Independent Natural Extension for Infinite Spaces

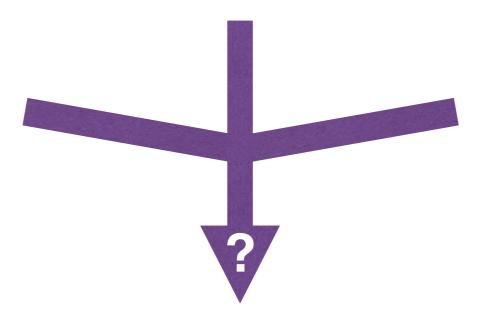
Williams-coherence to the Rescue!

Jasper De Bock

Ghent University Belgium

local uncertainty model

independent



joint uncertainty model

 X_2

local uncertainty model

$$P(X_1|X_2) = P(X_1)$$

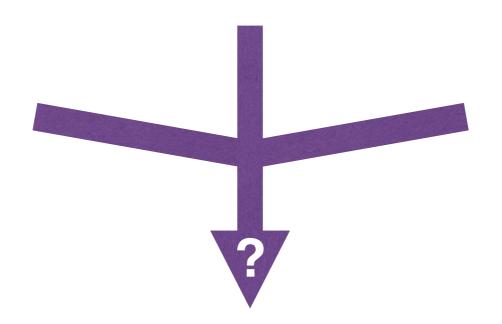
$$P(X_2|X_1) = P(X_2)$$

independent

 X_2

local uncertainty model

 $P(X_1)$



local uncertainty model

 $P(X_2)$

$$P(X_1, X_2)$$

$$P(X_1|X_2) = P(X_1)$$

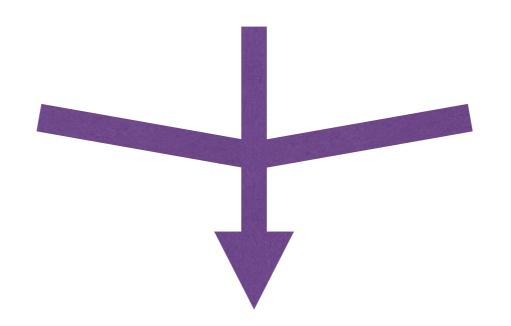
$$P(X_2|X_1) = P(X_2)$$

independent

 X_2

local uncertainty model

 $P(X_1)$



local uncertainty model

 $P(X_2)$

$$P(X_1, X_2) = P(X_1)P(X_2)$$

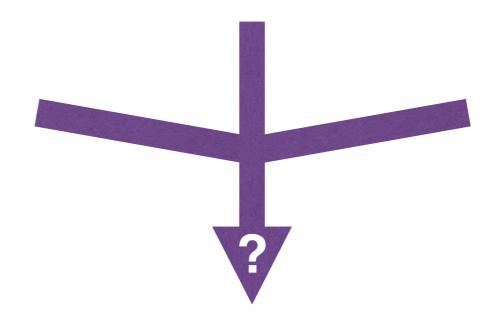
local uncertainty model

local uncertainty model

local uncertainty model

$$\underline{P}(f(X_1))$$

independent



 X_2

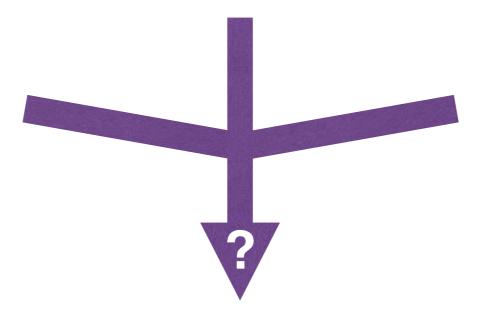
local uncertainty model

 $\underline{P}(f(X_2))$

$$\underline{P}(f(X_1,X_2))$$

local uncertainty model

$$\underline{P}(f(X_1))$$



 X_2

local uncertainty model

 $\underline{P}(f(X_2))$

$$\underline{P}(f(X_1,X_2))$$

$$X_1$$

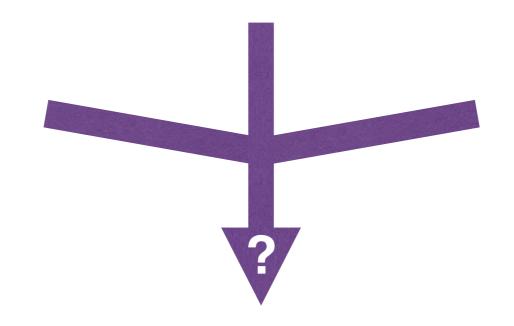
local uncertainty model

$$\underline{P}(f(X_1))$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent



X_2

local uncertainty model

 $\underline{P}(f(X_2))$

$$\underline{P}(f(X_1,X_2))$$

$$X_1$$

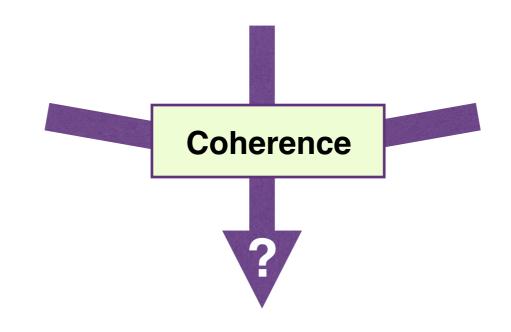
local uncertainty model

$$\underline{P}(f(X_1))$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent



X_2

local uncertainty model

$$\underline{P}(f(X_2))$$

$$\underline{P}(f(X_1,X_2))$$

$$X_1$$

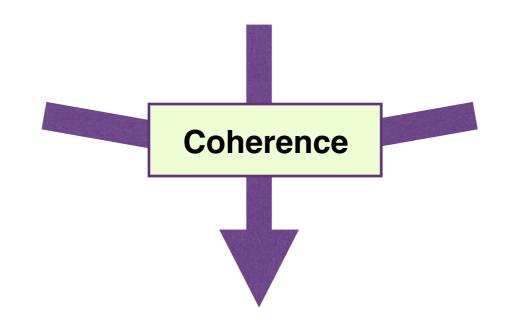
local uncertainty model

$$\frac{P(f(X_1))}{P_1(f)}$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent



joint uncertainty model

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1, X_2))$$

X_2

local uncertainty model

$$\frac{P(f(X_2))}{P_2(f)}$$

Independent Natural Extension for Infinite Spaces

Williams-coherence to the Rescue!

Jasper De Bock

Ghent University Belgium

Two very useful properties

External additivity

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1) + h(X_2)) = \underline{P}_1(f(X_1)) + \underline{P}_2(h(X_2))$$

Factorisation

$$(\underline{P}_1 \otimes \underline{P}_2)(g(X_1)h(X_2))$$

$$= \begin{cases} \underline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \ge 0\\ \overline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \le 0 \end{cases}$$

if $g \geq 0$

DISCLAIMER!

All of this is well known, and has been for several years now...

DISCLAIMER!

All of this is well known, and has been for several years now...

...but only for finite spaces!

Independent Natural Extension for Infinite Spaces

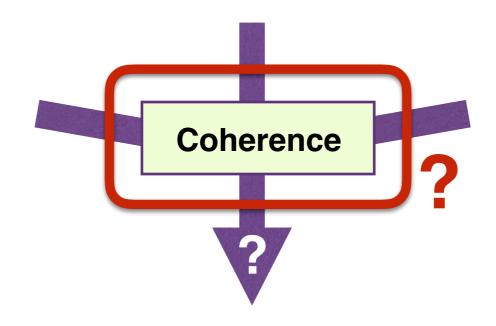
$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

local uncertainty model

$$\underline{P}(f(X_1))$$

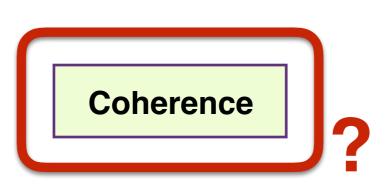
independent



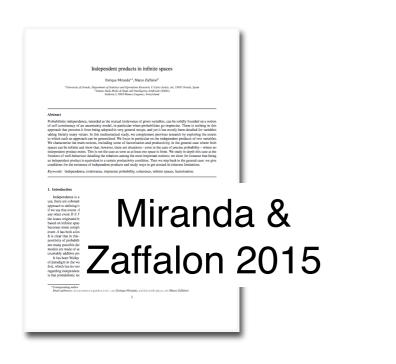
X_2

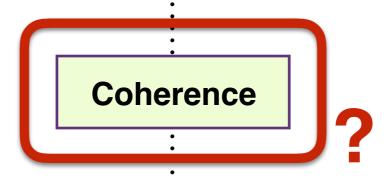
local uncertainty model

$$\underline{P}(f(X_2))$$



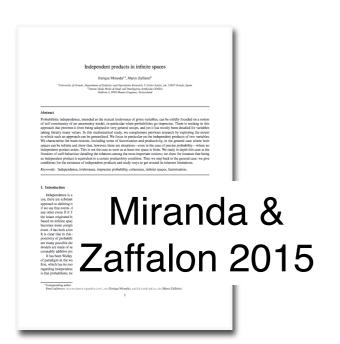
Independent natural extension may not exist!



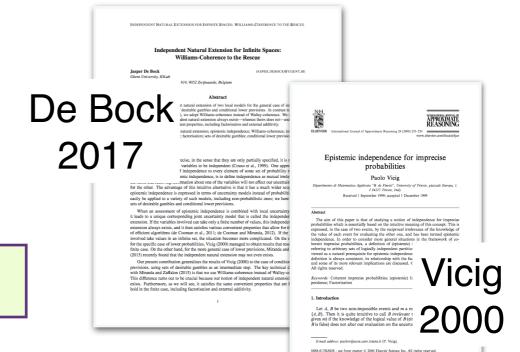


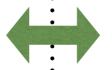
₩illiams

Independent natural extension may not exist!



Independent natural extension always exists!





Coherence

Independent Natural Extension for Infinite Spaces

Williams-coherence to the Rescue!

Two very useful properties

External additivity ?

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1) + h(X_2)) = \underline{P}_1(f(X_1)) + \underline{P}_2(h(X_2))$$

Factorisation?

$$(\underline{P}_1 \otimes \underline{P}_2)(g(X_1)h(X_2))$$

$$= \begin{cases} \underline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \ge 0\\ \overline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \le 0 \end{cases}$$

if $g \geq 0$

Two very useful properties

External additivity

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1) + h(X_2)) = \underline{P}_1(f(X_1)) + \underline{P}_2(h(X_2))$$

Factorisation?

$$(\underline{P}_1 \otimes \underline{P}_2)(g(X_1)h(X_2))$$

$$= \begin{cases} \underline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \ge 0\\ \overline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \le 0 \end{cases}$$

if $g \geq 0$

$$X_1$$

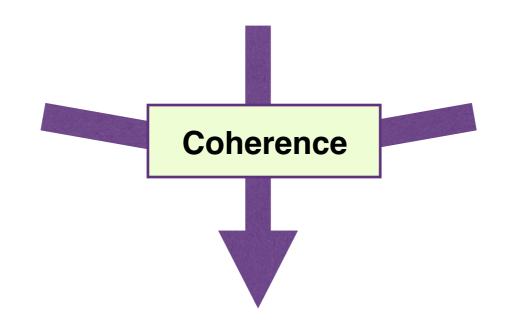
local uncertainty model

$$\frac{P(f(X_1))}{P_1(f)}$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent



joint uncertainty model

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1, X_2))$$

X_2

local uncertainty model

$$\underline{P}(f(X_2))$$

$$\underline{P}_2(f)$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent

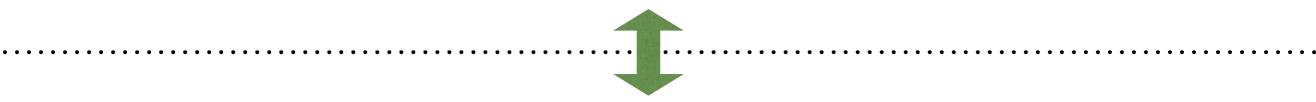
$$\underline{P}(f(X_1)|B_2) = \underline{P}(f(X_1)) \quad \forall B_2 \in \mathcal{B}_2$$

$$\underline{P}(f(X_2)|B_1) = \underline{P}(f(X_2)) \quad \forall B_1 \in \mathcal{B}_1$$

$$\underline{P}(f(X_1)|X_2) = \underline{P}(f(X_1))$$

$$\underline{P}(f(X_2)|X_1) = \underline{P}(f(X_2))$$

independent



$$\underline{P}(f(X_1)|B_2) = \underline{P}(f(X_1)) \quad \forall B_2 \in \mathcal{B}_2$$

$$\underline{P}(f(X_2)|B_1) = \underline{P}(f(X_2)) \quad \forall B_1 \in \mathcal{B}_1$$

value-independence: $\mathcal{B}_i = \{\{x_i\} : x_i \in \mathcal{X}_i\}$ subset-independence: $\mathcal{B}_i = \mathcal{P}(\mathcal{X}_i) \setminus \{\emptyset\}$

Two very useful properties

External additivity

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1) + h(X_2)) = \underline{P}_1(f(X_1)) + \underline{P}_2(h(X_2))$$

Factorisation?

$$(\underline{P}_1 \otimes \underline{P}_2)(g(X_1)h(X_2))$$

$$= \begin{cases} \underline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \ge 0\\ \overline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \le 0 \end{cases}$$

$$\text{if } q > 0$$

Two very useful properties

External additivity <

$$(\underline{P}_1 \otimes \underline{P}_2)(f(X_1) + h(X_2)) = \underline{P}_1(f(X_1)) + \underline{P}_2(h(X_2))$$

Factorisation

$$(\underline{P}_1 \otimes \underline{P}_2)(g(X_1)h(X_2))$$

$$= \begin{cases} \underline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \ge 0\\ \overline{P}_1(g(X_1))\underline{P}_2(h(X_2)) & \text{if } \underline{P}(h(X_2)) \le 0 \end{cases}$$

if $g \geq 0$ is \mathcal{B}_1 -measurable

Independent natural extension may not exist!

Independent natural extension always exists!

subsetindependence

Factorisation may not hold!

Factorisation always holds!

See you at the poster?

