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If you are not familiar with sets of desirable gambles, lower
previsions, Williams-coherence, epistemic independence or
independent natural extension, this poster may make little sense
at first. I will do my very best to compensate with enthusiasm! If
I fail, we can also simply go for a beer. In any case, the thought
bubbles below may serve as a nice discussion starter.

You said that
probabilities are a

special case. Yeah right...
how does that work?

All of this seems
very abstract.

Does it have any
practical use?

That’s weird!
Shouldn’t the right-hand
side be unconditional?

So why is
there no Bi

here?

What happens
if there are
more than

two variables?

A subject’s uncertainty about a variable X that takes
values x in a—possibly infinite—set X can be mod-
elled in various ways. We consider two very general
and closely connected frameworks, the latter of which
includes probabilities as a special case.

Sets of desirable gambles. The basic idea here is to
consider the subject’s attitude towards gambles on
X , which are bounded real-valued functions f on X

whose value f (x) represents the—possibly negative—
payoff for the outcome x. In particular, we consider the
gambles that she finds desirable, in the sense that
she prefers them over not betting at all. We gather all
these gambles in a so-called set of desirable gambles
D , which is a subset of the set G (X ) of all gambles.

Conditional lower previsions. Here too, the idea is
to model a subject’s uncertainty about X by considering
her attitude towards gambles on X . However, in this
case, instead of considering sets of gambles, we con-
sider the prices at which a subject is willing to buy
these gambles. Let C (X ) be the set of all pairs ( f ,B),
where f is a gamble on X and B is a non-empty subset
of X —an event. A conditional lower prevision P on
a domain C ⊆ C (X ) is then a map

P : C →R : ( f ,B)→ P( f |B),

where R := R∪{−∞,+∞}. For any ( f ,B) in C , the lower
prevision P( f |B) of f conditional on B is interpreted as
the subject’s supremum price µ for buying f , pro-
vided that the transaction is cancelled if B does not
happen. In other words, P( f |B) is the supremum value
of µ for which she is eager to engage in a transaction
where she receives f (x)−µ if x ∈ B and zero otherwise.
If B = X , we write P( f ) := P( f |X ) and call P( f ) the
lower prevision of f .

Their connection. These two uncertainty frameworks
are closely connected. In particular, because of their
interpretation in terms of buying prices for gambles, a
conditional lower previsions can easily be derived from
a set of gambles D . For every D ⊆ G (X ), the corre-
sponding conditional lower prevision PD is defined
by

PD( f |B) := sup{µ ∈R : [ f −µ ]IB ∈D}.

for every ( f ,B) ∈ C (X ).

Coherence. For an uncertainty model to represent
a rational subject’s beliefs, it needs to satisfy a set of
rationality criteria; if it does, it is called coherent. For
a set of desirable gambles D , coherence means that for
any gambles f ,g ∈ G (X ) and any real number λ > 0:

D1. if f ≥ 0 and f 6= 0, then f ∈D

D2. if f ∈D then λ f ∈D

D3. if f ,g ∈D , then f + g ∈D

D4. if f ≤ 0, then f /∈ D

A conditional lower prevision P on a domain C ⊆ C (X )

is then said to be coherent if there is a coherent set
of desirable gambles D on X such that P coincides
with PD on C . Equivalently, P is coherent if it satisfies
the structure-free notion of Williams-coherence that
was developed by Pelessoni and Vicig (2009).

Modelling Uncertainty

We say that X1 and X2 are independent
if our uncertainty model for X1 is not af-
fected by conditioning on information
about X2, and vice versa. This definition
can easily be applied to a probability mea-
sure, and then yields the usual notion of
independence. More generally, it can just
as easily be applied to lower previsions,
sets of desirable gambles, or any other
type of uncertainty model, and is then re-
ferred to as epistemic independence.

We consider a very general definition of
epistemic independence. In particular, for
every i ∈ {1,2}, we consider any set of
conditioning events Bi for the variable
Xi, that is, any subset of the set P /0(Xi) of
all non-empty subsets of Xi.

A coherent conditional lower prevision
P on C (X1×X2) is then called epistem-
ically independent if for any i and j such
that {i, j}= {1,2}:

P( fi|Bi∩B j) = P( fi|Bi)

for all ( fi,Bi) ∈ C (Xi) and B j ∈B j.

Similarly, a coherent set of desirable
gambles D on X1×X2 is epistemically
independent if for any i and j such that
{i, j}= {1,2} and for any B j ∈B j:

margi(DcB j) = margi(D),

in the sense that for all f ∈ G (Xi) :

f (Xi)IB j(X j) ∈D ⇔ f (Xi) ∈D ,

where IB j is the indicator of B j, defined
by IB j(x j) := 1 if x j ∈ B j and IB j(x j) := 0
otherwise.

Two special cases are particularly impor-
tant. If B1 = X1 and B2 = X2, we ob-
tain the special case of epistemic value-
independence, which is the most con-
ventional approach, and which is often
simply called epistemic independence. If
B1 = P /0(X1) and B2 = P /0(X2), we
obtain what we call epistemic subset-
independence. As we will see, the latter
has superior properties.

Modelling Independence

For all i ∈ {1,2}, let Di be a local coherent set of desir-
able gambles on Xi. The independent natural exten-
sion of D1 and D2 is then the smallest—most conservative—
epistemically independent coherent set of desirable gambles
on X1×X2 that extends them, meaning that

(∀i ∈ {1,2}) Di = margi(D) := { f ∈ G (Xi) : f (Xi) ∈D}.

For lower previsions, the local models P1 and P2 are co-
herent conditional lower previsions on C1 ⊆ C (X1) and
C2 ⊆ C (X2), respectively. The independent natural exten-
sion of P1 and P2 is then the smallest—most conservative—
epistemically independent coherent lower prevision on
C (X1×X2) that extends them, meaning that

(∀i ∈ {1,2}) Pi( fi|Bi) = P( fi|Bi) for all ( fi,Bi) ∈ Ci.

Existence. In both of our two frameworks, the independent
natural extension always exists; we denote it by D1⊗D2

and P1⊗P2, respectively. For lower previsions, this result cru-
cially depends on our use of Williams-coherence: for Walley-
coherence, as shown by Miranda and Zaffalon (2015) for
epistemic value-independence, this may no longer hold.

Properties. Let {i, j} = {1,2} and con-
sider any h∈G (X j) and f ,g∈G (Xi) such
that g≥ 0 is BBBiii-measurable—a technical
condition that coincides with the usual no-
tion when Bi∪{ /0} is a σ -field. Then if all
the terms are well-defined—if C1 and C2

are large enough—we have that

(P1⊗P2)( f + gh) = Pi
(

f + gP j(h)
)
.

As a direct consequence, we find that

(P1⊗P2)( f + h) = Pi( f )+P j(h).

and—with Pi(g) := −Pi(−g)—that

(P1⊗P2)(gh) = Pi
(
gP j(h)

)
=

{
Pi(g)P j(h) if P j(h) ≥ 0;

Pi(g)P j(h) if P j(h) ≤ 0,

known as external additivity and fac-
torisation, respectively. Crucially, for
epistemic subset-independence, Bi-
measurability is trivially satisfied, and fac-
torisation then always holds.
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