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Abstract

We consider two fundamentally different ways of defining an imprecise-probabilistic
multinomial process. On the one hand, we have the so-called sensitivity analysis ap-
proach. The corresponding imprecise-probabilistic joint model is defined as the lower
envelope of joint models of precise multinomial processes, each of which has a different
marginal model taken from some closed and convex set of candidate marginal models.
For finite subsets of variables in this process, this corresponds to using Walley’s so-called
type-2 product of identically distributed variables. On the other hand, we consider a
behavioural approach, defining an imprecise multinomial process by imposing exchange-
ability and either forward irrelevance or epistemic independence. Our main result is
that both approaches lead to the exact same imprecise multinomial process. This fairly
technical result has an important philosophical consequence as well: it provides the sensi-
tivity analysis approach and the related type-2 product with a behavioural justification.
We compare our justification favourably with a previous attempt by Cozman and ex-
plain how it fits into the more general problem of providing a behavioural justification
for so-called strongly independent models, or equivalently, for using lower envelopes of
stochastically independent models.

Keywords: Imprecise multinomial processes, sensitivity analysis, exchangeability,
type-2 product, forward irrelevance, epistemic independence

1. Introduction

In classical probability theory, a multinomial process can be defined as a countable
sequence of stochastically independent and identically distributed (iid) random variables
X1, . . . , Xn, . . . assuming values in some finite non-empty set X .1 Every variable in this

∗Corresponding author
Email addresses: jasper.debock@ugent.be (Jasper De Bock), gert.decooman@ugent.be (Gert de

Cooman)
1Although this generalisation of a Bernoulli process is very common in statistics, there seems to be no

consensus on how to call it. In fact, most textbooks simply describe it, without providing it with a name.
Judging from our own experience in trying to choose a name, this is probably because any attempt at
fixing a name is bound to lead to confusion. Our current choice of calling it a multinomial process is,
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sequence has the same given marginal distribution, which is expressed in terms of a
probability mass function p, assigning a probability of occurrence p(x) to every x in X .
Due to the assumption of stochastic independence, the probability of any instantiation
of a finite subsequence of X1, . . . , Xn, . . . is obtained simply by multiplying the marginal
probabilities for the individual variables.

When generalising a multinomial process to allow for imprecision, in which case we
call it an imprecise multinomial process, the first step is to allow for imprecision in the
marginal model for a single variable. This means that it need no longer be represented
by a single probability mass function. Instead, we use a set of probability mass functions,
which is usually taken to be closed and convex, making it a so-called credal set M. An
alternative method, which will be important in this paper, is to represent the marginal
model by means of a so-called coherent lower prevision P , which can be regarded as a
lower expectation functional, or equivalently, a lower envelope of expectation functionals.
Coherent lower previsions are mathematically equivalent to credal sets, but have the
advantage of having a clear behavioural interpretation in terms of betting behaviour,
which we will explain in Section 2.

Once we have such an imprecise marginal model, the next step is to use it to construct
an imprecise multinomial process. However, in contrast with the precise-probabilistic
case, there is no unique way of doing so, the main reason being that independence has
no single unique definition in the context of imprecise probabilities; see Ref. [4] for an
influential review of different imprecise-probabilistic notions of independence and Ref. [5,
Section 3] for an overview of the relevant literature that clarifies the sometimes confusing
terminology that has been used over the past thirty years.

Amongst the many possible ways to construct an imprecise multinomial process, per-
haps the most intuitive one is the sensitivity analysis approach. It assumes that the
countable sequence X1, . . . , Xn, . . . of variables can be modelled by means of a classi-
cal, precise multinomial process, implying an assumption of stochastic independence.
However, in contrast with the precise-probabilistic case, its marginal probability mass
function is not precisely known, but only known to lie within some credal set. This could
be due to time-constraints on the elicitation process, because different experts disagree,
or for some other reason. The joint model for the resulting imprecise multinomial pro-
cess is then taken to be the lower envelope of the corresponding set of joints of precise
multinomial processes. For finite subsets of the countable sequence, one obtains Walley’s
so-called type-2 product [6, Section 9.3.5].

Although this sensitivity analysis approach is often regarded as intuitive, it suffers
from a lack of a clear behavioural interpretation. We will come back to this in Section 6.2,
but one of the main problems is that by taking lower envelopes, one implicitly adopts
convexity and thereby allows for convex mixtures of stochastically independent models.
These need no longer be stochastically independent themselves and are therefore incom-
patible with the initial assumptions of the sensitivity analysis approach; see Ref. [5] for
more information on this incompatibility between stochastic independence and convex-
ity and an overview of the relevant literature. Other than that, the sensitivity analysis
approach is also based on an implicit assumption that there is some true—but only par-

admittedly, no exception and was based on, amongst others, Refs. [1, Section 2.1.1], [2, page 227] and [3,
Section 8.2.7]. Alternative names that have been proposed over the years are ‘scheme of repeated trials’,
‘Bernoulli(an) scheme’, ‘generalised Bernoulli process’ and ‘multinomial trials process’.
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tially known—probability model that describes our process. As should become clear in
Section 2, this is by no means trivial nor required: uncertainty can also be described
directly in terms of lower previsions, without any reference to probabilities.

In order to avoid these interpretation problems, one can construct an imprecise multi-
nomial process without making an assumption of stochastic independence, and replace
it with a notion of independence that fits better in a behavioural framework that allows
for imprecision and partial probability assessments. An example of such an approach,
requiring much milder assumptions than sensitivity analysis, is to impose forward irrel-
evance [7]: for every variable Xn, all previous variables X1, . . . , Xn−1 are assumed to be
epistemically irrelevant to Xn, where epistemic irrelevance is an asymmetric imprecise-
probabilistic notion of independence that will be introduced and discussed in detail in
Section 3.4. Loosely speaking, imposing forward irrelevance means that learning the
value of ‘past’ variables should not change our beliefs about the current one. If future
variables are also considered to be epistemically irrelevant to the current ones, one ob-
tains epistemic independence [8], which can be regarded as a symmetrised version of
forward irrelevance. In contrast with sensitivity analysis, forward irrelevance and epis-
temic independence both have a clear behavioural meaning. They can be stated fully in
terms of coherent lower previsions, which provides them with an interpretation in terms
of betting behaviour.

The main contribution of this paper is to show that such a behavioural interpretation
can also be given to the sensitivity analysis approach by making an additional judgement
of exchangeability [6, Section 9.5]. Without becoming too technical at this point, this
essentially means that the order of the variables in X1, . . . , Xn, . . . is deemed irrelevant.
In the precise case, such a judgement is redundant, because we know from de Finetti’s
representation theorem that a stochastic process is exchangeable if and only if it is a
convex mixture of iid processes. Classical multinomial processes are therefore trivially
exchangeable since they are themselves iid. When working with imprecise probabilities,
however, exchangeability is not necessarily implied by the iid property (under the many
different guises independence can have in this wider context). It is therefore natural to
wonder what happens if we impose it in addition to some form of the iid property. We
will prove that by combining an assessment of exchangeability with forward irrelevance
or epistemic independence, the resulting imprecise multinomial process is identical to the
one obtained by applying sensitivity analysis. Because forward irrelevance, epistemic in-
dependence and exchangeability can all be given a behavioural interpretation, this results
in a behavioural justification for the sensitivity analysis approach, and consequently, also
for the type-2 product. We compare this justification favourably with a previous attempt
by Cozman [5, Section 3.5], argue that the latter provides only a partial justification and
provide a simple example that illustrates why.

The paper is organised as follows. We start in Section 2 with a short introduction to
Walley’s behavioural account of coherent lower previsions [6], as that is one of the main
mathematical tools for this paper.

In Section 3, we go on to show how these coherent lower previsions can be used
to model beliefs regarding an infinite sequence of variables and how to impose in this
framework such behavioural assessments as: a marginal model, exchangeability, epis-
temic independence and forward irrelevance. We conclude the section by introducing the
concept of a least committal, most conservative model.

Sections 4 and 5 constitute the technical core of this paper. We recall in Section 4
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how an exchangeable sequence can be represented by means of a coherent lower prevision
on the set of all so-called polynomial gambles on a simplex. Section 5 then goes on to
introduce a behaviourally justified notion of an imprecise multinomial process, defining it
as the most imprecise (least committal, most conservative) one that has a given marginal
model and satisfies both exchangeability and forward irrelevance. Using the results in
Section 4, we manage to derive simple expressions for this process.

After this rather technical part, we introduce the sensitivity analysis approach to
imprecise multinomial processes in Section 6. We explain how it suffers from a lack
of interpretation and why we believe that the aforementioned justification of Cozman
provides only a partial solution to this problem. We then go on to provide our own
solution by noting that the imprecise multinomial process that corresponds to sensitivity
analysis is identical to the behaviourally justified one constructed in Section 5. This
implies that combining exchangeability with forward irrelevance leads to a behavioural
justification for using the sensitivity analysis approach to imprecise multinomial processes
and the related type-2 product. We also show how a similar justification can be obtained
by combining exchangeability with epistemic independence instead of forward irrelevance.

Section 7 shifts the focus away from the sensitivity analysis approach to imprecise
multinomial processes and the related type-2 product and towards general so-called
strongly independent [5] models, of which the former are but special cases. Loosely
speaking, a model satisfies strong independence if its joint distribution is a lower enve-
lope of stochastically independent ones. We provide a critical overview of some earlier
attempts to justify this notion of strong independence and lay bare some of their con-
ceptual weaknesses.

We summarise the paper in Section 8, which also contains some final remarks and
suggestions for future research. The proofs of our main results are gathered in an ap-
pendix.

2. Coherent lower previsions

Consider a variable X that assumes values in some non-empty set Ω. Its actual
value is unknown, but a subject may entertain certain beliefs about this value of X.
We will try and model such beliefs by looking at the prices our subject is willing to
pay to participate in certain bets, which we call gambles. This approach to probability
is both subjective and behavioural, following the ideas of de Finetti [9]. In contrast
with the more formalist approaches that are usually adopted, it has the advantage of
providing simple, behavioural justifications for exchangeability and a number of differ-
ent imprecise-probabilistic notions of independence, such as epistemic irrelevance and
epistemic independence.

A gamble f on Ω is defined as a bounded map from Ω to the set R of real numbers.
We denote by G(Ω) the set of all gambles on Ω. The reason why we call them gambles is
because they can be interpreted as uncertain rewards on the outcome of X. If the actual
value of X turns out to be ω, the (possibly negative) reward is f(ω), expressed in units
of some pre-determined linear utility. Receiving a negative reward means giving away its
absolute value. For this reason, we will sometimes also use the notation f(X) for f and
call it a ‘gamble on X’. Stating that you accept a gamble f(X) can be interpreted as your
willingness to engage in the transaction in which the actual value ω of X is determined
and you subsequently receive the associated reward f(ω).
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Bruno de Finetti [9] proposed to model a subject’s beliefs by eliciting his fair price,
or prevision, P (f) for certain gambles f . This P (f) can be defined as the unique real
number for which the subject is willing to buy the gamble f for all prices s < P (f) (that
is, accept the gamble f − s) and sell f for all prices t > P (f) (that is, accept the gamble
t− f). In other words, P (f) is both his supremum buying price and his infimum selling
price for the gamble f . The obvious problem with this approach is that it requires a
subject to be able to choose, for (almost) every real r, between buying f for the price r
or selling it for that price.

A solution to this problem is given by Walley’s theory of lower and upper previ-
sions [6], which goes back to work by Williams [10]. The main idea is to elicit supremum
buying prices and infimum selling prices separately, dropping the assumption that they
should coincide. For any gamble f , the lower prevision P (f) is our subject’s supremum
buying price for f ; similarly, our subject’s upper prevision P (f) is his infimum selling
price for f . In other words, the subject is willing to buy the gamble f for all prices
s < P (f) and sell it for all prices t > P (f). For prices P (f) ≤ r ≤ P (f), he is allowed to
remain undecided. If P (f) and P (f) happen to coincide for a gamble f , then the value
P (f) = P (f) = P (f) is called the subject’s (precise) prevision for f and we obtain a fair
price for f in de Finetti’s sense.

In this paper, we will be working with lower and upper previsions that have the same
domain K, which will always be some linear subspace of G(Ω). As a consequence, for any
gamble f in the domain K, the gamble −f will also be contained in K. Since buying a
gamble f for the price s is the same as selling the gamble −f for the price −s, the lower
and upper previsions are related through the property of conjugacy: P (f) = −P (−f)
for any gamble f in K. It therefore suffices to study one of them, since the other one can
be derived from it. We will focus on lower previsions.

In order for a lower prevision to represent a rational subject’s beliefs about the value
of X, it should satisfy the rationality criterion of coherence [6, Chapter 2]. For lower
previsions that are defined on a linear space of gambles K, coherence reduces to the
following three conditions [6, Section 2.5.5]. For all gambles f and g in K and any
non-negative real λ, it should hold that:

P1. P (f) ≥ inf f ; [accepting sure gains]

P2. P (λf) = λP (f); [non-negative homogeneity]

P3. P (f + g) ≥ P (f) + P (g). [superadditivity]

In order to get a feeling for why it is indeed rational to satisfy requirements P1–P3,
one can apply the interpretation of lower previsions that was given earlier: P (f) is the
supremum buying price for the uncertain reward f . Under this interpretation of a lower
prevision, P1–P3 can be reformulated as follows. P1 states that a rational subject should
always be willing to buy a gamble for any price that is lower than all the possible rewards
associated with the gamble. P2 states that his willingness to buy a gamble for some price
should not be affected by the utility units in which the price and rewards of the gamble
are measured. And finally, P3 states that he should be willing to pay at least as much
for f + g as the sum of what he is willing to pay for f and g separately. See Ref. [6,
Chapter 2] for an extensive discussion of the justification of coherence as a rationality
requirement.
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As a consequence of coherence, one can derive a number of additional useful proper-
ties. The following holds for any coherent lower prevision whenever the gambles involved
belong to its domain [6, Section 2.6.1]:

P4. P is monotone, that is, if f ≤ g, then P (f) ≤ P (g);

P5. P (f + µ) = P (f) + µ for all real µ;

P6. inf f ≤ P (f) ≤ P (f) ≤ sup f .

To conclude this introduction to the behavioural theory of lower and upper previsions,
let us briefly mention the derived concepts of lower and upper probabilities. For any
event A ⊆ Ω, we use IA to denote its corresponding indicator (gamble) on Ω, defined
by IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω /∈ A. Since these indicators are just zero–
one-valued gambles, we can consider their lower prevision. For any event A ⊆ Ω, we call
P (A) := P (IA) the lower probability of A. It is the supremum buying price that you are
willing to pay for the gamble IA that gives you 1 unit if A occurs and nothing otherwise.
In other words, P (A) is the supremum betting rate at which you are disposed to bet on
A. Similarly we define the upper probability of an event A ∈ Ω as P (A) := P (IA). Due
to coherence property P6, 0 ≤ P (A) ≤ P (A) ≤ 1 for all A ⊆ Ω.

3. Behaviourally justified assessments

We are now ready to show how to use the behavioural tools introduced in the previous
section to impose a given marginal model and structural assessments such as exchange-
ability, epistemic independence and forward irrelevance. For each of these properties,
we will give a formal definition and explain how to interpret this definition in terms of
betting behaviour of a subject. To conclude, we explain how imposing such behavioural
assessments leads to a so-called least committal model that is compatible with them.
But first, we introduce basic tools and notation for modelling a subject’s beliefs about
a countable sequence X1, . . . , Xn, . . . of variables assuming values in a finite non-empty
set X .

3.1. Modelling a countable sequence of variables

We start of by considering a finite sequence X1, . . . , Xn. In order to easily model
beliefs about the values of the variables in such a sequence using the language of lower
and upper previsions, we will regard it as a single variable X↓n := (X1, . . . , Xn) that
assumes values x↓n := (x1, . . . , xn) in the finite non-empty set Ω = X↓n := Xn. We will
model a subject’s beliefs regarding the actual value of X↓n by means of a coherent lower
prevision P ↓n on the set G(X↓n) of all gambles on X↓n.

So how can we use this to model our subject’s beliefs about a countable sequence
X1, . . . , Xn, . . .? Our approach will be to provide, for each n ∈ N, a coherent lower pre-
vision P ↓n that serves as a model for the first n variables in the countable sequence. We
will show further on that this enables us to derive a model, in the form of a coherent lower
prevision, for any finite subset of the variables in the sequence X1, . . . , Xn, . . . We will
not try to construct a single coherent lower prevision describing the complete countable
sequence at once (except later on in Section 4, under the assumption of exchangeability),
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but the interested reader may take a look at Refs. [11, Section 5] and [12, Section 3.2] to
see how it could be derived from our sequence of finite models {P ↓n}n∈N.

Before we go further, we need to introduce some more notation. For any non-empty
finite subset R of N, we will denote by XR the tuple of variables (with one component for
each r ∈ R) that takes values in XR :=X |R|, in which |R| is the number of elements in R.
Elements of XR will usually be denoted by xR. To give an example: with R = {2, 3}, the
variable XR = X{2,3} = (X2, X3) takes values xR = x{2,3} = (x2, x3) in XR = X{2,3} =
X 2. For any n ∈ N, both X↓n and the individual variable Xn can be seen as a special
case. It suffices to choose R = {1, . . . , n} and R = {n} respectively.

For two non-empty and finite subsets R and N of N, with R ⊆ N , one can derive
a coherent lower prevision PR on G(XR) by applying marginalisation to an existing
coherent lower prevision PN on G(XN ). The marginal model PR is defined by

PR(fR) := PN (fR) for all fR ∈ G(XR). (1)

In this expression, we have identified the gamble fR on XR with its cylindrical exten-
sion fN on XN . It is given by fN (xN ):=fR(xR) for all xN ∈ XN , where xR is the restric-
tion (i.e., the projection) of xN to XR. To give an example: with R = {2}, N = {2, 3}
and some given gamble fR on XR, cylindrical extension yields fN (x2, x3) = fR(x2) for all
x2 and x3 in X . As you can see from this example, fN is a gamble that theoretically de-
pends on the value of XN = (X2, X3), but in practice only depends on the value xR = x2

that XR = X2 takes in XR = X and on that domain, coincides with fR. It is therefore
a rational requirement that a subject’s supremum buying prices for the gambles fR and
fN should be identical, motivating the definition of the marginal model PR.

At this point, it should be clear that we can not just use any sequence of models
{P ↓n}n∈N, to describe our subject’s beliefs about a countable sequence X1, . . . , Xn, . . . of
variables. If we choose r and n in N with r ≤ n and letR = {1, . . . , r} andN = {1, . . . , n},
then PN = P ↓n and PR = P ↓r. Therefore, by the argument given above, P ↓n and
P ↓r should be related through marginalisation. We will refer to this property as time-
consistency. It can be formally stated as follows: for all k and n in N, with k ≤ n, it
should hold that

P ↓k(f) = P ↓n(f) for all f ∈ G(X↓k). (2)

It is now easy to see that from a sequence of models {P ↓n}n∈N, we can derive a model, in
the form of a coherent lower prevision, for any non-empty finite subset of our countable
sequence X1, . . . , Xn, . . . of variables. In order to do so, consider any non-empty finite
subset R of N and let k be the biggest element of R. If we pick n ≥ k and choose
N = {1, . . . , n}, then PN = P ↓n and we can derive a lower prevision PR from it by
marginalising it as described above. Due to the time-consistency requirement on our
models {P ↓n}n∈N, and the transitivity of marginalisation, the obtained model PR will
always be the same, whatever n ≥ k we use to construct it. In this way, for any non-
empty finite subset R of N, the sequence {P ↓n}n∈N, provides us with a unique coherent
lower prevision PR that describes our subject’s beliefs about the value that XR will
assume in XR = X |R|.

3.2. Exchangeability and permutability

A sequence of variables is called exchangeable [6, Section 9.5] if, simply put, the order
of the variables is deemed irrelevant to inferences about them. In order to define it more
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formally, consider any permutation π of the set of indices {1, . . . , n} and denote the set of
all such permutations as Pn. With any permutation π ∈ Pn, we associate a permutation
of X↓n, defined by πx↓n = π(x1, . . . , xn) := (xπ(1), . . . , xπ(n)). Similarly, for any gamble
f in G(X↓n), we define the permuted gamble πf = f ◦ π, so (πf)(x↓n) = f(πx↓n) for all
x↓n in X↓n.

A finite sequence of imprecisely modelled variables X1, . . . , Xn is called exchangeable
if a subject is willing to exchange any gamble f ∈ G(X↓n) for the permuted gamble
πf , for any permutation π ∈ Pn. In our framework, this translates to demanding that
P ↓n(πf−f) ≥ 0 for any f ∈ G(X↓n) and π ∈ Pn. A countable sequence X1, . . . , Xn, . . . of
variables is called exchangeable if any finite subsequence is exchangeable, or equivalently,
if the finite sequence X1, . . . , Xn is exchangeable for all n ∈ N:

P ↓n(πf − f) ≥ 0 for any n ∈ N, f ∈ G(X↓n) and π ∈ Pn. (3)

Because this property has to hold for any gamble f , it also holds for −f , and therefore
P ↓n(f − πf) = P ↓n(π(−f) − (−f)) ≥ 0, which is equivalent to P ↓n(πf − f) ≤ 0 by

conjugacy. Since we always have that P ↓n(πf−f) ≥ P ↓n(πf−f), we find that P ↓n(πf−
f) = P ↓n(πf − f) = 0, for any f ∈ G(X↓n) and π ∈ Pn. In other words, our subject
has a precise prevision P↓n(πf − f) = 0 for the gamble πf − f . This illustrates that
exchangeability is a remarkably strong property.

Because a precise prevision for a gamble can be interpreted as a subject’s fair price
for that gamble in de Finetti’s sense, an assessment of exchangeability has a very clear
behavioural interpretation. Exchanging a gamble f for its permuted version πf—which
is the same as receiving the gamble πf−f—is equivalent to a zero pay-off to our subject,
meaning that he is completely indifferent between πf and f .

Due to the superadditivity of coherent lower previsions, exchangeability implies that
P ↓n(πf) = P ↓n((πf −f)+f) ≥ P ↓n(πf −f)+P ↓n(f) = P ↓n(f). Similarly, we find that
P ↓n(f) ≥ P ↓n(πf). We therefore see that the exchangeability of the variables X1, . . . , Xn

implies that they are also permutable [6, Section 9.4], meaning that P ↓n(πf) = P ↓n(f),
for any f ∈ G(X↓n) and π ∈ Pn. For precise probability models, permutability and
exchangeability are equivalent, but for the more general imprecise probability models,
permutability is a weaker property than exchangeability. Similarly to our definition of
exchangeability, we call a countable sequence X1, . . . , Xn, . . . permutable if every finite
subsequence is. It should be clear that any countable sequence that is exchangeable, is
also permutable. Such sequences satisfy the following intuitive, but very useful property.

Proposition 1. Consider a countable sequence X1, . . . , Xn, . . . that is permutable. Then
it holds for any finite subset R of N that has r = |R| elements that

PR(f) = P ↓r(f) for all f ∈ G(X r).

What this means is that the coherent lower prevision that describes our subject’s beliefs
about a subset of r ∈ N variables out of the countable sequence X1, . . . , Xn, . . . does not
depend on the particular subset or the order of its elements and is uniquely given by the
coherent lower prevision P ↓r.

3.3. Marginalisation to a given local model

The requirement that every individual variable should be described by the same
given marginal model is crucial to any definition of an imprecise multinomial process.
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In Walley’s framework, this marginal model is given in the form of a coherent lower
prevision P on G(X ). The requirement can then be formally stated as

P {k}(f) = P (f) for all k ∈ N and all f ∈ G(X ). (4)

The behavioural interpretation of this requirement is the following: whether or not a
subject is willing to accept a given bet on the outcome of some variable Xk in the
sequence X1, . . . , Xn, . . . does not depend on the value of k ∈ N.

Under an additional assumption of permutability (or exchangeability, since that im-
plies permutability), Eq. (4) can be reformulated very elegantly. Due to Proposition 1,
it suffices to require that P and P ↓1 are identical:

P ↓1(f) = P (f) for all f ∈ G(X ). (5)

We should also mention that we have assumed that P is defined on all gambles in G(X ).
In practice however, it might occur that we are only given a lower prevision P (f) for a
limited number of gambles f ∈ G(X ). This does not impose any real restrictions. As
long as such a finite number of assessments of lower previsions is consistent (avoids sure
loss), we can always use natural extension to extend them to a unique least committal
(most conservative) coherent lower prevision that is defined on all gambles in G(X ); see
Ref. [6, Chapter 3] for more information on avoiding sure loss and natural extension.

3.4. Epistemic independence and forward irrelevance

Of all the properties that we promised to elaborate on, epistemic independence [8]
and forward irrelevance [7] are the only ones that we still need to explain in more detail.
We start by defining them for finite sequences of variables. Consider a finite sequence
of variables X1, . . . , Xn for which our subject’s beliefs are described by a coherent lower
prevision P ↓n. When do we call such a sequence epistemically independent? And how
do we define forward irrelevance?

To explain this, we need to introduce conditional lower previsions and the concept
of epistemic irrelevance. We use N as an alternative notation for the set {1, . . . , n} and
consider two disjoint subsets I and O of N and their corresponding sets of variables
XI and XO. Previously, we introduced the coherent lower prevision PO as a model
for a subject’s (unconditional) beliefs about the value that XO assumes in XO. Now
what happens if the subject’s receives the information that XI = xI? His beliefs about
the value of XO need not remain the same and we will model his new, conditional
beliefs by means of a conditional lower prevision PO(·|xI). If his beliefs do remain
the same, whatever the value that XI assumes, we say that the subject regards XI as
epistemically irrelevant for XO. Formally, XI is irrelevant to XO if PO(f) = PO(f |xI)
for all f ∈ G(XO) and xI ∈ XI . The behavioural interpretation of such an assessment
is that the subject’s willingness to accept a given bet on the outcome of XO does not
change if he receives the information that XI attains some value xI in XI .

We can use assessments of irrelevance to define each of the different imprecise-
probabilistic notions of independence mentioned above. The variables X1, . . . , Xn are
called epistemically many-to-many independent [8] if XI is irrelevant to XO for any two
disjoint subsets I and O of N . By restricting the possible choices of I and O, weaker con-
cepts of independence can be obtained. We call the variables X1, . . . , Xn epistemically
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many-to-one independent [8] if XI is irrelevant to Xo for any o ∈ N and I ⊆ N \ {o}.
Finally, we say that the variables X1, . . . , Xn are forward irrelevant [7] if X↓k = X{1,...,k}
is irrelevant to Xk+1 for all 1 ≤ k ≤ n− 1.

These different kinds of independence are defined by equating conditional lower pre-
visions with unconditional ones. In order to translate these definitions into conditions
on the joint model P ↓n, we need to require that the conditional lower previsions that
are obtained by independence, are compatible with one another and with P ↓n. This
property is called joint coherence (also referred to as coherence or strong coherence). In
its general form, it is a rather complicated requirement that we will not explain in detail;
we refer to [6, Section 7.1.4] for an extensive discussion that justifies it as a rationality
requirement. In order to get some intuitive notion of joint coherence, it is useful to
know that it is similar to (but more general than) the precise-probabilistic requirement
that conditional and unconditional probabilities should be related through Bayes’s rule.
Similarly to what happens in this precise case, difficulties arise and definitions of joint
coherence get more complicated whenever (lower) probabilities of conditioning events are
equal to zero.

Due to the rather complicated nature of joint coherence, it might seem difficult to
impose the imprecise-probabilistic notions of independence that were introduced in this
section. However, for the case of epistemic many-to-one independence, we can use the
following result.

Proposition 2 ([8, Corollary 14(ii)]). A finite sequence X1, . . . , Xn of variables, mod-
elled by means of a coherent lower prevision P ↓n on G(X↓n), with for all 1 ≤ o ≤ n a
corresponding marginal coherent lower previsions P {o} on G(Xo), is epistemically many-
to-one independent if and only if for every 1 ≤ o ≤ n and I ⊆ {1, . . . , n} \ {o}

P ↓n(I{xI}[f − P {o}(f)]) = 0 for all f ∈ G(Xo) and xI ∈ XI . (6)

We can do something similar for forward irrelevance. By trivially adapting the proof of
Proposition 2 [8, Corollary 14(ii)], we obtain the following unique characterisation.

Proposition 3. A finite sequence X1, . . . , Xn of variables, modelled by means of a co-
herent lower prevision P ↓n on G(X↓n), with for all 1 ≤ k ≤ n a corresponding marginal
coherent lower prevision P {k} on G(Xk), is forward irrelevant if and only if for every
1 ≤ k ≤ n− 1

P ↓n(I{x↓k}[f − P {k+1}(f)]) = 0 for all f ∈ G(Xk+1) and x↓k ∈ X↓k. (7)

So far, we have defined epistemic independence and forward irrelevance for finite num-
bers of variables only. In order to apply these notions to imprecise multinomial processes,
we will need to define them for countable sequences as well. Therefore, we extend their
definitions as follows. A countable sequence X1, . . . , Xn, . . . of variables is called epis-
temically independent—either many-to-many or many-to-one—if and only if every finite
subsequence of variables is. Since both kinds of epistemic independence are preserved
under marginalisation [8, Proposition 9], this is equivalent to requiring that, for every
n ∈ N, the variables X1, . . . , Xn should be epistemically independent—either many-to-
many or many-to-one. Similarly, a countable sequence X1, . . . , Xn, . . . of variables is
called forward irrelevant if and only if, for all n ∈ N, the variables X1, . . . , Xn are.
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For the remainder of this paper, it will be useful to have a simple way of imposing
forward irrelevance on a countable sequence X1, . . . , Xn, . . . of variables that are known
to be identically distributed. The following simple result is a fairly direct consequence of
Proposition 3.

Corollary 4. A countable sequence X1, . . . , Xn, . . . of variables, modelled by means of
a time-consistent sequence of coherent lower previsions P ↓n on G(X↓n), n ∈ N, and
identically distributed with a given marginal model P on G(X ), is forward irrelevant if
and only if for all k ∈ N

P ↓k+1(I{x↓k}[f − P (f)]) = 0 for all f ∈ G(Xk+1) and x↓k ∈ X↓k. (8)

3.5. Least committal models

Let Γ be a (possibly infinite) index set such that for all γ ∈ Γ, we have a time-
consistent sequence of coherent lower previsions {P γ↓n}n∈N, describing a subject’s beliefs
about a countable sequence X1, . . . , Xn, . . . of variables.

Consider now two such sequences, corresponding to γ1 ∈ Γ and γ2 ∈ Γ respectively.
We then say that the sequence {P γ1↓n}n∈N, is less committal, or more conservative, than
{P γ2↓n}n∈N, if for all n ∈ N the lower prevision P γ1↓n is point-wise dominated by the
corresponding lower prevision P γ2↓n: P γ1↓n(f) ≤ P γ2↓n(f) for all f ∈ G(X↓n). The reason for
this terminology should be clear: a subject using the sequence {P γ2↓n}n∈N, will be buying
gambles f on X↓n at supremum prices P γ2↓n(f) that are at least as high as the supremum

prices P γ1↓n(f) of a subject that uses the sequence {P γ1↓n}n∈N.

Next, consider the sequence of lower envelopes {PΓ
↓n}n∈N, given for every n ∈ N by

PΓ
↓n(f) := inf

{
P γ↓n(f) : γ ∈ Γ

}
for all f ∈ G(X↓n).

Then {PΓ
↓n}n∈N, will be a sequence of coherent lower previsions [6, Section 2.6.3] that

is clearly time-consistent as well. Furthermore, we find that for all γ ∈ Γ, the sequence
{PΓ
↓n}n∈N, is less committal than {P γ↓n}n∈N.
Suppose now that for all γ ∈ Γ, the sequence {P γ↓n}n∈N, satisfies one—the same

for each γ—of the behavioural properties introduced in the previous sections. Will the
sequence of lower envelopes {PΓ

↓n}n∈N, then satisfy this property as well? For exchange-
ability, this is clearly the case because if P γ↓n(πf − f) ≥ 0 for all γ ∈ Γ, then obviously
inf{P γ↓n(πf − f) : γ ∈ Γ} ≥ 0. Similarly, one can easily show that permutability and be-
ing identically distributed with a given marginal model P on G(X ) are properties that
are preserved under taking lower envelopes. For forward irrelevance and—many-to-many
or many-to-one—epistemic independence, this is not as trivial. However, since joint co-
herence is preserved under taking lower envelopes [6, Section 7.1.6], these three different
notions of independence are preserved as well; see Ref. [8, Section 4.3] for an explicit
argument for the case of many-to-one epistemic independence, which can be trivially
adapted to many-to-many epistemic independence and forward irrelevance.

With this in mind, let Γ no longer be an arbitrary index set, but the one that cor-
responds to all time-consistent sequences {P γ↓n}n∈N, that satisfy a given subset of the
behavioural assessments that were introduced in the previous sections. For the current
paper, an important example of such a set of assessments would be to impose an identical,
given marginal model P and make structural assessments of exchangeability and forward
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irrelevance. As we have just explained, the sequence of lower envelopes {PΓ
↓n}n∈N will

then satisfy that same set of assessments, implying the existence of some γ∗ ∈ Γ such
that P γ∗↓n = PΓ

↓n for all n ∈ N. This means that amongst all the time-consistent sequences
{P γ↓n}n∈N, that are compatible with some chosen set of behavioural assessments, there
is a unique sequence that is at most as committal, or at least as conservative, as all the
others. It is equal to the sequence of lower envelopes {PΓ

↓n}n∈N, and we call it the least
committal, or most conservative, sequence of coherent lower previsions that is compatible
with the assessments. If no additional information is available, then this most conser-
vative model is the only one that is implied by a given set of behavioural assessments.
Other models might be compatible with, but will never be a consequence of the assess-
ments only, because using these models would mean adding commitments (dispositions
to buy gambles) that are not implied by the assessments.

4. Representation in terms of polynomials

In the precise case, as mentioned in the Introduction, a stochastic process is exchange-
able if and only if it is a convex mixture of iid processes. This well-known representation
theorem by de Finetti also has an imprecise generalisation [13], which we will make ex-
tensive use of in the remainder of this paper. Stating it requires the introduction of some
more notation though. We begin by explaining the concept of a polynomial gamble on
the simplex.

4.1. Polynomial gambles on the simplex

So far, all of the gambles in this paper were defined on finite spaces of the form
Ω = Xn, with X being a non-empty finite set, representing the values that the individual
variables in the sequence X1, . . . , Xn, . . . can assume. We now introduce gambles that
are defined on the so-called X -simplex

Σ :=

{
θ ∈ RX :

∑
x∈X

θx = 1 and θx ≥ 0 for all x ∈ X
}
,

which is clearly not a finite set. A gamble f on Σ is a bounded map from Σ to R,
associating a value f(θ) with every θ ∈ Σ. The set of all gambles on Σ is denoted by
G(Σ).

As a special case, we consider the linear subspace of the so-called polynomial gambles
on Σ, which are the restrictions to Σ of polynomials on RX . The set of all polynomial
gambles on Σ is denoted by V(Σ) and is related to the set V(RX ) of all polynomials on
RX in the following way. For all h ∈ G(Σ), we have that

h ∈ V(Σ)⇔ (∃ p ∈ V(RX ))(∀θ ∈ Σ) h(θ) = p(θ). (9)

To see why a polynomial gamble is indeed a gamble on Σ, it suffices to see that polyno-
mials are continuous and therefore bounded on the compact set Σ. It then follows from
Eq. (9), that polynomial gambles are bounded maps from Σ to R and therefore indeed
gambles on Σ.

We will use p∗ to denote the restriction to Σ of a polynomial p ∈ V(RX ). In this
way, a gamble h on Σ is a polynomial gamble if and only if there is some p ∈ V(RX ) for
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which h = p∗. We call p a representing polynomial of h. For any h ∈ V(Σ), the set of all
polynomials that represent h is given by V(h) := {p ∈ V(RX ) : h = p∗}. We define the
degree of a polynomial gamble h ∈ V(Σ) as deg(h) := min{deg(p) : p ∈ V(h)}, which is
the smallest degree of all polynomials that represent h. If we denote, for every n ∈ N,
the set of all polynomials of degree up to n as Vn(RX ), then the set

Vn(Σ) := {h ∈ V(Σ) : deg(h) ≤ n} = {p∗ : p ∈ Vn(RX )}

is the subset of V(Σ) that contains all polynomial gambles of degree up to n. It will
become clear in the following section that Vn(Σ) is closely related to the set G(X↓n) of
all gambles on X↓n.

4.2. Bernstein basis gambles

For any x↓n in X↓n and any x in X , we define

Tx(x↓n) = Tx(x1, . . . , xn) := |{k ∈ {1, . . . , n} : xk = x}| (10)

to be the number of elements in the tuple x↓n that are equal to x. We use T (x↓n) to
denote the vector whose components are the Tx(x↓n), x ∈ X . One can easily check that
T (x↓n) assumes values in the set of count vectors

Nn :=

{
m ∈ NX0 :

∑
x∈X

mx = n

}
.

In this expression, N0 := N ∪ {0} is the set of all non-negative integers (including zero).
Different sequences x↓n ∈ X↓n can lead to the same count vector m ∈ Nn. We use
[m] := {x↓n ∈ X↓n : T (x↓n) = m} to denote the set of all of them. The total number of
sequences that lead to the same m ∈ Nn is given by

ν(m) := |[m]| = n!∏
x∈X mx!

.

Similarly to what we have done for Xn and Σ, we can also consider gambles on Nn.
The set of all of them will be denoted by G(Nn). For any gamble b ∈ G(Nn), its value
in m ∈ Nn is denoted by b(m). Count vectors can be used to create a special kind
of polynomials and their corresponding polynomial gambles. For every count vector
m ∈ Nn, the unique corresponding Bernstein basis polynomial Bm is defined by

Bm(θ) := ν(m)
∏
x∈X

θmxx for any θ ∈ RX .

We will call its restriction to the X -simplex Σ a Bernstein basis gamble and denote it as
B∗m. We use Bn := {B∗m : m ∈ Nn} to denote the set of all Bernstein basis gambles of
degree n and B := ∪n∈N0

Bn is the set of all Bernstein basis gambles of arbitrary degree.
For Bn, we have the following important property.2

2This result was already mentioned and used in Refs. [13] and [14], both of which referred to Ref. [15]
for a proof. While it is indeed possible to derive Proposition 5 from the results in Ref. [15], the link
between them is however not immediate. Ref. [15] establishes a result for Bernstein (basis) polynomials
on Rn, which are defined by means of barycentric coordinates with respect to a simplex that has n + 1
vertices, whereas we prove it for Bernstein basis gambles on Σ, a simplex in Rn that has n = |X |
vertices, which are defined by means of standard Euclidean coordinates. We therefore prefer to provide
an independent proof of our own in the Appendix.
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Proposition 5. The set Bn of all Bernstein basis gambles of degree n is (i) a partition
of unity and (ii) a basis for the linear space Vn(Σ) of all polynomial gambles on Σ whose
degree is at most n. In other words, for every θ ∈ Σ we find that

∑
m∈Nn B

∗
m(θ) = 1

and for every h ∈ Vn(Σ) there is a unique b ∈ G(Nn) for which

h(θ) =
∑
m∈Nn

b(m)B∗m(θ) for all θ ∈ Σ.

As a direct consequence, we can derive the following corollaries.

Corollary 6. The set B of all Bernstein basis gambles of arbitrary degree spans the
linear space V(Σ) of all polynomial gambles on Σ.

Corollary 7. Every polynomial gamble h ∈ V(Σ) has a unique corresponding homo-
geneous polynomial p ∈ V(RX ) of degree deg(p) = deg(h), for which h = p∗. In other
words, every polynomial gamble has a unique homogeneous polynomial of the same degree
that represents it.

To conclude this section, we will justify our earlier statement that Vn(Σ) is closely
related to the set G(X↓n) of all gambles on X↓n. We start from a gamble f ∈ G(X↓n) and
construct an associated gamble bf ∈ G(Nn) by defining bf (m) to be the uniform average
of f over [m]:

bf (m) :=
1

ν(m)

∑
x↓n∈[m]

f(x↓n) for all m ∈ Nn.

Next, we use bf to construct a polynomial gamble Mnn(f) by defining for all θ ∈ Σ:

Mnn(f)(θ) :=
∑
m∈Nn

bf (m)B∗m(θ) =
∑

x↓n∈X↓n

f(x↓n)
∏
x∈X

θ
Tx(x↓n)
x , (11)

which is the so-called multinomial expectation of the gamble f associated with the mass
function θ. In this way, Mnn becomes a linear map from G(X↓n) to Vn(Σ). It should
be obvious that you can always find, for any b ∈ G(Nn), a gamble f ∈ G(X↓n) for
which b = bf . If we combine this with Proposition 5, it follows that Vn(Σ) is equal to
{Mnn(f) : f ∈ G(X↓n)}. In other words, the operator Mnn maps G(X↓n) onto Vn(Σ).

4.3. Representation theorem for exchangeable sequences

The reason why polynomial gambles are useful to us, is because we can define a
coherent lower prevision R on them that allows us to easily represent an exchangeable
sequence X1, . . . , Xn, . . . of variables assuming values in some finite non-empty set X .
Since the set V(Σ) of all polynomial gambles on Σ is a linear subspace of the space of all
gambles on Σ, coherence of a lower prevision R on V(Σ) can be expressed by imposing
requirements P1–P3. The following rather immediate result shows how every such co-
herent lower prevision on V(Σ) determines a corresponding time-consistent sequence of
exchangeable lower previsions.

Proposition 8. Consider a coherent lower prevision R on the linear space V(Σ) of all
polynomial gambles on the X -simplex and, for all n ∈ N, let P ↓n : G(X↓n)→ R be defined
by

P ↓n(f) :=R(Mnn(f)) for all f ∈ G(X↓n).

Then {P ↓n}n∈N is a time-consistent sequence of exchangeable coherent lower previsions.
14



What is far from immediate, however, is that the converse is true as well.

Theorem 9 (Representation theorem [13, Theorem 5]). Given a time-consistent se-
quence of exchangeable coherent lower previsions P ↓n on G(X↓n), n ∈ N, there is a unique
coherent lower prevision R on the linear space V(Σ) of all polynomial gambles on the X -
simplex such that for all n ∈ N:

P ↓n(f) = R(Mnn(f)) for all f ∈ G(X↓n). (12)

In other words, each of the coherent lower previsions P ↓n on G(X↓n) is completely
determined by the restriction to Vn(Σ) of a coherent lower prevision R on V(Σ).

At first, this might seem like a strange result. Vn(Σ) is a much lower-dimensional space
than G(X↓n), and one would therefore expect to lose information when transforming a
gamble f ∈ G(X↓n) to a polynomial gamble Mnn(f) ∈ Vn(Σ). In order to get an intuitive
understanding of why this theorem is not that surprising, recall from Section 3.2 that
the exchangeability of the variables X1, . . . , Xn implies that they are also permutable [6,
Section 9.4], meaning that P ↓n(πf) = P ↓n(f), for any f ∈ G(X↓n) and π ∈ Pn. This
serves as a nice illustration that P ↓n contains redundant information. Furthermore, it
also suggests that it should be possible to replace P ↓n with an operator on a lower-
dimensional space that does not distinguish between f and πf . Since Mnn is invariant
under taking permutations, meaning that the polynomial gambles Mnn(f) and Mnn(πf)
are identical, using an operator on polynomial gambles seems like a suitable choice.
Proposition 8 and Theorem 9 establish that this is indeed the case. Loosely speaking,
the symmetry imposed by exchangeability renders it possible to represent {P ↓n}n∈N in
the lower-dimensional space of polynomial gambles on the simplex Σ.

Finally, for readers that are not closely familiar with lower previsions, it may not be
immediate that Theorem 9 generalises de Finetti’s representation theorem. That this
is indeed the case can be seen by noting that for a precise stochastic process, P ↓n and
R become linear previsions that can both be interpreted as expectation operators. The
expectation operator that corresponds to R can then be regarded as an integral with
respect to a prior on θ. Now recall that Mnn(f)(θ) is the multinomial expectation of f
for the mass function θ. It then follows that in the precise case, Equation (12) states
that the expectation of f is a convex mixture of multinomial expectations.

5. A behavioural approach to multinomial processes

With the tools of the previous two sections in hand, we are now ready to start
constructing a behaviourally justified notion of an imprecise multinomial process. We
do so by means of three defining properties. The countable sequence X1, . . . , Xn, . . . of
variables, modelled by means of a time-consistent sequence of coherent lower previsions
P beh
↓n on G(X↓n), n ∈ N, should (i) be exchangeable, (ii) have a given lower prevision

P on G(X ) as its marginal model and (iii) be forward irrelevant. As was explained in
Section 3, each of these requirements is a behavioural assessment, meaning that it can
be expressed purely in terms of the behaviour of a subject: supremum buying prices for
gambles. Therefore, using these requirements as defining properties has a behavioural
meaning.

However, these assessments do not necessarily lead to a unique multinomial process.
There might be multiple models that satisfy requirements (i), (ii) and (iii). Therefore,
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we introduce a fourth requirement: (iv) our behavioural imprecise multinomial process
should be the least committal, most conservative model to satisfy the three requirements
above. As explained in Section 3.5, this least committal model does indeed exist and, if
no additional judgements are made, it is the only one that is implied by our assessments
alone.

In order to arrive at this least committal model, which we will eventually do in
Section 5.5, it will prove useful to investigate the consequences of requirements (i), (ii),
(iii), when they are imposed on an arbitrary time-consistent sequence of coherent lower
previsions {P ↓n}n∈N.

5.1. Consequences of exchangeability

We start by imposing requirement (i). Such an assessment of exchangeability allows
us to use Theorem 9 to represent the exchangeable sequence X1, . . . , Xn, . . . by means of a
coherent lower prevision R on V(Σ) instead of a time consistent sequence of exchangeable
models P ↓n on G(X↓n), n ∈ N.

The hard step is now to impose requirements (ii) and (iii) on R and to use these to
determine the coherent lower prevision Rbeh on V(Σ) that corresponds to the sequence
{P beh
↓n }n∈N, which is the unique sequence that satisfies requirement (iv) as well. This is

the most technical part of this paper and constitutes the next four subsections.

5.2. Consequences of the marginal model

For exchangeable sequences, the requirement (ii) of identically distributed variables
with a given marginal model P on G(X ) can be expressed very elegantly. As follows from
Eq. (5), it suffices to require that P ↓1 is equal to P . If we translate this into a property
of the representing coherent lower prevision R on V(Σ), we obtain that

R(Mn1(f)) = P (f) for all f ∈ G(X ). (13)

In this expression, the polynomial gamble Mn1(f) is very simple. It follows from Eq. (11)
that

Mn1(f)(θ) =
∑
x∈X

f(x) θx for all f ∈ G(X ) and θ ∈ Σ. (14)

We see that it is a linear polynomial gamble that has the components of the gamble f on
X as its coefficients. By Proposition 5, this representation is unique: a linear polynomial
gamble h ∈ V1(Σ) has a unique gamble f = (Mn1)−1(h) ∈ G(X ) for which h = Mn1(f).
As a consequence, we also find that

V1(Σ) = {Mn1(f) : f ∈ G(X )}, (15)

which is a special case of a result that was already mentioned at the end of Section 4.2.
Next, we introduce an alternative representation for the local model. With any given

coherent lower prevision P on G(X ) there corresponds a unique closed and convex subset

M:=
{
θ ∈ Σ : (∀f ∈ G(X )) Mn1(f)(θ) ≥ P (f)

}
=

{
θ ∈ Σ : (∀f ∈ G(X ))

∑
x∈X

f(x) θx ≥ P (f)

}
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of Σ that is called its credal set. It is unique [6, Section 3.3] in the sense that it is the only
closed and convex subset of the X -simplex Σ that can reproduce the original coherent
lower prevision P by defining

P (f) = min
{

Mn1(f)(θ) : θ ∈M
}

(16)

= min

{∑
x∈X

f(x) θx : θ ∈M
}

for all f ∈ G(X ). (17)

An important subset of V1(Σ) that can be derived from the credal set M is

H1:=
{
h ∈ V1(Σ) : h(θ) ≥ 0 for all θ ∈M

}
=
{

Mn1(f) : f ∈ G(X ) and P (f) ≥ 0
}
, (18)

where the second equality is a direct consequence of Eqs. (15) and (16). This set contains
all linear polynomial gambles that are non-negative overM. By combining Eq. (13) with
Eqs. (15) and (18), we find that for all h ∈ V1(Σ)

h ∈ H1 ⇔ R(h) ≥ 0. (19)

5.3. Consequences of forward irrelevance

Due to Corollary 4, we can impose forward irrelevance (requirement (iii)) by demand-
ing that the sequence of coherent lower previsions {P ↓n}n∈N should satisfy Eq. (8). In
order to translate this into a property of the representing coherent lower prevision R
on V(Σ), consider the following chain of equivalences. For all k ∈ N, f ∈ G(Xk+1) and
x↓k ∈ X↓k it holds that

P ↓k+1(I{x↓k}[f − P (f)]) = 0⇔ R(Mnk+1(I{x↓k}[f − P (f)])) = 0

⇔ ν(T (x↓k))R(Mnk+1(I{x↓k}[f − P (f)])) = 0

⇔ R(ν(T (x↓k)) Mnk+1(I{x↓k}[f − P (f)])) = 0,

where the first equivalence is a consequence of Eq. (12) and the third is due to coherence
(P2). In its current form, the argument of R is not very intuitive, but we can use Eq. (11)
to show (see Appendix A) that for all k ∈ N, x↓k ∈ X↓k and f ∈ G(Xk+1)

ν(T (x↓k)) Mnk+1(I{x↓k}[f − P (f)]) = B∗T (x↓k)[Mn1(f)− P (f)]. (20)

Therefore, when stated directly in terms of the coherent lower prevision R on V(Σ),
Eq. (8) becomes equivalent to demanding that for any k ∈ N

R(B∗T (x↓k)[Mn1(f)− P (f)]) = 0 for all x↓k ∈ X k and f ∈ G(X ). (21)

We can use this property to derive that for any k ∈ N, m ∈ N k and h ∈ H1

R(B∗mh) = R(B∗T (x↓k) Mn1(f)) ≥ R(B∗T (x↓k)[Mn1(f)− P (f)]) = 0. (22)

For the first equality, choose any x↓k ∈ [m] and apply Eq. (18) to see that h = Mn1(f)
for some f ∈ G(X ) such that P (f) ≥ 0. The inequality then follows from coherence
property P4 and the last equality is due to Eq. (21).
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In summary, we have found that requirements (ii) and (iii) imply that for all k ∈ N0,
m ∈ N k and h ∈ H1

R(B∗mh) ≥ 0, (23)

where the case k ∈ N corresponds to Eq. (22) and the special case k = 0 follows from
Eq. (19). This equation is deceivingly simple, but it has great consequences, since it
allows us to prove the following result, where we use V>0(Σ) to denote all polynomial
gambles that are strictly positive over the simplex Σ.

Proposition 10. Consider any coherent lower prevision R on V(Σ) that satisfies Eq. (23).
Then it holds for all h ∈ H1 and g ∈ V>0(Σ) that R(hg) ≥ 0.

5.4. Putinar’s Positivstellensatz and its consequences

Next, we want to recall some results on the positivity of polynomials over compact
convex subsets of RX . Let us start with polyhedral convex sets, which are the subsets
of RX that can be expressed as the intersection of some finite collection of closed half-
spaces. In other words, a subset P of RX is polyhedral if there is some finite subset
S = {q1, . . . , qs} of V1(RX ) for which P = KS , with

KS :=
{
θ ∈ RX : qi(θ) ≥ 0 for all i ∈ {1, . . . , s}

}
.

We denote the set of all finite sums of squares of polynomials on RX as
∑
V2(RX ) and

use it to define the so-called quadratic module of S as

MS :=
{
σ0 + q1σ1 + . . .+ qsσs : σi ∈

∑
V2(RX ) for all i ∈ {0, . . . , s}

}
.

It satisfies the following very strong property, which is a special case of Putinar’s Posi-
tivstellensatz.

Theorem 11 ([16, Theorem 5.6.1 and 7.1.3]). Consider any finite subset S = {q1, . . . , qs}
of linear polynomials in V1(RX ). If the corresponding polyhedral convex set KS is com-
pact, then for every polynomial p ∈ V(RX )

p > 0 on KS ⇒ p ∈MS .

By exploiting the uniform continuity of polynomials over compact sets, we can use
Theorem 11 to prove a similar result that holds for general compact convex sets, and not
only for the special subset of those that are also polyhedral.

Proposition 12. Consider any non-empty convex and compact subset C of RX . For
every polynomial p ∈ V(RX ) that is strictly positive over C there is a finite subset S =
{q1, . . . , qs} of linear polynomials in V1(RX ) for which p is an element of MS and KS is
a compact superset of C.

As a corollary, we can derive a useful result for polynomial gambles.

Corollary 13. Consider any non-empty closed and convex subset M of Σ. Every poly-
nomial gamble h ∈ V(Σ) that is strictly positive over M can be written as a finite sum

h =

s∑
i=0

higi, with hi ∈ H1 and gi ∈ V>0(Σ) for all i ∈ {0, . . . , s}.
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This corollary enables us to strengthen the consequences of requirement (ii) and (iii)
even further. By combining it with Proposition 10 and the properties that follow from
coherence, we can derive the following theorem, which will be of crucial importance to
prove our main result further on.

Theorem 14. Consider any coherent lower prevision R on V(Σ) that satisfies Eq. (23).
Then for every polynomial gamble h ∈ V(Σ) it holds that

h ≥ 0 on M⇒ R(h) ≥ 0.

5.5. Constructing the final model

We are now in the possession of all tools necessary to construct the unique time-
consistent sequence of coherent lower previsions P beh

↓n on G(X↓n), n ∈ N, that (i) is
exchangeable, (ii) has a given lower prevision P on G(X ) as its marginal model, (iii) is
forward irrelevant and (iv) is the point-wise smallest of all sequences that satisfy the
previous three requirements. For every n ∈ N and all f ∈ G(X↓n), it is given by

P beh
↓n (f) := min{Mnn(f)(θ) : θ ∈M}. (24)

Because of exchangeability and Proposition 1, P beh
↓n provides a model for any subset of

n variables out of the countable sequence X1, . . . , Xn, . . ., and not only for the specific
subset X1, . . . , Xn. The rest of this section will be devoted to the actual proof that the
model that is given by Eq. (24) indeed satisfies all of the properties that were stated
above.

We start with the requirement that {P beh
↓n }n∈N should be a time-consistent exchange-

able sequence of coherent lower previsions. That this is indeed the case follows immedi-
ately from Proposition 8, using the trivial coherent lower prevision Rbeh on V(Σ), defined
by

Rbeh(h) := min{h(θ) : θ ∈M} for all h ∈ V(Σ). (25)

In order for the models P beh
↓n , n ∈ N, to additionally marginalise to a given lower prevision

P on G(X ) and be forward irrelevant, it suffices for Rbeh to satisfy Eqs. (13) and (21),
as explained in Section 5.2 and 5.3. It is proven in the following proposition that this is
indeed the case.

Proposition 15. The coherent lower prevision Rbeh on V(Σ) that is defined by Eq. (25)
satisfies Eqs. (13) and (21).

At this point, we know that the time-consistent sequence of coherent lower previsions
{P beh
↓n }n∈N, that is given by Eq. (24) satisfies requirements (i), (ii) and (iii). All that is

left to prove is (iv) that this sequence is the unique point-wise smallest one that does so.
This is established in Theorem 17, which we consider to be the main technical result of
this paper. It is a rather direct consequence of Proposition 15 and the following corollary
to Theorem 14.

Corollary 16. Consider any coherent lower prevision R on V(Σ) that satisfies Eq. (23).
Then Rbeh, given by Eq. (25), is point-wise dominated by R:

Rbeh(h) ≤ R(h) for all h ∈ V(Σ).
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Theorem 17. Consider any time-consistent sequence of coherent lower previsions P ↓n,
n ∈ N, that is (i) exchangeable, (ii) identically distributed with a given marginal model
P and (iii) forward irrelevant, then for every n ∈ N

P beh
↓n (f) ≤ P ↓n(f) for all f ∈ G(X↓n).

Therefore, the time-consistent sequence of coherent lower previsions P beh
↓n , n ∈ N, as

defined by Eq. (24), is the unique least committal, most conservative one to satisfy (i),
(ii) and (iii).

6. The sensitivity analysis approach and how to justify it

After this extensive detour through the behavioural theory of imprecise probabilities,
it is now time to focus on the actual topic of this paper: how can we justify the sensitivity
analysis approach to imprecise multinomial processes? It will turn out that the rather
technical results that were developed in the previous sections enable us to provide this
problem with an elegant solution. But first, let us explain in more detail what we actually
mean by this sensitivity analysis approach.

6.1. The sensitivity analysis approach to multinomial processes

The starting point of the sensitivity analysis approach to imprecise multinomial pro-
cess, is that the given local model P can be interpreted in a non-behavioural way as
well.

As we showed in Section 5.2, such a coherent lower prevision P on G(X ) can be
uniquely characterised by its corresponding credal set M, which is a closed and convex
subset of the X -simplex Σ. At that point, we regarded this simplex as a purely math-
ematical concept, but it should be obvious from its definition that it is the set of all
probability mass functions on X . Therefore, if X is a variable that assumes values in
the non-empty finite set X , then for any θ ∈ Σ and x ∈ X , we can interpret θx as the
probability that X assumes the value x. This means that the credal set M is a (closed
and convex) set of probability mass functions on X . Due to the uniqueness that was
mentioned in Section 5.2, it serves as a mathematically equivalent representation for P .

Every probability mass function θ in M has a corresponding expectation operator
Eθ. For any gamble f ∈ G(X ), it provides us with an expected value, given by

Eθ(f) =
∑
x∈X

f(x)θx.

The lower bound for this expected value, taken over all θ ∈M, is given by

EM(f) = min{Eθ(f) : θ ∈M} = P (f),

where we have used Eq. (17) to obtain the last equality. We conclude that the relation
between M and P is not only of a mathematical nature. For all f ∈ G(X ), P (f) can be
interpreted as the minimal expected value of f , taken over all probability mass functions
θ in the credal set M that corresponds to P .

In light of this alternative representationM, one does not necessarily need to regard
P as an inherently imprecise behavioural model for some subject’s beliefs about a variable
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X, as we have done earlier on in this paper. Instead, one can assume that X can be
modelled by means of a single probability mass function p, interpreting the credal set
M that corresponds to P as a set of possible candidates θ for p. Walley calls this the
sensitivity analysis interpretation [6, Section 1.1.5].

If we extend this sensitivity analysis interpretation to imprecise multinomial pro-
cesses, then p should be regarded as the marginal model of a precise multinomial process,
which is identically distributed and satisfies stochastic independence. Since under the
sensitivity analysis interpretation, p is only known to be an element of M, this leaves
us with a set of possible precise multinomial processes, one for every candidate marginal
model θ inM. The corresponding imprecise multinomial process is then taken to be the
convex hull of this set of precise ones. We will refer to this method of constructing an
imprecise multinomial process as the sensitivity analysis approach.

Let us make this clearer by focussing on the first n variables X1, . . . , Xn of this
imprecise multinomial process. For each θ ∈M, we can use the assumption of stochastic
independence to derive a joint probability mass function pnθ on X↓n, defined for all x↓n ∈
X↓n by

pnθ (x↓n) :=

n∏
i=1

θ(xi). (26)

The imprecise model for the variables X1, . . . , Xn is then taken to be the credal set

Mt2
↓n := CH({pnθ : θ ∈M}), (27)

which is the convex hull of the set of probability mass functions pnθ on X↓n, θ ∈M.
For any gamble f ∈ G(X↓n), such a (closed and convex) credal set of joint probability

mass functions provides us with a range of expected values. Due the linearity of the
expectation operator, this range will be closed and convex as well, and we can therefore
fully represent it by means of its lower bound EnM(f) and upper bound E

n

M(f). Since,
again due to the linearity of the expectation operator, these bounds are not affected by
including convex combinations, they are given for all f ∈ G(X↓n) by

EnM(f) := min{Enθ (f) : θ ∈M} and E
n

M(f) := max{Enθ (f) : θ ∈M}, (28)

where Enθ is the expectation operator that corresponds to pnθ . It is defined for all f ∈
G(X↓n) by

Enθ (f) :=
∑

x↓n∈X↓n

f(x↓n)pnθ (x↓n). (29)

The lower and upper expected value are related through conjugacy: we have for all
f ∈ G(X↓n) that

E
n

M(f) = max{Enθ (f) : θ ∈M} = −min{Enθ (−f) : θ ∈M} = −EnM(−f).

Therefore, one can focus on the lower expected values, combining them with conjugacy
to derive the upper ones.

Although it might seem as if the sensitivity analysis approach has little to do with
Walley’s theory of coherent lower previsions, the corresponding lower expected values do
in fact provide us with a coherent lower prevision P t2

↓n. We define it by

P t2
↓n(f) := EnM(f) for all f ∈ G(X↓n). (30)
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Readers that are familiar with imprecise-probabilistic notions of independence might
recognise P t2

↓n as the so-called type-2 product [6, Section 9.3.5] of n identically distributed
variables X1, . . . , Xn that have P as their marginal lower prevision, or equivalently,M as
their marginal credal set. Due to the one-to-one correspondence between coherent lower
previsions and (closed and convex) credal sets, P t2

↓n serves as a mathematically equivalent
representation for the (closed and convex) joint credal setMt2

↓n, as given by Eq. (27). By
constructing this type-2 product for every n ∈ N, we obtain a time-consistent3 sequence
of coherent lower previsions P t2

↓n on G(X↓n), n ∈ N, which serves as a mathematical
representation for the sensitivity analysis approach to imprecise multinomial processes.

6.2. Problems with its interpretation and a partial solution

The main problem with the sensitivity analysis approach to imprecise multinomial
processes, or for that matter, with the type-2 product, is that it combines stochastic
independence with convexity. In this way, convex combinations of stochastically inde-
pendent distributions are included, which need no longer be stochastically independent
themselves.

This is usually justified in the following way. Each of the factorising distributions is
taken to correspond to a different expert. These experts all agree on an assessment of
stochastic independence, but disagree on specific probability values. Including convex
combinations of their individual distributions is then justified by assuming that these
will not affect the collective preferences of the experts.

This justification holds if one assumes that collective preferences can be fully rep-
resented by means of binary comparisons, because these are not affected by including
convex combinations. However, the argument breaks down once one allows for non-
binary preferences. Indeed, as pointed out by Kyburg and Pittarelli in Ref. [17], choos-
ing amongst several acts using E-admissibility [18] (a set-valued decision criterion that
chooses those acts that maximise expected utility for at least one of the candidate prob-
abilistic models) does depend on whether or not one includes convex combinations. In
that same reference, Kyburg and Pittarelli also provide a direct argument against the
combination of stochastic independence and convexity. They show that if an agent bets
according to a convex combination of product measures, whilst knowing that stochastic
independence should hold, he can be made to incur a sure loss in the long run.

In light of these problems, one can take two different routes. The most obvious one
is perhaps to conclude that the sensitivity analysis approach to imprecise multinomial
processes should drop convexity and that it should use the original non-convex set of
precise multinomial processes instead. This approach comes at a cost though. First off, by
giving up on convexity, the resulting model can no longer be represented by means of lower
previsions. This enforces an interpretation in terms of partially known probabilities and
excludes the possibility of adopting a direct interpretation in terms of betting behaviour.
Other than that, dropping convexity also has computational consequences because most
imprecise probability algorithms are designed for convex sets of probabilities only. Many
of them will for example make use of linear programming techniques, which are applicable
to convex optimisation problems only.

3This is a consequence of stochastic independence being preserved under marginalisation.
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The current paper offers a different route, which does not require dropping convexity.
In order to avoid the apparent conflict between stochastic independence and convexity,
we will justify the sensitivity analysis approach to multinomial processes directly, with-
out even mentioning stochastic independence, let alone assuming it. To our knowledge,
the only justification of this kind has been proposed by Cozman4 [5, Section 3.5]. Ac-
tually, Cozman does not speak of imprecise multinomial processes, but instead provides
a justification for the type-2 product of a finite number of variables. It should however
become clear from the following brief recapitulation of his approach, that he in fact starts
by justifying a model for countable sequences (identical to the one that corresponds to
the sensitivity analysis approach to imprecise multinomial processes, as defined in the
current paper), and that he subsequently uses it to derive his justification for the type-2
product.

The first step of Cozman’s justification is to impose exchangeability on a countable
sequence X1, . . . , Xn, . . . of discrete variables. He uses the imprecise-probabilistic defi-
nition that was given in Section 3.2 to do so, thereby providing this assumption with
a behavioural meaning. As noted by Walley [6, Section 9.5.4], such an assumption is
equivalent with requiring every element of the corresponding convex set of probabil-
ity distributions to be exchangeable in the usual de Finetti’s sense [19, 20, 9]. Using
de Finetti’s representation theorem for countable sequences [19, 20, 9, 21], this in turn
implies that all these probability distributions should be convex mixtures of precise multi-
nomial processes.

At this point, Cozman has already managed to justify the use of a convex set of
mixtures of precise multinomial processes, without invoking stochastic independence,
merely by a judgement of exchangeability. He then goes on to impose a second assumption
on this convex set. Its extreme points (called vertices by Cozman) should be single
multinomial processes, instead of mixtures of them. The other distributions in this set
will then be convex mixtures of these particular multinomial processes. The largest5 set
of distributions to satisfy both of Cozman’s assumptions and additionally marginalise
to a given local credal set M is identical to the one that is obtained by the sensitivity
analysis approach to imprecise multinomial processes. Consequently, if one judges a
finite set X1, . . . , Xn of variables to be the initial fragment of a countable sequence
X1, . . . , Xn, . . . of exchangeable variables, additionally assuming that Cozman’s second
requirement holds, one obtains the type-2 product.6 According to Cozman, this provides
the type-2 product with a behavioural justification.

While we agree with the first part of this justification, being a judgement of exchange-
ability, Cozman’s second requirement has a conceptual weakness. It seems to be based
on the assumption that one should only consider those exchangeable distributions that
are mixtures of multinomial processes whose marginal model is contained in the local
credal set M. Or in other words, those exchangeable distributions of which the corre-

4Similar justifications do have been proposed for other imprecise-probabilistic models that combine
stochastic independence with convexity; see Section 7 for more information. However, for the specific case
of the sensitivity analysis approach to imprecise multinomial processes and the related type-2 product,
Ref. [5, Section 3.5] seems to be the only justification of this kind.

5This corresponds to the least committal, most conservative approach of Section 3.5.
6For binary variables, this was already mentioned by Walley in Ref. [6, Section 9.5.4]. In contrast

with Cozman, Walley seems to regard this as a purely mathematical result, without interpreting it as a
justification for the type-2 product.
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sponding prior assigns positive probability to elements of M only. However, this seems
to be an arbitrary mathematical assumption that does not have any behavioural ground.
Indeed, the credal set M does not impose any restrictions on the prior, but only on the
corresponding predictive marginal models for single variables.

Let us make this clearer by considering the basic example of a sequence of tosses
with a fair coin. The marginal model for a single fair coin toss is a credal set M
that consists of only a single probability mass function p, which is given by p(heads) =
p(tails) = 1/2. Therefore, the sensitivity analysis approach to imprecise multinomial
process yields a single precise multinomial process, having p as its marginal probability
mass function. However, an assumption of exchangeability is not capable of justifying
this model. Indeed, under exchangeability, one could just as well use a distribution that
assigns probability 1/2 to an infinite sequence of heads, 1/2 to an infinite sequence of tails,
and 0 to every other possible sequence. This distribution marginalises to the given local
model p and is exchangeable because it is a uniform convex mixture of two (trivial) precise
multinomial processes that assign probability 1 to heads and tails respectively. Similarly,
any other distribution that marginalises to p and is a convex mixture of multinomial
processes, is compatible with both p and the assumption of exchangeability. We conclude
that, if no additional assumption is made, the only approach that can be justified through
an assumption of exchangeability, is to consider the set of all these compatible models.
This is the unique largest convex set containing all exchangeable distributions that have
p as their marginal model. The corresponding time-consistent sequence of coherent lower
previsions is the unique least committal, most conservative one to be exchangeable and
have a marginal model P that has M = {p} as its corresponding credal set.

It should be clear from this example that Cozman’s second requirement has no be-
havioural justification. We therefore feel that it should be regarded as a purely mathe-
matical assumption. This implies that Cozman’s justification for the type-2 product is
only partially valid and that the second part of it should be reconsidered, replacing it
with an assessment that does have behavioural meaning.

6.3. Providing a full behavioural justification

Our proposal is to replace Cozman’s second requirement with a judgement of either
forward irrelevance or epistemic independence. We will show that by combining either one
of these judgements with a judgement of exchangeability, one obtains a full behavioural
justification for the sensitivity analysis approach to imprecise multinomial processes and
thereby also for the type-2 product. The starting point is the following simple proposition.

Proposition 18. The time-consistent sequence of coherent lower previsions {P t2
↓n}n∈N,

as given by Eq. (30), and {P beh
↓n }n∈N, as given by Eq. (24), are identical:

P beh
↓n (f) = P t2

↓n(f) for all f ∈ G(X↓n) and n ∈ N.

By combining this proposition with Theorem 17, we immediately obtain one of the
most important results of this paper.

Theorem 19. The time-consistent sequence of coherent lower previsions {P t2
↓n}n∈N, as

defined by Eq. (30), is the unique least committal, most conservative one that is (i)
exchangeable, (ii) identically distributed with a given marginal model P and (iii) forward
irrelevant.
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This result provides us with a first justification for the sensitivity analysis approach to
imprecise multinomial processes and the type-2 product. For a given marginal model, the
sensitivity analysis approach corresponds to the most conservative imprecise multinomial
process that is both exchangeable and forward irrelevant. This justification is fully
behavioural because all of the properties that were used to obtain it can be given a
behavioural meaning. From it, one can derive a justification for the type-2 product by
judging X1, . . . , Xn to be an initial fragment of the imprecise multinomial process that
is justified by Theorem 19.

Theorem 19 also serves as a starting point to derive the following slightly weaker, but
perhaps more intuitive result.

Theorem 20. Theorem 19 remains valid if ‘forward irrelevance’ is replaced by ‘many-
to-one epistemic independence’ or ‘many-to-many epistemic independence’.

The main idea of the proof is that many-to-many epistemic independence, many-to-
one epistemic independence and forward irrelevance are increasingly weaker imprecise-
probabilistic notions of independence, each of which is satisfied by the sensitivity analysis
approach.

Theorem 20 provides us with a second behavioural justification for the sensitivity
analysis approach. For a given marginal model, it corresponds to the most conservative
imprecise multinomial process that is both exchangeable and epistemically independent
(either many-to-many or many-to-one). The type-2 product is again justified by judging
X1, . . . , Xn to be the initial fragment of such a process.

We leave it to the reader to choose amongst these different behavioural justifications.
Personally, we prefer the one that is provided by Theorem 19 because it corresponds
to the weakest set of assessments. Also, the asymmetric nature of forward irrelevance
seems fitting for a process that takes place over time. However, since symmetry is im-
posed anyway by exchangeability, one could argue that the symmetric notion of epistemic
independence is more natural to impose. This seems especially compelling for the type-2
product of a finite amount of variables. In that case, we would prefer to impose many-
to-one epistemic independence, again because it is a mathematically weaker assumption
then its many-to-many counterpart.

7. What about strong independence?

The sensitivity analysis approach to imprecise multinomial processes and the related
type-2 product are not the only imprecise-probabilistic models that combine stochastic
independence with convexity, thereby suffering from the lack of interpretation that was
outlined in Section 6.2.

The associated imprecise-probabilistic notion of independence that is at stake here
is called strong independence.7 By definition, a collection of variables is said to satisfy
strong independence [5] if their representing set of probability distributions is the convex

7This concept is known under a number of alternative names as well; see Ref. [5, Section 3.1] for an
overview.
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hull of a set of stochastically independent ones.8 This should be contrasted with the
notion of complete independence [23, 5], which requires every probability distribution in
this representing set to be stochastically independent. The former is often preferred over
the latter for the same reasons that were mentioned in Section 6.2: the convexity that
comes with strong independence allows for a representation in terms of lower previsions
and enables the use of convex optimisation techniques such as linear programming.

There is also a special case of strong independence, called repetition independence [4].
It again consists in considering the convex hull of a set of stochastically independent prob-
ability distributions, but the elements of this set are now also required to be identically
distributed—making them iid.9 This special case of repetition independence is what we
have been concerned with in this paper. In particular, we have provided behavioural jus-
tifications for specific models that satisfy it: for countable sequences X1, . . . , Xn, . . ., we
justified the use of the sensitivity analysis approach to imprecise multinomial processes,
and for finite sequences X1, . . . , Xn, we justified the use of the type-2 product. Both of
these models correspond to using the largest (least committal, most conservative) set of
joint distributions that marginalises to a given local credal set M and satisfies repeti-
tion independence. For every other kind of imprecise-probabilistic model that satisfies
strong (or repetition) independence, or in other words, that is constructed as the convex
hull of stochastically independent distributions, the question of whether or not it can be
provided with a behavioural justification remains largely open. The existing literature
provides only a few partial answers, all of which seem to be due to Cozman. We give a
short overview.

In the context of credal networks, Cozman has proposed to use what he calls the strong
Markov condition [24, Section 6]. The main idea is to impose (conditional) epistemic
independence and to require this assessment to keep on holding even after the joint
model has been altered in order to incorporate a series of belief changes. He shows that
by imposing this condition, one obtains a credal network under strong independence,
without making an explicit assessment of stochastic independence. By combining this
with a least committal strategy, he obtains the so-called strong extension of a credal
network. The main weakness of this approach, as Cozman points out himself, is that
it expresses belief changes in terms of individual probability distributions, rather than
credal sets. Therefore, the strong Markov condition seems to lack a behavioural meaning.

Cozman comes back to this approach in a recent overview paper [5, Section 3.4],
where he focuses on the case of two independent variables, rather than on general credal
networks. He compares it with a justification that was proposed by Moral and Cano [25,
Theorem 2], arguing that both approaches are similar but that the one by Moral and

8Strong independence has been used to refer to other imprecise-probabilistic notions of independence
as well; we provide an example further on in this section. As another example: Ref. [4] uses independence
in the selection to refer to what we call strong independence, and it uses strong independence to refer to
the largest set of distributions that satisfies independence in the selection. We prefer to follow Walley in
calling this largest set the type-1 product [6, Section 9.3.5], or alternatively, the strong extension [22];
see also Section 8.

9For countable sequences X1, . . . , Xn, . . ., this extra assumption can also be expressed in terms of
exchangeability: a countable sequence satisfies repetition independence if and only if it is both strongly
independent and exchangeable. The direct implication in this statement is immediate because every
exchangeable stochastic process is trivially iid. The converse one follows because the only way for an
exchangeable stochastic process—which, by de Finetti’s representation theorem, is a convex mixture of
iid processes—to be stochastically independent is for it to be iid.
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Cano is to be preferred because it expresses belief changes in terms of credal sets rather
than individual probability distributions. Cozman then goes on to present a ‘generalised’
conditional version of Moral and Cano’s result [5, Theorem 1]. Although this approach
seems promising, it does suffer from a number of problems.

The first one is that, in contrast with what Cozman seems to suggest, his result is
in fact fundamentally different from that by Moral and Cano. The reason is that Moral
and Cano adopt a different definition of strong independence than Cozman does. The
definition of Moral and Cano corresponds to the use of a specific non-convex credal
set, consisting of factorising distributions only,10 whereas Cozman uses the convexified
concept that is also adopted in the present paper. Also, Moral and Cano’s definition
of strong independence corresponds to a least committal strategy,11 whereas Cozman’s
adaptation of their result does not restrict attention to this particular case. Therefore,
the result by Moral and Cano should not be regarded as a justification for using convex
hulls of arbitrary sets of stochastically independent distributions. This has important
consequences for Cozman’s result as well, since he did not provide [5, Theorem 1] with an
explicit proof. Instead, he claimed that such a proof can be obtained by simply following
the steps in the proof of [25, Theorem 2]. In light of the different definitions that were
adopted in both results, it is not clear whether this is indeed the case.

The second problem is a conceptual weakness that Cozman points out himself [5,
Section 3.4]: the argument that is embedded in [5, Theorem 1] only holds if one assumes
that new assessments should always be combined with the currently held joint credal set,
thereby disregarding the available assessment of epistemic independence. However, one
can argue that an assessment of epistemic independence should not be neglected upon
receiving new information and should instead be taken into account to construct the new
joint credal set. This alternative approach would break the argument.

Finally, Cozman has also presented a fundamentally different way of providing strong
independence with a justification [5, Section 3.5.3], which is based on a judgement of
partial exchangeability. The approach is very similar to his justification for the type-
2 product, as we discussed in detail in Section 6.2. The main idea is to combine an
assessment of partial exchangeability with a condition on the set of priors that results
from such an assessment. However, similarly to the approach for the type-2 product, this
added condition seems to be a purely mathematical assumption that has no behavioural
meaning.

8. Conclusions and suggestions for future research

Starting from a given imprecise-probabilistic model for a single variable X (repre-
sented by means of a coherent lower prevision P on G(X ), or equivalently, a credal set
M consisting of probability mass functions on X ), we have considered two fundamentally
different approaches to constructing an imprecise multinomial process that describes a
countable sequence X1, . . . , Xn, . . . of identically distributed variables that may assume
a finite number of values.12

10It is a special case of the notion of complete independence that was mentioned in Section 7.
11They use the largest joint model that satisfies complete independence.
12For an extension of this discussion to allow for variables Xi assuming values in an infinite set X , the

existing treatments of exchangeability and (forward) irrelevance for infinite domains must receive much
more attention than they have so far in the literature on imprecise probabilities.
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Our first approach was to define it using behavioural assessments only. We con-
structed such an imprecise multinomial process in Section 5, defining it as the least-
committal, most conservative model that is exchangeable, has P as its marginal model,
and additionally satisfies forward irrelevance. Later in the paper, in Section 6.3, we
showed that the assessment of forward irrelevance is not essential to this definition. It
can be replaced by an assessment of either many-to-one or many-to-many epistemic in-
dependence as well, without changing the resulting imprecise multinomial process.

In Section 6.1, we presented a second, perhaps more familiar approach. The main
idea was to interpretM as a set of candidates for the unknown marginal probability mass
function of a precise multinomial process. This resulted in a set of precise multinomial
processes, one for every candidate mass function in M. The corresponding imprecise
multinomial process was then taken to be the convex hull of all these precise ones—if
a credal set representation is needed—or, equivalently, their lower envelope—if a lower
prevision representation is preferred. This so-called sensitivity analysis approach pro-
vided us with simple, intuitive expressions. For any n ∈ N, the model for the variables
X1, . . . , Xn was given by the so-called type-2 product of our marginal model.

Our main result, as presented in Section 6.3, is that these two approaches are identical.
We find this to be very surprising because the sensitivity analysis approach to impre-
cise multinomial processes starts from totally different premisses than the behavioural
one. Sensitivity analysis is in its core a precise approach, stochastic independence be-
ing essential to its definition. Imprecision is introduced in a rather arbitrary manner
by taking lower and upper envelopes of precise stochastically independent models. By
doing so, it allows for convex combinations that are no longer stochastically independent,
thereby contradicting its own premisses; see Section 6.2. The behavioural approach is
fundamentally different. It is inherently imprecise and constructed from behavioural as-
sessments only, without making any reference to stochastic independence. The fact that
both imprecise multinomial processes turn out to be identical joins both worlds, thereby
providing the behavioural approach with simple intuitive expressions and the sensitivity
analysis approach with a behavioural justification.

Although this behavioural justification is powerful and consistent, the circumstances
under which it is applicable are of course open to discussion. For countable sequences,
three assessments are needed: forward irrelevance (or epistemic independence), exchange-
ability and the use of a least committal strategy. To us, this last requirement is the most
compelling one. Whatever the assessments made, the resulting model should reflect but
those assessments, and nothing more. An assessment of forward irrelevance is less com-
pelling, but we feel as if it should be accepted whenever one judges the variables at hand
to be independent in some way. Indeed, of all imprecise-probabilistic notions of indepen-
dence that one can impose, epistemic irrelevance is one of the weakest, still meaningful
notions. It is furthermore implied by almost every other notion of independence, in-
cluding the popular notions of strong and epistemic independence. Therefore, the main
assessment that remains open for discussion is that of exchangeability. As should have
become clear from our results, exchangeability is a remarkably strong property. It should
not be taken for granted. We refer to Walley [6, Section 9.5.2] for an extensive discussion
on sufficient grounds for exchangeability judgements, stating that in order to justify an
assessment of exchangeability, it suffices for the individual experiments to be (physically)
similar. However, further discussion on this topic would be more than welcome.

If instead of a countable sequence, one only considers a finite set of variables, our
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behavioural justification for modelling this set by means of the type-2 product needs an
additional assumption. This finite set of variables should then be judged to be a subset
of a countable sequence and the assessments of exchangeability and forward irrelevance
should be imposed on this countable sequence instead of on the original finite set of
variables. The circumstances under which such an assumption can be justified are open
to discussion as well.

That said, as explained in Section 7, the sensitivity analysis approach to impre-
cise multinomial processes and the related type-2 product are not the only imprecise-
probabilistic models that combine stochastic independence with convexity. Every other
so-called strongly independent model does so as well, thereby suffering from the lack
of interpretation that was outlined in Section 6.2. An obvious line of future research
would therefore be to try and find a behavioural justification for strongly independent
models other than the ones treated in the current paper as well. The main idea would
be similar: to try and construct them directly, without the use of stochastic indepen-
dence. Section 7 gave an overview of some previous attempts at doing so, explaining their
conceptual weaknesses. We conclude from this overview that the problem of justifying
strong independence remains largely open.

A popular imprecise-probabilistic model for which such a justification would be espe-
cially welcome, is the so-called type-1 product [6, Section 9.3.5], often referred to as the
strong extension as well. Similarly to the type-2 product, it is a convex hull of stochas-
tically independent distributions. However, the type-1 product does not require these
distributions to be identically distributed. Given a marginal modelMi for every variable
Xi in a finite collection X1, . . . , Xn, their type-1 product is defined as the convex hull of
the set of all stochastically independent joint probability mass functions that are of the
form

∏n
i=1 pi, where for all i ∈ {1, . . . , n}, pi is selected fromMi. This type-1 product is

the largest set of joint probability mass functions that satisfies strong independence and
has Mi as its marginal model for the variable Xi, i ∈ {1, . . . , n}.

As a possible avenue for further research, here are some preliminary ideas that could
perhaps lead to a justification of this type-1 product. We suggest to use a strategy similar
to the one that we used to justify the type-2 product. The starting point would be Coz-
man’s idea of imposing partial exchangeability. By combining such an assessment with
an additional rather technical condition, Cozman obtains strong independence. However,
as explained in Section 7, this second condition seems to have no behavioural meaning
and, therefore, does not provide strong independence with a behavioural justification.
We suggest to try and remedy this situation by replacing Cozman’s condition with some
well-chosen assessments of forward irrelevance or epistemic independence. By combining
these assessments with partial exchangeability and the use of a least committal strategy,
one might obtain the type-1 product.
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Appendix A. Proofs of main results

Proof of Proposition 1. Consider any finite subset R of N that has r = |R| elements and
any f ∈ G(X r) = G(X↓r). If we call n the highest element of R, then both PR and
P ↓r can be derived from P ↓n through marginalisation. We find that due to Eq. (2),
P ↓r(f) = P ↓n(f), where we have used cylindrical extension (Section 3.1) to identify
the gamble f on X↓r with its extension to X↓n, thereby allowing us to apply P ↓n to f .
Now choose a permutation π in Pn that maps the elements of R onto the first r natural
numbers and apply it to the cylindrical extension of f to X↓n. This results in a gamble
πf ∈ G(X↓n) that theoretically depends on the value of X↓n, but in practice only depends
on the value that XR takes in XR and on that domain, coincides with f . Therefore, we
can apply Eq. (1), with N = {1, . . . , n}, to find that PR(f) = P ↓n(πf). Finally, we
obtain P ↓n(f) = P ↓n(πf) by applying the permutability of the sequence. Together with
the previous two equalities, this yields PR(f) = P ↓r(f).

Proof of Proposition 3. By definition, forward irrelevance of P ↓n means joint coherence
of P ↓n with the collection of conditional lower previsions P ↓k+1(·|X↓k), 1 ≤ k ≤ n − 1,
defined for all x↓k ∈ X↓k and f ∈ G(X↓k+1) by

P ↓k+1(f |x↓k) := P k+1(f(·, x↓k)|x↓k) := P {k+1}(f(·, x↓k)).

We know that this collection is (jointly) coherent on its own because Ref. [8, Propo-
sition 13] proves (joint) coherence for a superset13 of this collection, implying (joint)
coherence of the subset. Therefore, we can invoke Ref. [8, Theorem 2] to find that P ↓n is
forward irrelevant if and only if P ↓n is weakly coherent with the collection of conditional
lower previsions P ↓k+1(·|X↓k), 1 ≤ k ≤ n− 1. Taking into account Ref. [8, Theorem 1],
this holds if and only if for every 1 ≤ k ≤ n− 1

P ↓n(I{x↓k}[f − P ↓k+1(f |x↓k)]) = 0 for all f ∈ G(X↓k+1) and x↓k ∈ X↓k,

which is in turn equivalent to Eq. (7) because we have I{x↓k}f = I{x↓k}f(·, x↓k), P ↓k+1(f |x↓k) =
P {k+1}(f(·, x↓k)) and f(·, x↓k) ∈ G(Xk+1).

Proof of Corollary 4. Since a countable sequence X1, . . . , Xn, . . . is by definition forward
irrelevant if and only if the finite sequence X1, . . . , Xn is forward irrelevant for every
n ∈ N, we can apply Proposition 3 to find that X1, . . . , Xn, . . . is forward irrelevant if
and only if for every n ∈ N and 1 ≤ k ≤ n− 1

P ↓n(I{x↓k}[f − P {k+1}(f)]) = 0 for all f ∈ G(Xk+1) and x↓k ∈ X↓k.

Due to the additional assumption of identical marginal distributions, this turns into
demanding that for every n ∈ N and 1 ≤ k ≤ n− 1

P ↓n(I{x↓k}[f − P (f)]) = 0 for all f ∈ G(Xk+1) and x↓k ∈ X↓k.

The final equivalence with Eq. (8) is now due to time-consistency (Eq. (2)), because it
implies that for all n ∈ N, 1 ≤ k ≤ n− 1, f ∈ G(Xk+1) and x↓k ∈ X↓k

P ↓n(I{x↓k}[f − P (f)]) = P ↓k+1(I{x↓k}[f − P (f)]).

13The superset that corresponds to epistemic many-to-one independence.

31



Proof of Proposition 5. For every θ ∈ Σ, we have that
∑
x∈X θx = 1 by definition. As a

consequence, we can derive that

1 =

(∑
x∈X

θx

)n
=
∑
m∈Nn

B∗m(θ) for all θ ∈ Σ,

proving that Bn is a partition of unity. To prove that it is a basis for Vn(Σ), we need
to show that every h ∈ Vn(Σ) can be written as a linear combination of Bernstein basis
gambles in Bn and that all of these Bernstein basis gambles are linearly independent.

We start with the first part. Consider any polynomial gamble h ∈ Vn(Σ). By defini-
tion, there is a polynomial p on RX , with deg(p) ≤ n, for which h = p∗. Since deg(p) ≤ n,
we know that p is a sum

∑s
i=1 pi of a finite amount of monomials pi, each of which has

a degree di ≤ n. One such monomial is of the form

pi(θ) = ci
∏
x∈X

θdi(x)
x for all θ ∈ RX ,

in which ci is a coefficient in R and di(x) are exponents in N0 that sum up to di. The
polynomial p′i that is given by

p′i(θ) = ci
∏
x∈X

θdi(x)
x

(∑
x∈X

θx

)n−di
for all θ ∈ RX ,

is now a linear combination of Bernstein basis polynomials of degree n. Its restriction p′∗i
to Σ is thus a linear combination of Bernstein basis gambles of degree n and coincides
with p∗i because

∑
x∈X θx = 1 for all θ ∈ Σ. As a direct consequence, we have that

h = p∗ =
∑s
i=1 p

∗
i =

∑s
i=1 p

′∗
i is a linear combination of Bernstein basis gambles of

degree n.
To prove that all Bernstein basis gambles of degree n are linearly independent, assume

ex absurdo that there is some gamble b ∈ G(Nn) that differs from zero and for which
hb(θ) :=

∑
m∈Nn b(m)B∗m(θ) = 0 for all θ ∈ Σ. Now consider the polynomial pb on RX ,

defined by pb(θ) :=
∑
m∈Nn b(m)Bm(θ) for all θ ∈ RX . Since hb is the restriction of pb to

the simplex, we have for all θ ∈ Σ that pb(θ) = 0. We also know that it is a homogeneous
polynomial of degree n (it consists of a sum of monomials of degree n), which implies
for all λ ∈ R that pb(λθ) = λnpb(θ). Because every θ ∈ RX in the positive orthant
(θx ≥ 0 for all x ∈ X ), has a corresponding λ ∈ R and θ′ ∈ Σ for which θ = λθ′, it
follows that pb(θ) = pb(λθ

′) = λnpb(θ
′) = 0 for all θ in the positive orthant. Since pb is

a polynomial, this is only possible if pb(θ) = 0 for all θ ∈ RX , which would mean that
pb =

∑
m∈Nn b(m)Bm is identically zero. However, since pb is a linear combination of

monomials on RX , which are known to be linearly independent, this would imply that
all coefficients b(m) have to be zero, leading to a contradiction. Therefore, all Bernstein
basis gambles of degree n are linearly independent, which completes the proof.

Proof of Corollary 6. This is trivial because every polynomial gamble h in V(Σ) is an
element of Vdeg(h)(Σ) and can therefore be written as a linear combination of Bernstein
basis gambles of degree deg(h) due to proposition 5.
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Proof of Corollary 7. Consider any polynomial gamble h ∈ V(Σ) and use n to denote
its degree deg(h). Due to proposition 5, h has a unique corresponding b ∈ G(Nn)
for which h =

∑
m∈Nn b(m)B∗m. Therefore, p =

∑
m∈Nn b(m)Bm is a homogeneous

polynomial that represents h and for which deg(p) = n. To show that it is unique,
assume that there is another homogeneous polynomial p′ of degree n for which p′∗ = h.
Because it is homogeneous and has degree n, there has to be some b′ ∈ Nn such that
p′ =

∑
m∈Nn b

′(m)Bm and we would thus have that h = p′∗ =
∑
m∈Nn b

′(m)B∗m. Due
to the uniqueness of the b that was mentioned in the beginning of this proof, we find
that b = b′, which implies that p = p′ and thus completes the proof.

Proof of Proposition 8. Consider any k and n in N, with k ≤ n, and any fk ∈ G(X↓k),
and let fn be its cylindrical extension to G(X↓n). Let R := {k + 1, . . . , n}. Then for all
θ ∈ Σ, we know from Proposition 5 that∑

xR∈XR

∏
x∈X

θTx(xR)
x =

∑
m∈Nn

B∗m = 1,

which implies that

Mnn(fn)(θ) =
∑

x↓n∈X↓n

fn(x↓n)
∏
x∈X

θ
Tx(x↓n)
x

=
∑

x↓n∈X↓n

fk(x↓k)
∏
x∈X

θ
Tx(x↓n)
x

=
∑

x↓k∈X↓k

∑
xR∈XR

fk(x↓k)
∏
x∈X

θ
Tx(x↓k)+Tx(xR)
x

=
∑

x↓k∈X↓k

fk(x↓k)
∏
x∈X

θ
Tx(x↓k)
x

∑
xR∈XR

∏
x∈X

θTx(xR)
x = Mnk(fk)(θ).

Since this is true for every θ ∈ Σ, we find that

P ↓k(fk):=R(Mnk(fk)) = R(Mnn(fn)) = P ↓n(fn).

Hence, {P ↓n}n∈N is a time-consistent sequence of models.
Now fix any n ∈ N. It remains to prove that P ↓n is coherent and exchangeable.
We start with coherence. Since R is coherent, it satisfies P1–P3. Now notice from

Equation (11) and Proposition 5 that, for all f ∈ G(X↓n) and θ ∈ Σ, Mnn(f)(θ) is a
convex combination of the values of f and therefore dominates its infimum inf f . Since
this is true for every θ ∈ Σ, we have that inf Mnn(f) ≥ inf f . Since R satisfies P1, this
implies that P ↓n satisfies P1 as well. That P ↓n satisfies P2 and P3 follows directly from
the linearity of the operator Mnn and the fact that R satisfies P2 and P3. Hence, P ↓n
is a coherent lower prevision on G(X↓n).

For exchangeability, it suffices to notice that for any f ∈ G(X↓n) and π ∈ Pn the
polynomial gambles Mnn(f) and Mnn(πf) are identical, implying that Mnn(πf−f) = 0.
Hence, since R satisfies (P1), we find that P ↓n(πf − f) ≥ 0, as desired.
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Proof of Equation (20). For all k ∈ N, x↓k ∈ X↓k, f ∈ G(Xk+1) and θ ∈ Σ

ν(T (x↓k)) Mnk+1(I{x↓k}[f − P (f)])(θ)

= ν(T (x↓k))
∑

z↓k+1∈X↓k+1

I{x↓k}(z↓k)[f(zk+1)− P (f)]
∏
x∈X

θ
Tx(z↓k+1)
x

= ν(T (x↓k))
∑

z↓k+1∈X↓k+1
z↓k=x↓k

[f(zk+1)− P (f)]
∏
x∈X

θ
Tx(z↓k+1)
x

= ν(T (x↓k))
∑

zk+1∈Xk+1

[f(zk+1)− P (f)]
∏
x∈X

θ
Tx(x↓k)
x θzk+1

= ν(T (x↓k))
∏
x∈X

θ
Tx(x↓k)
x

∑
zk+1∈Xk+1

[f(zk+1)− P (f)]θzk+1

= B∗T (x↓k)(θ)
∑

zk+1∈Xk+1

[f(zk+1)− P (f)]θzk+1

= B∗T (x↓k)(θ)
∑
x∈X

[f(x)− P (f)]θx

= B∗T (x↓k)(θ)

(∑
x∈X

f(x)θx − P (f)

)
= B∗T (x↓k)(θ)(Mn1(f)(θ)− P (f)),

where the first and last equality follow from Eqs. (11) and (14), respectively.

Proof of Proposition 10. Consider any g ∈ V>0(Σ). Due to Corollary 7 it has a corre-
sponding homogeneous polynomial p on RX of degree deg(p) = deg(g) that represents
it, meaning that g = p∗. Since g is by definition strictly positive over Σ, this also holds
for p. If we then use the homogeneity of p, we can derive that p is strictly positive on
the set

K :=

{
θ ∈ RX :

∑
x∈X

θx 6= 0 and θx ≥ 0 for all x ∈ X
}
.

This allows us to apply Pólya’s result [16, Theorem 5.5.1], which says that if a homoge-
neous polynomial p on RX is strictly positive over K, then there exists an integer k ≥ 0
such that the polynomial p′ on RX , defined for all θ ∈ Σ by

p′(θ) :=

(∑
x∈X

θx

)k
p(θ),

has non-negative coefficients. Consequently, there exist non-negative coefficients cm,
m ∈ Nn, with n = deg(p)+k, such that p′ =

∑
m∈Nn cmBm and therefore also g = p∗ =

p′∗ =
∑
m∈Nn cmB

∗
m.

Now consider a coherent lower prevision R on V(Σ) that satisfies Eq. (23) and any
h ∈ H1. The proof of this proposition then follows from the chain of (in)equalities

R(hg) = R

( ∑
m∈Nn

cmB
∗
mh

)
≥
∑
m∈Nn

R(cmB
∗
mh) =

∑
m∈Nn

cmR(B∗mh) ≥ 0,
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in which the first equality follows from the previous paragraph. The first inequality and
the subsequent equality are due to coherence (P3 and P2 respectively) and the final
inequality is a consequence of Eq. (23).

Lemma 21. Consider a non-empty, convex and compact C ⊆ RX and any δ > 0. Let

Cδ :=
{
θ ∈ RX : ‖θ − y‖ ≤ δ for at least one y ∈ C

}
,

with ‖θ − y‖ the Euclidean distance between θ and y. Then Cδ is a convex and compact
set whose interior intCδ is a strict superset of C.

Proof. Throughout this proof, for any θ ∈ RX and ε > 0, we let

Bθ,ε := {θ′ ∈ RX : ‖θ − θ′‖ ≤ ε}

be the closed ε-ball around θ.
We now start with convexity. Consider any θ1, θ2 ∈ Cδ and any λ ∈ [0, 1] and consider

the convex combination θ := λθ1 + (1− λ)θ2. Since θ1, θ2 ∈ Cδ, there are y1, y2 ∈ C such
that ‖θ1− y1‖ ≤ δ and ‖θ2− y2‖ ≤ δ. Let y := λy1 + (1− λ)y2. The convexity of C then
implies that y ∈ C. Hence, since

‖θ − y‖ = ‖λθ1 + (1− λ)θ2 − (λy1 + (1− λ)y2)‖
= ‖λ(θ1 − y1) + (1− λ)(θ2 − y2)‖
≤ λ‖θ1 − y1‖+ (1− λ)‖θ2 − y2‖ ≤ λδ + (1− λ)δ = δ,

we find that θ ∈ Cδ.
For compactness, we prove that Cδ is bounded and closed.
We begin with boundedness. Since C is compact, it is bounded, meaning that there

is some constant α ∈ R such that ‖θ‖ ≤ α for all θ ∈ C. Now let α′ := α + δ and
consider any θ ∈ Cδ, implying that there is some y ∈ C such that ‖θ − y‖ ≤ δ. Then
‖θ‖ ≤ ‖θ − y‖ + ‖y‖ ≤ δ + α = α′. Since θ ∈ Cδ is arbitrary, this implies that Cδ is
bounded.

To establish that Cδ is closed, we will prove that its complement is open. So fix any
θ ∈ RX \Cδ, meaning that ‖θ−y‖ > δ for all y ∈ C. Since ‖θ−y‖ is a continuous function
of y, the compactness of C implies that it achieves a minimum M := miny∈C ‖θ − y‖ on
C. Since ‖θ − y‖ > δ for all y ∈ C, we know that M > δ and therefore also that
M − δ > 0. Consider now any ε > 0 such that ε < M − δ. For all θ′ ∈ Bθ,ε we then find
that θ′ ∈ RX \ Cδ because

‖θ′ − y‖ = ‖θ − y + θ′ − θ‖ ≥ ‖θ − y‖ − ‖θ′ − θ‖ ≥M − ε > δ

for all y ∈ C. Since θ ∈ RX \ Cδ was arbitrary, this implies that RX \ Cδ is open, and
therefore, that Cδ is closed.

We end by proving that intCδ is a strict superset of C. Consider any θ ∈ C. Then
for all θ′ ∈ Bθ,δ, we know that ‖θ− θ′‖ ≤ δ and therefore, since θ ∈ C, also that θ′ ∈ Cδ.
Hence, we find that Bθ,δ ⊆ Cδ, which implies that θ ∈ intCδ. Since θ ∈ C was arbitrary,
we conclude that C is a subset of intCδ. In order to prove that it is a strict subset, we
assume ex absurdo that intCδ = C. Consider now any θ ∈ C and any y ∈ RX such that
‖y‖ = δ/2 and, for all n ∈ N∪{0}, let θn := θ+ny. For all θ′ ∈ Bθ1,δ/2, we then have that

‖θ0 − θ′‖ = ‖θ1 − y − θ′‖ ≤ ‖y‖+ ‖θ1 − θ′‖ ≤ ‖y‖+ δ/2 = δ,
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which, since θ0 = θ ∈ C, implies that θ1 ∈ intCδ = C. Similarly, for all θ′ ∈ Bθ2,δ/2,

‖θ1 − θ′‖ = ‖θ2 − y − θ′‖ ≤ ‖y‖+ ‖θ2 − θ′‖ ≤ ‖y‖+ δ/2 = δ.

Since θ1 ∈ C, this implies that θ2 ∈ intCδ = C. By continuing in this way, we find that
θn ∈ C for all n ∈ N. As mentioned before, the compactness (and hence boundedness)
of C implies that there is some α ∈ R such that ‖θ′‖ ≤ α for all θ′ ∈ C. Consider now
any n ∈ N such that nδ > 4α. Then since θn ∈ C, we know that ‖θn‖ ≤ α. However, we
also find that

‖θn‖ = ‖θ + ny‖ ≥ ‖ny‖ − ‖θ‖ = n‖y‖ − ‖θ‖ ≥ n‖y‖ − α = n
δ

2
− α > 2α− α = α,

a contradiction.

Proof of Proposition 12. Consider any non-empty, convex and compact subset C of RX
and any polynomial p ∈ V(RX ) that is strictly positive over C. Due to the compactness
of C and the continuity of p, the minimum of p over C is well defined and we will denote
it by ε = min{p(θ) : θ ∈ C}. Note that ε > 0, because p was assumed to be strictly
positive over C. We now define, for any δ > 0, the set

Cδ :=
{
θ ∈ RX : ‖θ − y‖ ≤ δ for at least one y ∈ C

}
,

in which ‖θ−y‖ is the Euclidean distance between θ and y. We then know from Lemma 21
that Cδ is a convex and compact set whose interior intCδ is a strict superset of C. Next,
we fix an arbitrary δ1 > 0 and its corresponding set Cδ1 . Due to the compactness of
Cδ1 , the continuous polynomial p is uniformly continuous over Cδ1 [27, Corollary 36.20],
implying the existence of a δ2 > 0 for which it holds for all θ and y in Cδ1 that

‖θ − y‖ < δ2 =⇒ |p(θ)− p(y)| < ε.

Now choose a δ > 0 that is strictly smaller than both δ1 and δ2. For any θ ∈ Cδ, we
know that there is some y ∈ C for which ‖θ − y‖ ≤ δ < δ2. Since θ and y clearly both
belong to Cδ1 , this in turn implies that |p(θ)− p(y)| < ε. Hence, we find that

p(θ) ≥ p(y)− |p(θ)− p(y)| > p(y)− ε ≥ 0,

in which the final inequality follows from the fact that ε is the minimum of p over C.
Since θ ∈ Cδ was arbitrary, we have thus proved the existence of some δ > 0 for which p
is strictly positive over Cδ.

We now invoke a theorem that was proved in [28, Theorem 20.4], stating that if C is
a non-empty closed and bounded convex set, and D is a convex set such that C ⊂ intD,
then there exists a polyhedral convex set P such that P ⊂ intD and C ⊂ intP . Because
in Euclidean space, compactness is equivalent to being closed and bounded, our set C
satisfies all properties needed for this Theorem to hold. If we now choose D to be Cδ we
can derive from this theorem the existence of a polyhedral set P such that P ⊂ intCδ
and C ⊂ intP . By definition, such a polyhedral set P has a corresponding finite subset
S = {q1, . . . , qs} of V1(RX ) for which P = KS . The set KS is always closed by definition
and in this case is also bounded and thus compact because it is a subset of the compact
(and hence bounded) set Cδ. It is also a superset of C because C ⊂ intP ⊆ P = KS ,

36



thereby completing the proof that KS is a compact superset of C. The proof that p is
an element of MS now follows directly from Theorem 11 because KS is compact and p
is strictly positive over Cδ and thus also over its subset KS .

Proof of Corollary 13. Consider any non-empty, closed and convex subset M of Σ and
a polynomial gamble h ∈ V(Σ) that is strictly positive over M. By definition, h has a
corresponding polynomial p ∈ V(RX ) for which p∗ = h, implying that p is also strictly
positive over M. The set M is compact since it is closed by assumption and bounded
because it is a subset of Σ. Therefore, the minimum of p over M is well-defined and we
will denote it as ε = min{p(θ) : θ ∈ M}. Note that ε > 0 because p is strictly positive
over M. We now choose some α such that 0 < α < ε and define pα := p − α. It should
be clear that pα is also strictly positive over M.

Next, because M is non-empty, convex and compact, we can invoke Proposition 12
to show the existence of a finite subset S = {q1, . . . , qs} of linear polynomials in V1(RX )
for which KS is a superset of M and pα is an element of MS . We thus find that

p = α+ pα = α+ σ0 + q1σ1 + . . .+ qsσs = α+ σ0 +

s∑
i=1

qiσi,

where for all i ∈ {0, . . . , s}, σi ∈
∑
V2(RX ). We now introduce the polynomial q :=∑s

i=1 qi, of which the maximum max{q(θ) : θ ∈ Σ} over Σ is well-defined due to the
compactness of Σ. It is then always possible to choose some δ > 0 such that δmax{q(θ) :
θ ∈ Σ} < α and we use it to define p0 := α − δq + σ0, q0 := 1 and pi := δ + σi for all
i ∈ {1, . . . , s}, allowing us to write

p = α+ σ0 +

s∑
i=1

qiσi = α+ σ0 − δq +

s∑
i=1

δqi +

s∑
i=1

qiσi =

s∑
i=0

qipi.

Consequently, if we define hi := q∗i and gi := p∗i for all i ∈ {0, . . . , s}, we find that

h = p∗ =

( s∑
i=0

qipi

)∗
=

s∑
i=0

q∗i p
∗
i =

s∑
i=0

higi.

The proof is then concluded if we can show for all i ∈ {0, . . . , s} that hi ∈ H1 and
gi ∈ V>0(Σ). We start with the polynomials hi. For i = 0, h0 = 1 by definition and
is thus trivially an element of H1. For i ∈ {1, . . . , s}, the linear polynomials qi are by
definition non-negative over KS and thus also over the subset M, which makes their
restrictions hi to Σ elements of H1.

Each of the polynomials σi, with i ∈ {0, . . . , s}, is an element of
∑
V2(RX ), implying

that it is non-negative everywhere. For i ∈ {1, . . . , s}, this means that pi = δ + σi is
strictly positive everywhere, and its restriction gi tot Σ is thus certainly an element of
V>0(Σ). For the special case i = 0, we have that g0 = p∗0, with p0 = α − δq + σ0. Since
δmax{q(θ) : θ ∈ Σ} < α, we know that α − δq and consequently also p0 = α − δq + σ0

are strictly positive over Σ. Therefore, g0 = p∗0 is an element of V>0(Σ), concluding the
proof.

Proof of Theorem 14. Consider any polynomial gamble h ∈ V(Σ) that is non-negative
over M. Then for all ε > 0, the polynomial gamble hε = ε + h will be strictly positive
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over M, allowing us to use Corollary 13 to find that hε =
∑s
i=0 higi, with hi ∈ H1 and

gi ∈ V>0(Σ) for all i ∈ {0, . . . , s}. As a consequence, due to Proposition 10 and the
superadditivity that follows from coherence, we obtain that R(h+ ε) = R(hε) ≥ 0, which
is in turn equivalent with R(h) ≥ −ε due to coherence property P5. Since this is true
for all ε > 0, we find that R(h) ≥ 0.

Proof of Proposition 15. Fix any k ∈ N, x↓k ∈ X k and f ∈ G(X ). Then we know from

Eq. (16) that min{Mn1(f)(θ) : θ ∈ M} = P (f), implying that Rbeh satisfies Eq. (13).
Also, it implies that min{Mn1(f)(θ) − P (f) : θ ∈ M} = 0. Since the Bernstein basis
gamble B∗T (x↓k) is non-negative by definition, this in turn implies that

min
{
B∗T (x↓k)(θ)[Mn1(f)(θ)− P (f)] : θ ∈M

}
= 0,

and therefore that Rbeh satisfies Eq. (21).

Proof of Corollary 16. Consider any coherent lower prevision R on V(Σ) that satisfies
Eq. (23). Now choose any polynomial gamble h ∈ V(Σ) and define the corresponding
polynomial gamble h′ as

h′ := h−min{h(θ) : θ ∈M}.

Since h′ is positive onM and R satisfies Eq. (23), we can apply Theorem 14 to find that
R(h′) ≥ 0, or equivalently, due to coherence property P5, that

R(h) ≥ min{h(θ) : θ ∈M} = Rbeh(h).

Proof of Theorem 17. Consider any time-consistent sequence of coherent lower previsions
{P ↓n}n∈N that is (i) exchangeable, (ii) identically distributed with a given marginal
model P and (iii) forward irrelevant. Then due to (i) and Theorem 9, there is a unique
corresponding coherent lower prevision R on V(Σ) such that for every n ∈ N

P ↓n(f) = R(Mnn(f)) for all f ∈ G(X↓n). (A.1)

Due to (ii) and (iii), R satisfies Eqs. (19) and (22) and therefore also Eq. (23). We can
thus invoke Corollary 16 to find that

Rbeh(h) ≤ R(h) for all h ∈ V(Σ)

and therefore due to Eq. (A.1) and Eqs. (24) and (25) that for every n ∈ N

P beh
↓n (f) ≤ P ↓n(f) for all f ∈ G(X↓n).

Since we know from Section 5.5 that {P beh
↓n }n∈N is itself a time-consistent sequence

of coherent lower previsions that satisfies (i), (ii) and (iii), it follows that it is the unique
least committal, or most conservative one to do so.

Proof of Proposition 18. Fix an arbitrary n ∈ N and choose θ ∈ M. Then due to
Eqs. (26) and (10), we have for all x↓n ∈ X↓n that

pnθ (x↓n) =

n∏
i=1

θ(xi) =
∏
x∈X

θ
Tx(x↓n)
x .
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Consequently, we can apply Eqs. (29) and (11) to find that for all f ∈ G(X↓n)

Enθ (f) =
∑

x↓n∈X↓n

f(x↓n)pnθ (x↓n) =
∑

x↓n∈X↓n

f(x↓n)
∏
x∈X

θ
Tx(x↓n)
x = Mnn(f)(θ).

The proof is now a direct consequence of Eqs. (24), (30) and (28).

Proof of Theorem 19. This is a direct consequence of Theorem 17 and Proposition 18.

Proof of Theorem 20. It follows from Theorem 19 that the time-consistent sequence of
coherent lower previsions {P t2

↓n}n∈N, as defined by Eq. (30), is (i) exchangeable and
(ii) identically distributed with a given marginal model P . Since by construction, this
sequence is a lower envelope of precise, stochastically independent ones, it is also (iii’)
epistemically independent (both many-to-many and many-to-one). Indeed, stochastic
independence implies both many-to-many and many-to-one independence [8, Proposition
10] and both of these notions are preserved under taking lower envelopes; see Section 3.5.
We are thus left to prove that the sequence {P t2

↓n}n∈N is the unique least committal, most
conservative one to satisfy these three properties.

Consider therefore any other time-consistent sequence of coherent lower previsions
{P ↓n}n∈N that is (i) exchangeable, (ii) identically distributed with a given marginal
model P and (iii’) epistemically independent (either many-to-many or many-to-one). We
need to show that it is less committal (not as conservative) as the sequence {P t2

↓n}n∈N.
Since joint coherence with a set of conditional lower previsions implies joint coherence
with any subset, we immediately have that condition (iii’) implies forward irrelevance
and we can therefore apply Theorem 19 to conclude the proof.
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