}$$



 $\sum_{y} Q(x, y) = 0$ $(\forall y \neq x) Q(x, y) \ge 0$

transition rate matrix

$$Q := \lim_{\Delta \to 0} \frac{T_{\Delta} - I}{\Delta}$$



$$E(f(X_t)|X_0 = x) = [T_t f](x) = \sum_y T_t(x, y)f(y) = \begin{cases} \sum_y e^{Qt}(x, y)f(y) \\ \sum_y T^t(x, y)f(y) \end{cases}$$

$$x = 0$$

$$f(X_t) = X_t$$

$$X_t$$

$$t$$

$$E(f(X_t)|X_0 = x) = [T_t f](x) = \sum_y T_t(x, y)f(y) = \begin{cases} \sum_y e^{Qt}(x, y)f(y) \\ \sum_y T^t(x, y)f(y) \end{cases}$$

$$P(X_t = y | X_0 = x) = E(\mathbb{I}_y(X_t) | X_0 = x) = [T_t \mathbb{I}_y](x)$$

$$y = x = 0$$

$$f(X_t) = \mathbb{I}_y(X_t) = \begin{cases} 1 & \text{if } X_t = y \\ 0 & \text{otherwise} \end{cases}$$

$$X_t$$

$$X_t$$

$$E(f(X_t)|X_0 = x) = [T_t f](x)$$

$$E_{\infty}(f) := \lim_{t \to +\infty} E(f(X_t) | X_0 = x)$$

$$P(X_t = y | X_0 = x) = E(\mathbb{I}_y(X_t) | X_0 = x) = [T_t \mathbb{I}_y](x)$$

$$\pi_{\infty}(y) := \lim_{t \to +\infty} P(X_t = y | X_0 = x)$$



Reliability engineering (failure probabilities, ...)

Queuing theory (waiting in line ...)

- optimising supermarket waiting times
- dimensioning of call centers
- airport security lines
- router queues on the internet

Chemical reactions (time-evolution ...)

🗸 Pagerank

Don't know T (or Q) exactly

But confident that $T \in \mathscr{T}$ for some set \mathscr{T} of transition matrices

• (or that $Q \in \mathscr{Q}$ for some set \mathscr{Q} of rate matrices)

Induces imprecise Markov chain; set of processes compatible with \mathcal{T} .

Don't know T (or Q) exactly

But confident that $T \in \mathscr{T}$ for some set \mathscr{T} of transition matrices

• (or that $Q \in \mathscr{Q}$ for some *set* \mathscr{Q} of rate matrices)

Induces imprecise Markov chain; set of processes compatible with \mathcal{T} .

Different versions:

• $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$: all homogeneous Markov chains with $T \in \mathscr{T}$

Don't know T (or Q) exactly

But confident that $T \in \mathscr{T}$ for some set \mathscr{T} of transition matrices

• (or that $Q \in \mathscr{Q}$ for some set \mathscr{Q} of rate matrices)

Induces imprecise Markov chain; set of processes compatible with \mathcal{T} .

Different versions:

- $\mathbb{P}_{\mathscr{T}}^{\mathrm{HM}}$: all homogeneous Markov chains with $\mathcal{T} \in \mathscr{T}$
- $\mathbb{P}^{\mathrm{M}}_{\mathscr{T}}$: all (**non**-homogeneous) Markov chains with $\mathcal{T}^{(t)} \in \mathscr{T}$

Don't know T (or Q) exactly

But confident that $T \in \mathscr{T}$ for some set \mathscr{T} of transition matrices

• (or that $Q \in \mathscr{Q}$ for some set \mathscr{Q} of rate matrices)

Induces imprecise Markov chain; set of processes compatible with \mathcal{T} .

Different versions:

- $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$: all homogeneous Markov chains with $T \in \mathscr{T}$
- $\mathbb{P}^{\mathrm{M}}_{\mathscr{T}}$: all (**non**-homogeneous) Markov chains with $\mathcal{T}^{(t)} \in \mathscr{T}$
- $\mathbb{P}_{\mathscr{T}}$: all (non-Markov) processes with $T^{(t,x_u)} \in \mathscr{T}$

Don't know T (or Q) exactly

But confident that $T \in \mathscr{T}$ for some set \mathscr{T} of transition matrices

• (or that $Q \in \mathcal{Q}$ for some set \mathcal{Q} of rate matrices)

Induces imprecise Markov chain; set of processes compatible with \mathcal{T} .

Different versions:

- $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$: all homogeneous Markov chains with $T \in \mathscr{T}$
- $\mathbb{P}^{\mathrm{M}}_{\mathscr{T}}$: all (**non**-homogeneous) Markov chains with $\mathcal{T}^{(t)} \in \mathscr{T}$
- $\mathbb{P}_{\mathscr{T}}$: all (non-Markov) processes with $T^{(t,x_u)} \in \mathscr{T}$

Clearly

$$\mathbb{P}_{\mathscr{T}}^{HM}\subseteq\mathbb{P}_{\mathscr{T}}^{M}\subseteq\mathbb{P}_{\mathscr{T}}$$

Lower expectations and lower probabilities

Given an imprecise Markov chain $\mathbb{P}_{\mathscr{T}}^*$, we are interested in

$$\mathbb{E}_{\mathscr{T}}^{*}[f(X_t) | X_0 = x] = \inf_{P \in \mathbb{P}_{\mathscr{T}}^{*}} \mathbb{E}_{P}[f(X_t) | X_0 = x]$$

(And
$$\overline{\mathbb{E}}_{\mathscr{T}}^*[f(X_t)|X_0=x]$$
 by conjugacy)

Lower- (and upper) probabilities a special case:

$$\underline{P}^*_{\mathscr{T}}(X_t = y \mid X_0 = x) = \inf_{P \in \mathbb{P}^*_{\mathscr{T}}} P(X_t = y \mid X_0 = x) = \underline{\mathbb{E}}^*_{\mathscr{T}} \left[\mathbb{I}_y(X_t) \mid X_0 = x \right]$$

Because different types are nested,

$$\underline{\mathbb{E}}_{\mathscr{T}}\big[f(X_t) \,|\, X_0 = x\big] \leq \underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}\big[f(X_t) \,|\, X_0 = x\big] \leq \underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{HM}}\big[f(X_t) \,|\, X_0 = x\big]$$

Computing lower expectations, first try

Recall that for a homogeneous Markov chain P with transition matrix T,

$$\mathbb{E}_{P}[f(X_{1})|X_{0}=x]=[Tf](x).$$

Now consider $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$. Then,

$$\begin{split} \mathbb{E}_{\mathscr{T}}^{\mathrm{HM}}\big[f(X_1) \,|\, X_0 = x\big] &:= \inf_{\substack{P \in \mathbb{P}_{\mathscr{T}}^{\mathrm{HM}}}} \mathbb{E}_{P}\big[f(X_1) \,|\, X_0 = x\big] \\ &= \inf_{T \in \mathscr{T}}\big[Tf\big](x) \end{split}$$

- \blacksquare Linear optimisation problem with constraints given by ${\mathscr T}$
- Relatively straightforward if \mathcal{T} is "nice"
- Essentially solving a linear programming problem

Computing lower expectations, first try

Recall that for a homogeneous Markov chain P with transition matrix T,

$$\mathbb{E}_{P}[f(X_{t})|X_{0}=x] = [T^{t}f](x).$$

Now consider $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$. Then,

$$\begin{split} \mathbb{E}_{\mathscr{T}}^{\mathrm{HM}}\big[f(X_tn) \,|\, X_0 = x\big] &:= \inf_{\substack{P \in \mathbb{P}_{\mathscr{T}}^{\mathrm{HM}}\\ \mathcal{T} \in \mathscr{T}}} \mathbb{E}_{P}\big[f(X_t) \,|\, X_0 = x\big] \\ &= \inf_{T \in \mathscr{T}} \big[T^t f\big](x) \end{split}$$

Non-linear optimisation problem with constraints given by *T*Not straightforward even if *T* is "nice"

Computing lower expectations, first try

Recall that for a homogeneous Markov chain P with transition matrix T,

$$\mathbb{E}_{P}[f(X_{t})|X_{0}=x]=[T^{t}f](x).$$

Now consider $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$. Then,

$$\begin{split} \mathbb{E}_{\mathscr{T}}^{\mathrm{HM}}\big[f(X_tn) \,|\, X_0 = x\big] &:= \inf_{\substack{P \in \mathbb{P}_{\mathscr{T}}^{\mathrm{HM}}}} \mathbb{E}_P\big[f(X_t) \,|\, X_0 = x\big] \\ &= \inf_{T \in \mathscr{T}} \big[T^t f\big](x) \end{split}$$

Non-linear optimisation problem with constraints given by *T*Not straightforward even if *T* is "nice"

See e.g. (Kozine and Utkin, 2002) and (Campos *et al.*, 2003) for analyses of this approach.

What about the non-Markov case?

 $\mathbb{P}_{\mathscr{T}}$: all (non-Markov) processes with $\mathcal{T}^{(t,x_u)} \in \mathscr{T}$

How to interpret this? \Rightarrow Helps to draw a picture

What about the non-Markov case?

 $\mathbb{P}_{\mathscr{T}}$: all (non-Markov) processes with $\mathcal{T}^{(t,x_u)} \in \mathscr{T}$

```
How to interpret this? \Rightarrow Helps to draw a picture
```

Example with binary state space $\mathscr{X} = \{a, b\}$

Use event tree / probability tree Illustration of behaviour over time

Need notation

$$\mathscr{T}_{x} := \left\{ T(x, \cdot) \, \middle| \, T \in \mathscr{T} \right\} \quad \forall x \in \mathscr{X}$$

What about the non-Markov case?

 $\mathbb{P}_{\mathscr{T}}$: all (non-Markov) processes with $T^{(t,x_u)} \in \mathscr{T}$

```
How to interpret this? \Rightarrow Helps to draw a picture
```

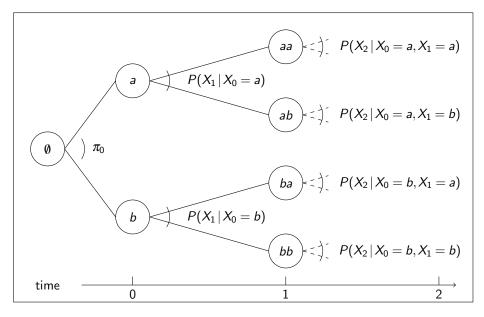
Example with binary state space $\mathscr{X} = \{a, b\}$

Use event tree / probability tree Illustration of behaviour over time

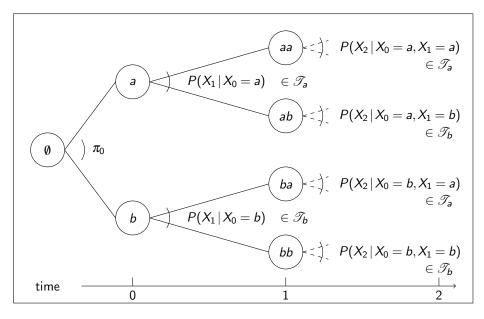
This setting explored by (De Cooman et al., 2009).

Tree representation related to (Shafer and Vovk, 2001) game-theoretic probabilities. Connection to (Walley's) imprecise probabilities in (De Cooman and Hermans, 2008).

Visualising a stochastic process



Visualising a stochastic process in $\mathbb{P}_{\mathscr{T}}$



Computations by iterated lower expectation

For the set $\mathbb{P}_{\mathscr{T}}$, it can be shown that

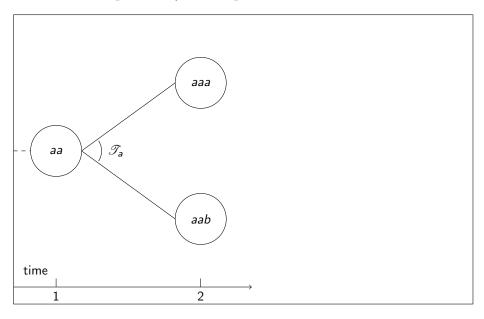
$$\underline{\mathbb{E}}_{\mathscr{T}}\left[f(X_t) \,\middle|\, X_0 = x\right] = \underline{\mathbb{E}}_{\mathscr{T}}\left[\underline{\mathbb{E}}_{\mathscr{T}}\left[f(X_t) \,\middle|\, X_0 = x, X_s\right] \,\middle|\, X_0 = x\right] \qquad \forall s \leq t$$

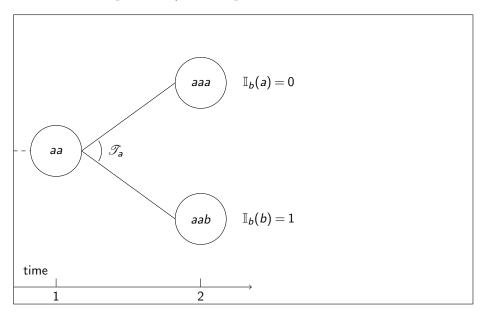
This is the law of iterated lower expectation.

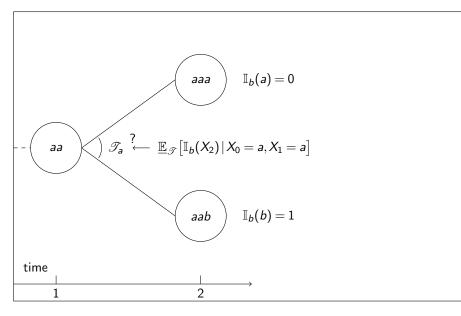
Provides *backwards recursive* scheme for computations. \Rightarrow Intuitive in the tree representation

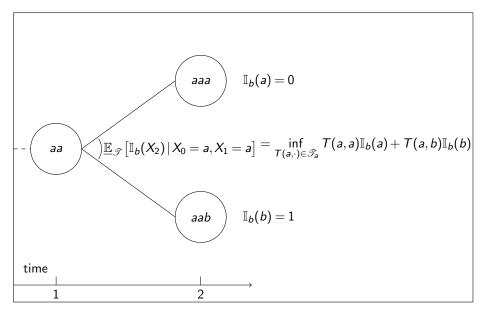
Example: compute $\underline{\mathbb{E}}_{\mathscr{T}} \left[\mathbb{I}_b(X_2) \, \middle| \, X_0 = a \right] = \underline{P} \left(X_2 = b \, \middle| \, X_0 = a \right)$

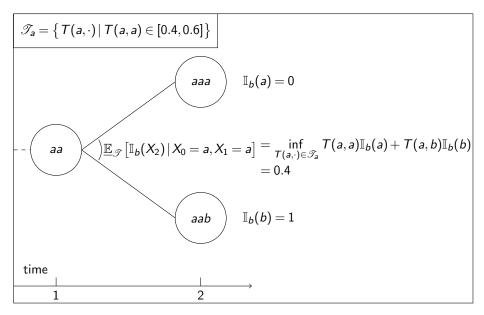
$$\mathcal{T}_{a} := \left\{ \left. T(a, \cdot) \right| \left. T(a, a) \in [0.4, 0.6] \right\} \right\}$$
$$\mathcal{T}_{b} := \left\{ \left. T(b, \cdot) \right| \left. T(b, a) \in [0.1, 0.3] \right\} \right\}$$



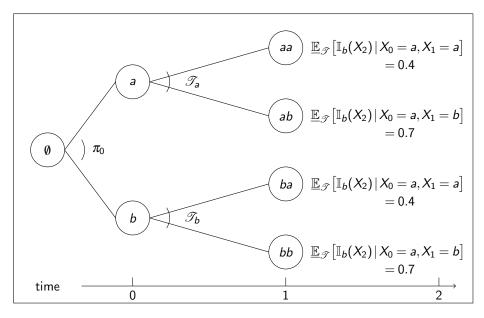




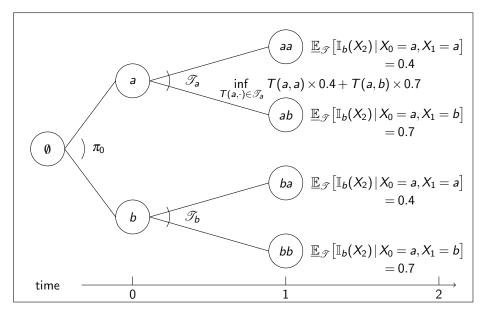




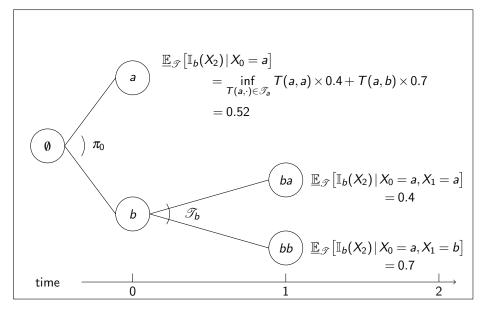
Recursive, local computations



Recursive, local computations



Recursive, local computations



Local computations in operator form

Consider \mathscr{T}_x , and define for any $f: \mathscr{X} \to \mathbb{R}$,

$$[\underline{T}f](x) := \inf_{T(x,\cdot)\in\mathscr{T}_x}\sum_{y}T(x,y)f(y)$$

Linear optimisation problem, and

$$[\underline{T}f](x) = \inf_{T \in \mathscr{T}} [Tf](x)$$

We call \underline{T} the *lower transition operator* for \mathscr{T} . We can write

$$\mathbb{E}_{\mathscr{T}}[f(X_{t+1})|X_{0:t}=x_{0:t}]=[\underline{T}f](x_t)$$

Local computations in operator form

Consider \mathscr{T}_x , and define for any $f : \mathscr{X} \to \mathbb{R}$,

$$[\underline{T}f](x) := \inf_{T(x,\cdot)\in\mathscr{T}_x}\sum_{y}T(x,y)f(y)$$

Linear optimisation problem, and

$$\left[\underline{T}f\right](x) = \inf_{T \in \mathscr{T}} \left[Tf\right](x)$$

We call \underline{T} the *lower transition operator* for \mathscr{T} . We can write

$$\mathbb{E}_{\mathscr{T}}\big[f(X_{t+1}) | X_{0:t} = x_{0:t}\big] = \big[\underline{T}f\big](x_t)$$

We find

$$\mathbb{E}_{\mathscr{T}}[f(X_{t+1})|X_{0:t}=x_{0:t}]=[\underline{T}f](x_t)=\mathbb{E}_{\mathscr{T}}[f(X_{t+1})|X_t=x_t]$$

Lower envelope for imprecise Markov chain $\mathbb{P}_{\mathscr{T}}$ has "Markov" property

But contains non-Markov models!

Similarly the lower envelope is also homogeneous!

Multiple time steps

By repeating the local computations,

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_2)|X_0=x] = [\underline{T}\underline{T}f](x),$$

if the set ${\mathscr T}$ has separately specified rows:

(\mathscr{T} is closed under recombination of rows)

Multiple time steps

By repeating the local computations,

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_2)|X_0=x] = [\underline{T}\underline{T}f](x),$$

if the set ${\mathscr T}$ has separately specified rows:

(\mathscr{T} is closed under recombination of rows)

By induction we get

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_t)|X_0=x] = [\underline{T}^t f](x)$$

Local, linear optimisations only

Can be efficiently computed

Multiple time steps

By repeating the local computations,

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_2)|X_0=x] = [\underline{T}\underline{T}f](x),$$

if the set ${\mathscr T}$ has separately specified rows:



(\mathscr{T} is closed under recombination of rows)

By induction we get

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_t)|X_0=x] = [\underline{T}^t f](x)$$

Imprecise Markov chain $\mathbb{P}_{\mathscr{T}}$ can be seen as *credal network* under *epistemic irrele-vance*. Gives a graphical model representation.

"Separately specified rows" is a well-known condition in that context.

That's two extremes. What about the intermediate one? So far ignored $\mathbb{P}^M_{\mathscr{T}}$

That's two extremes. What about the intermediate one? So far ignored $\mathbb{P}^M_{\mathscr{T}}$

Turns out that if ${\mathscr T}$ has separately specified rows, then

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}[f(X_t)|X_0=x] = [\underline{T}^t f](x)$$

If follows that

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}\left[f(X_{t}) \,|\, X_{0} = x\right] = \underline{\mathbb{E}}_{\mathscr{T}}\left[f(X_{t}) \,|\, X_{0} = x\right]$$

Does **not** hold for functions on multiple time points
Then only $\mathbb{P}_{\mathscr{T}}$ remains tractable

That's two extremes. What about the intermediate one? So far ignored $\mathbb{P}^M_{\mathscr{T}}$

Turns out that if ${\mathscr T}$ has separately specified rows, then

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}[f(X_t)|X_0=x] = [\underline{T}^t f](x)$$

If follows that

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}\left[f(X_{t}) \,|\, X_{0} = x\right] = \underline{\mathbb{E}}_{\mathscr{T}}\left[f(X_{t}) \,|\, X_{0} = x\right]$$

Does not hold for functions on multiple time points

• Then only $\mathbb{P}_{\mathscr{T}}$ remains tractable

First pioneered by Hartfiel, *Markov Set-Chains* (Hartfiel, 1998) \Rightarrow No explicit connection to imprecise probabilities

Exploration with imprecise probabilities by (Škulj, 2009)

Limit behaviour?

Limit inference often of interest:

$$\mathbb{E}\big[f(X_{\infty}) \,|\, X_0 = x\big] = \lim_{t \to +\infty} \mathbb{E}\big[f(X_t) \,|\, X_0 = x\big]$$

In imprecise setting, often exists:

$$\underline{\mathbb{E}}_{\mathscr{T}}[f(X_{\infty})|X_{0}=x] := \lim_{t \to +\infty} [\underline{T}^{t}f](x),$$

and often independent of x.

See e.g. (De Cooman et al., 2009) and (Škulj, 2009)

Summary for imprecise Markov chains in discrete time

Parameterisation through set ${\mathscr T}$ of transition matrices.

Can induce three different imprecise Markov chains:

- $\blacksquare \ \mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$: all homogeneous Markov chains compatible with \mathscr{T}
- \blacksquare $\mathbb{P}^M_{\mathscr{T}}:$ all (non-homogeneous) Markov chains compatible with \mathscr{T}
- **P** $_{\mathscr{T}}$: all (**non**-Markov) processes compatible with \mathscr{T}

For $\mathbb{P}^{\mathrm{HM}}_{\mathscr{T}}$, computations are difficult.

For $\mathbb{P}^M_{\mathscr{T}}$ and $\mathbb{P}_{\mathscr{T}},$ computations using *lower transition operator*

$$\mathbb{E}_{\mathscr{T}}^{\mathsf{M}}[f(X_t)|X_0=x] = \mathbb{E}_{\mathscr{T}}[f(X_t)|X_0=x] = [\underline{T}^t f](x)$$

The imprecise Markov chain $\mathbb{P}_{\mathscr{T}}$ satisfies an *imprecise Markov property*

The limit $\lim_{t\to+\infty} [\underline{T}^t f](x)$ often exists, and often independent of x.

Imprecise Continuous-Time Markov Chains

Going to go a bit faster with more intuition

We use the same basic approach:

- Uncertain about Q, but consider a set \mathcal{Q}
- Three imprecise (continuous-time) Markov chains, *compatible* with *Q*:

 - $\begin{array}{l} \blacksquare \ \mathbb{P}^{\mathrm{HM}}_{\mathscr{Q}} \colon \mbox{ all homogeneous Markov chains with } Q \in \mathscr{Q} \\ \blacksquare \ \mathbb{P}^{\mathrm{M}}_{\mathscr{Q}} \colon \mbox{ all (non-homogeneous) Markov chains with } Q_t \in \mathscr{Q} \end{array}$
 - $\mathbb{P}_{\mathscr{Q}}$: all (non-Markov) processes with $Q_{t,x_{u}} \in \mathscr{Q}$

Similar to discrete-time case.

$$\mathbb{E}_{\mathscr{Q}}^{\mathrm{HM}}[f(X_t)|X_0=x] = \inf_{Q\in\mathscr{Q}}[e^{Qt}f](x)$$

which is difficult due to nonlinearities in the optimisation.

Imprecise Continuous-Time Markov Chains

Going to go a bit faster with more intuition

We use the same basic approach:

- Uncertain about Q, but consider a set \mathscr{Q}
- Three imprecise (continuous-time) Markov chains, *compatible* with *2*:
 - $\mathbb{P}^{\mathrm{HM}}_{\mathscr{Q}}$: all homogeneous Markov chains with $Q \in \mathscr{Q}$
 - $\mathbb{P}^{\widetilde{\mathrm{M}}}_{\mathscr{D}}$: all (non-homogeneous) Markov chains with $Q_t \in \mathscr{Q}$
 - $\mathbb{P}_{\mathscr{Q}}$: all (non-Markov) processes with $Q_{t,x_u} \in \mathscr{Q}$

Similar to discrete-time case,

$$\mathbb{\underline{E}}_{\mathscr{D}}^{\mathrm{HM}}[f(X_t)|X_0=x] = \inf_{Q\in\mathscr{Q}}[e^{Qt}f](x)$$

which is difficult due to nonlinearities in the optimisation.

See e.g. (Goldsztejn and Neumaier, 2014) and (Oppenheimer and Michel, 1988) for details on this homogeneous setting

Non-homogeneous case in continuous-time

 $\mathbb{P}^{\mathrm{M}}_{\mathscr{Q}}$: all (non-homogeneous) Markov chains with $Q_t \in \mathscr{Q}$

How to interpret this?

Homogeneous case, rate matrix is just a derivative,

$$Q := \lim_{\Delta \to 0} rac{T_{\Delta} - I}{\Delta}$$
 where $T_{\Delta}(x, y) := P(X_{\Delta} = y \mid X_0 = x)$

Non-homogeneous case in continuous-time

 $\mathbb{P}^{\mathrm{M}}_{\mathscr{Q}}$: all (non-homogeneous) Markov chains with $Q_t \in \mathscr{Q}$

How to interpret this?

Homogeneous case, rate matrix is just a derivative,

$$Q := \lim_{\Delta \to 0} rac{T_{\Delta} - I}{\Delta}$$
 where $T_{\Delta}(x, y) := P(X_{\Delta} = y \,|\, X_0 = x)$

For non-homogeneous case we write

$$T_t^{t+\Delta}(x,y) := P(X_{t+\Delta} = y | X_t = x),$$

which has a time-dependent derivative,

$$Q_t := \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - T_t^t}{\Delta} = \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - I}{\Delta}$$

Non-homogeneous case in continuous-time

 $\mathbb{P}^M_{\mathscr{Q}}$: all (non-homogeneous) Markov chains with $\mathcal{Q}_t \in \mathscr{Q}$

How to interpret this?

Homogeneous case, rate matrix is just a derivative,

$$Q := \lim_{\Delta \to 0} rac{T_{\Delta} - I}{\Delta}$$
 where $T_{\Delta}(x, y) := P(X_{\Delta} = y \mid X_0 = x)$

For non-homogeneous case we write

$$T_t^{t+\Delta}(x,y) := P(X_{t+\Delta} = y \mid X_t = x),$$

which has a time-dependent derivative,

$$Q_t := \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - T_t^t}{\Delta} = \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - I}{\Delta}$$

Setting explored by (Hartfiel, 1985) and (Škulj, 2015)

Continuous-time local models

We have

$$Q_t = \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - I}{\Delta}$$

and so for small Δ ,

$$T_t^{t+\Delta} \approx I + \Delta Q_t$$

Continuous-time local models

We have

$$Q_t = \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - I}{\Delta}$$

and so for small Δ ,

$$T_t^{t+\Delta} \approx I + \Delta Q_t$$

Then we can write

$$\mathbb{E}_{\mathscr{Q}}^{M}[f(X_{t+\Delta})|X_{t}=x] = \inf_{\mathcal{T}_{t}^{t+\Delta}}[\mathcal{T}_{t}^{t+\Delta}f](x) \approx \inf_{Q\in\mathscr{Q}}[(I+\Delta Q)f](x)$$

Continuous-time local models

We have

$$Q_t = \lim_{\Delta \to 0} \frac{T_t^{t+\Delta} - I}{\Delta}$$

and so for small Δ ,

$$T_t^{t+\Delta} \approx I + \Delta Q_t$$

Then we can write

$$\underline{\mathbb{E}}_{\mathscr{Q}}^{\mathrm{M}}[f(X_{t+\Delta})|X_{t}=x] = \inf_{T_{t}^{t+\Delta}} [T_{t}^{t+\Delta}f](x) \approx \inf_{Q \in \mathscr{Q}} [(I+\Delta Q)f](x)$$

We get

$$\mathbb{E}^{\mathrm{M}}_{\mathscr{D}}[f(X_{t+\Delta})|X_t=x] \approx \left[(I+\Delta\underline{\mathcal{Q}})f\right](x) \approx \mathbb{E}^{\mathrm{M}}_{\mathscr{D}}[f(X_{\Delta})|X_0=x]$$

where we have defined

$$[\underline{Q}f](x) := \inf_{Q \in \mathscr{Q}} [Qf](x),$$

Again homogeneous lower expectation!

Arbitrary time points

If ${\mathscr Q}$ has separately specified rows,

$$\mathbb{E}^{\mathrm{M}}_{\mathscr{Q}}[f(X_t)|X_0=x] \approx \left[(I+t/n\underline{Q})^n f\right](x)$$

and in fact

$$\underline{\mathbb{E}}_{\mathscr{Q}}^{\mathrm{M}}[f(X_t)|X_0=x] = \lim_{n \to +\infty} \left[(I + t/n\underline{Q})^n f \right](x)$$

Allows practical computation

- Solve $\inf_{Q \in \mathscr{Q}}[Q \cdot]$ multiple times
- Each is a linear optimisation problem

Arbitrary time points

If ${\mathscr Q}$ has separately specified rows,

$$\mathbb{E}^{\mathrm{M}}_{\mathscr{Q}}[f(X_t)|X_0=x] \approx \left[(I+t/n\underline{Q})^n f\right](x)$$

and in fact

$$\mathbb{E}_{\mathscr{Q}}^{\mathrm{M}}[f(X_t)|X_0=x] = \lim_{n \to +\infty} \left[(I + t/n\underline{Q})^n f \right](x)$$

Allows practical computation

- Solve $\inf_{Q \in \mathscr{Q}}[Q \cdot]$ multiple times
- Each is a linear optimisation problem

Better computational method in (Erreygers and De Bock, 2017)

For the set $\mathbb{P}_{\mathscr{Q}}$, derivative becomes *history* dependent. Let $x_{\mathbf{u}} = x_{u_1}, \dots, x_{u_n}$, $0 \le u_1 < \dots < u_n < t$. For all $x, y \in \mathscr{X}$,

$$Q_{t,x_{\mathbf{u}}}(x,y) := \lim_{\Delta \to 0} \frac{P(X_{t+\Delta} = y \mid X_{\mathbf{u}} = x_{\mathbf{u}}, X_t = x) - I(x,y)}{\Delta}$$

This is becoming a bit unwieldy...

For the set $\mathbb{P}_{\mathscr{Q}}$, derivative becomes *history* dependent. Let $x_{\mathbf{u}} = x_{u_1}, \dots, x_{u_n}$, $0 \le u_1 < \dots < u_n < t$. For all $x, y \in \mathscr{X}$,

$$Q_{t,x_{\mathbf{u}}}(x,y) := \lim_{\Delta \to 0} \frac{P(X_{t+\Delta} = y \mid X_{\mathbf{u}} = x_{\mathbf{u}}, X_t = x) - I(x,y)}{\Delta}$$

This is becoming a bit unwieldy...

Turns out that

$$\underline{\mathbb{E}}_{\mathscr{Q}}[f(X_{s+t})|X_{u} = x_{u}, X_{s} = x] = \lim_{n \to +\infty} \left[(I + t/n\underline{Q})^{n} f \right](x)$$

For the set $\mathbb{P}_{\mathscr{Q}}$, derivative becomes *history* dependent. Let $x_{\mathbf{u}} = x_{u_1}, \dots, x_{u_n}$, $0 \le u_1 < \dots < u_n < t$. For all $x, y \in \mathscr{X}$,

$$Q_{t,x_{\mathbf{u}}}(x,y) := \lim_{\Delta \to 0} \frac{P(X_{t+\Delta} = y \mid X_{\mathbf{u}} = x_{\mathbf{u}}, X_t = x) - I(x,y)}{\Delta}$$

This is becoming a bit unwieldy...

Turns out that

$$\underline{\mathbb{E}}_{\mathscr{Q}}[f(X_{s+t})|X_{u} = x_{u}, X_{s} = x] = \lim_{n \to +\infty} \left[(I + t/n\underline{Q})^{n} f \right](x) = \underline{\mathbb{E}}_{\mathscr{Q}}^{\mathrm{M}}[f(X_{t})|X_{0} = x]$$

Lower expectation for $\mathbb{P}_{\mathscr{Q}}$ has an *imprecise Markov property*!

- And is time-homogeneous!
- **Not** the same as $\mathbb{P}^{M}_{\mathcal{Q}}$ when f depends on multiple time points!
 - Then only $\mathbb{P}_{\mathscr{Q}}$ remains tractable.

For the set $\mathbb{P}_{\mathscr{Q}}$, derivative becomes *history* dependent. Let $x_{\mathbf{u}} = x_{u_1}, \dots, x_{u_n}$, $0 \le u_1 < \dots < u_n < t$. For all $x, y \in \mathscr{X}$,

$$Q_{t,x_{\mathbf{u}}}(x,y) := \lim_{\Delta \to 0} \frac{P(X_{t+\Delta} = y \mid X_{\mathbf{u}} = x_{\mathbf{u}}, X_t = x) - I(x,y)}{\Delta}$$

This is becoming a bit unwieldy...

Turns out that

$$\underline{\mathbb{E}}_{\mathscr{Q}}[f(X_{s+t})|X_{u} = x_{u}, X_{s} = x] = \lim_{n \to +\infty} \left[(I + t/n\underline{Q})^{n} f \right](x) = \underline{\mathbb{E}}_{\mathscr{Q}}^{\mathrm{M}}[f(X_{t})|X_{0} = x]$$

Lower expectation for $\mathbb{P}_{\mathscr{Q}}$ has an *imprecise Markov property*!

- And is time-homogeneous!
- **Not** the same as $\mathbb{P}^{M}_{\mathcal{Q}}$ when f depends on multiple time points!
 - \blacksquare Then only $\mathbb{P}_{\mathscr{Q}}$ remains tractable.

Explored by (Krak et al., 2017)

Continuous-time limit behaviour?

Limit inference often of interest:

$$\mathbb{E}\big[f(X_{\infty}) \,|\, X_0 = x\big] = \lim_{t \to +\infty} \mathbb{E}\big[f(X_t) \,|\, X_0 = x\big]$$

In imprecise setting, limit always exists:

$$\underline{\mathbb{E}}_{\mathscr{Q}}[f(X_{\infty})|X_{0}=x] = \lim_{t \to +\infty} \underline{\mathbb{E}}_{\mathscr{Q}}[f(X_{t})|X_{0}=x]$$

and often independent of x.

See (De Bock, 2017)

Main take away points

If we do not know T or Q, we can consider sets ${\mathscr T}$ or ${\mathscr Q}$

Gives rise to three different *imprecise* models:

- Set of homogeneous Markov chains
- Set of **non**-homogeneous Markov chains
- Set of non-Markov processes

For homogeneous Markov chains:

Difficult to work with

For non-homogeneous and non-Markov processes:

- Efficient computations using *local models* \underline{T} or \underline{Q}
- Have homogeneous lower expectations
- Have "Markov" lower expectations

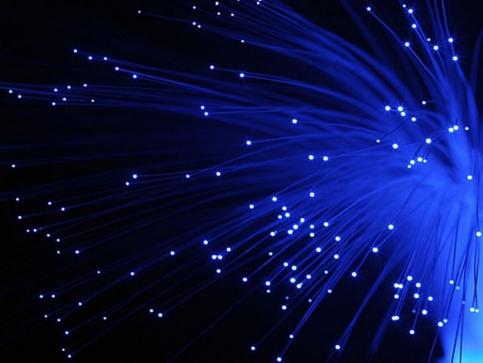
Reliability engineering (failure probabilities, ...)

Queuing theory (waiting in line ...)

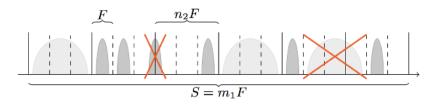
- optimising supermarket waiting times
- dimensioning of call centers
- airport security lines
- router queues on the internet

Chemical reactions (time-evolution ...)

🗸 Pagerank



Message passing in optical links



 m_1 channels $m_2 = rac{m_1}{n_2}$ superchannels

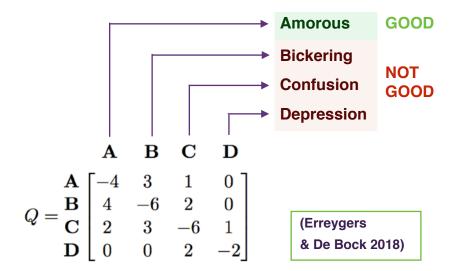
type I messages require 1 channel **type II** messages require *n*₂ channels

We want to know the blocking probability of messages for a given policy, and optimise it

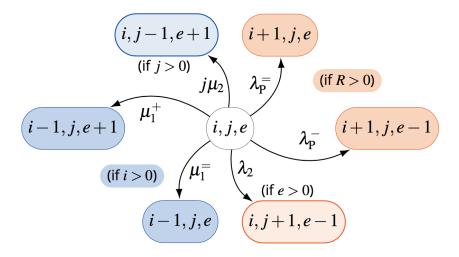
$$\mathscr{X}_{\mathsf{det}} \coloneqq \left\{ (i_0, \dots, i_{n_2}) \in \mathbb{N}^{(n_2+1)} \colon \sum_{k=0}^{n_2} i_k \le m_2 \right\}$$

$$(i_{0}+1,...,i_{k},...,i_{n_{2}})$$

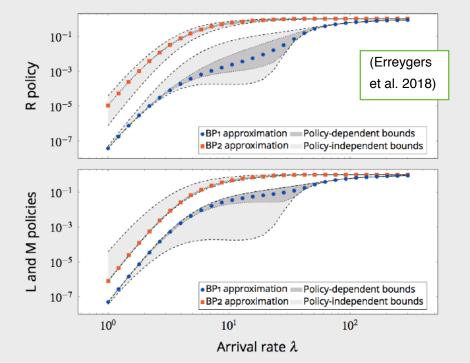
 $I \coloneqq \sum_{k=0}^{n_2} i_k \qquad R \coloneqq \sum_{k=0}^{n_2-1} i_k (n_2 - k)$



$$\mathscr{X}_{\text{red}} \coloneqq \left\{ (i, j, e) \in \mathbb{N}^3 \colon m_2 \le i + j + e, i + (j + e)n_2 \le m_1 \right\}$$

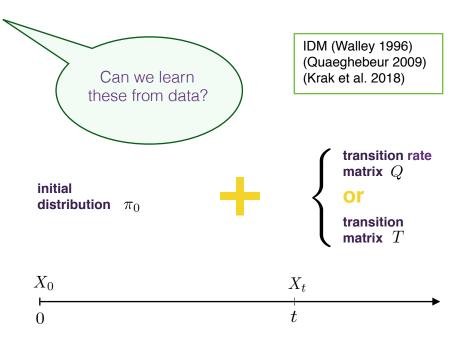


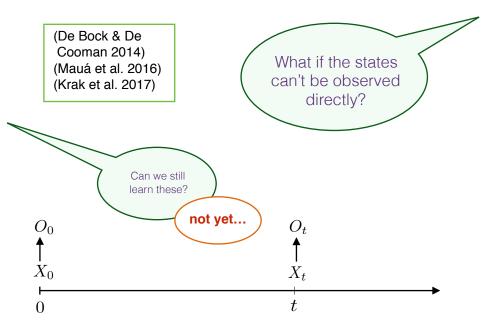
$$R \coloneqq m_1 - i - jn_2$$

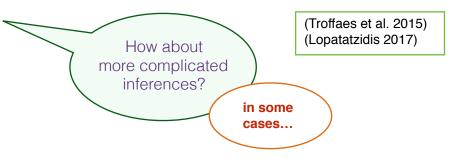


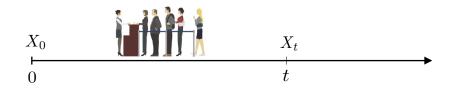
Advantages of imprecise Markov chains over their precise counterpart

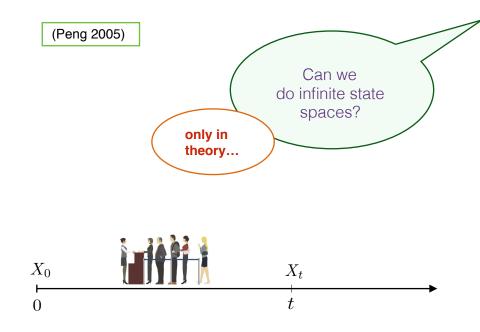
Partially specified π₀ and Q/T are allowed
 Time homogeneity can be relaxed
 The Markov assumption can be relaxed
 Efficient computations remain possible
 State space explosion can be dealt with











References (1)

T. Augustin, F. P. A. Coolen, G. De Cooman, M.C.M. Troffaes. Introduction to Imprecise Probabilities. Wiley, 2014.

J. De Bock: The limit behaviour of imprecise continuous-time Markov chains. J. Nonlinear Science. 27(1), 159–196 (2017)

J. De Bock, G. de Cooman: An efficient algorithm for estimating state sequences in imprecise hidden Markov models. *Journal of Artificial Intelligence Research*, 50: 189–233. 2014.

M. Campos, G.P. Dimuro, A. da Rocha Costa, and V. Kreinovich: Computing 2-step predictions for interval-valued finite stationary Markov chains. *Technical report utep-cs-03-20a*, University of Texas at El Paso, 2003.

G. de Cooman and F. Hermans: Imprecise probability trees: Bridging two theories of imprecise probability. *Artificial Intelligence*, 172:1400–1427, 2008.

G. de Cooman, F. Hermans, and E.Quaeghebeur: Imprecise Markov chains and their limit behavior. *Probability in the Engineering and Informational Sciences*, 23:597–635, 2009

A. Erreygers and J. De Bock: Imprecise continuous-time Markov chains: Efficient computational methods with guaranteed error bounds. In: *Proceedings of ISIPTA 2017*, pp. 145–156, 2017

References (2)

A. Erreygers and J. De Bock: Inferences for Large- Scale Continuous-Time Markov Chains by Combining Lumping with Imprecision. *Accepted for publication in Proceedings of SMPS*, 2018.

A. Erreygers, C. Rottondi, G. Verticale, J. De Bock: Imprecise Markov Models for Scalable Robust Performance Evaluation of Flexi-Grid Spectrum Allocation Policies. *Accepted for publication in IEEE Transactions on Communications.* 2018.

A. Goldsztejn and A. Neumaier: On the exponentiation of interval matrices, *Reliab. Comput.* 20:52–72, 2014

- D. Hartfiel: Markov Set-Chains. Springer, Berlin, 1998.
- D. Hartfiel: On the solutions to x'(t) = a(t)x(t) over all a(t), where $p \le a(t) \le q$. Journal of Mathematical Analysis and Applications, 108:230–240, 1985.
- I. Kozine and L. Utkin: Interval-valued finite Markov chains. *Reliable Computing*, 8:97–113, 2002.
- T. Krak, J. De Bock, A. Siebes: Imprecise continuous-time Markov chains. Int. J. Approx. Reason. 88, 452–528, 2017

T. Krak, J. De Bock, A. Siebes: Efficient computation of updated lower expectations for imprecise continuous-time hidden Markov chains. *PMLR: proceedings of machine learning research, 62 (proceedings of ISIPTA '17),* 193–204. 2017.

References (3)

T. Krak, A. Erreygers, J. De Bock: An Imprecise Probabilistic Estimator for the Transition Rate Matrix of a Continuous-Time Markov Chain. *Accepted for publication in the Proceedings of SMPS* 2018.

S. Lopatatzidis: Robust modelling and optimisation in stochastic processes using imprecise probabilities, with an application to queueing theory. PhD Thesis, Ghent University. 2017.

D. D. Mauá, A. Antonucci, C. P. de Campos: Hidden Markov models with set-valued parameters. *Neurocomputing*, 180: 94–107. 2016.

E.P. Oppenheimer, A.N. Michel: Application of interval analysis techniques to linear systems. II. The interval matrix exponential function. *IEEE Trans. Circuits Syst.* 35(10):1230–1242,1988

S. Peng. Nonlinear expectations and nonlinear Markov chains. *Chinese Ann. Math. Ser. B*, 26(2):159–184. 2005.

E. Quaeghebeur: *Learning from samples using coherent lower previsions*. PhD Thesis, Ghent University. 2009.

G. Shafer and V. Vovk: *Probability and Finance: It's Only a Game!* Wiley, New York, 2001

D. Škulj: Discrete time Markov chains with interval probabilities. *International Journal Approximate Reasoning*, 50:1314–1329, 2009.

References (4)

- D. Škulj: Efficient computations of the bounds of continuous time imprecise Markov chains. Applied Mathematics and Computation, 250:165–180, 2015.
 - M.C.M. Troffaes, J. Gledhill, D. Skulj, S. Blake: Using imprecise continuous time Markov chains for assessing the reliability of power networks with common cause failure and non-immediate repair. *Proceedings of ISIPTA '15*: 287–294, 2015.
- P. Walley: Inferences from multinomial data: learning about a bag of marbles. *Journal of the Royal Statistical Society, Series B*, 58:3–57. 1996.
 - P. Walley: Statistical Reasoning with Imprecise Probabilities Chapman and Hall, 1991.

This work was partially supported by H2020-MSCA-ITN-2016 UTOPIAE, grant agreement 722734.

http://twitter.com/utopiae_network

http://utopiae.eu