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Continuous-time Markov chains

Q(x, y)

that’s just a probability  
mass function

P
yQ(x, y) = 0

(8y 6= x)Q(x, y) � 0

(8x)Q(x, x)  0

initial distribution transition
rate matrix

⇡0(x)



Amorous
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What is                                  ?
P (Xt = y|X0 = x) e

Qt(x, y)

lim
t!+1

P (Xt = y|X0 = x) = lim
t!+1

e

Q
t(x, y)

The following limit always exists!

And often does not depend on    !x

⇡1(y) = lim
t!+1

P (Xt = y) = lim
t!+1

⇡0e
Qt(y)



That’s all fine and 
well, but what can you 

use it for?



Reliability engineering (failure probabilities, …)

Queuing theory (waiting in line …)
- optimising supermarket waiting times 
- dimensioning of call centers 
- airport security lines 
- router queues on the internet

Cell division in biology (how long does it take?)

…





Message passing in optical links

m1 channels

type I  messages require 1 channel
type II messages require       channelsn2

We want to minimise the blocking probability of 
messages by finding an optimal policy
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type I  messages require 1 channel
type II messages require       channelsn2

m1 channels

We want to minimise the blocking probability of 
messages by finding an optimal policy





So how about 
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Lower transition operator

backward Kolmogorov differential equation
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The following limit always exists!

And often does not depend on    !x
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That’s enough! Too 
confusing! And time is 

running out…



Partially specified      and      are allowed

Time homogeneity can be dropped

The Markov assumption can be dropped

Advantages of imprecise (continuous-time) 
Markov chains over their precise counterpart

⇡0 Q

Efficient computations remain possible

…
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