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For the second part of the proof, we start by considering the following
collection of gambles on Zk:

MI;JJ‘P(K) ::{H{ZPN(s)nKI}fS,ZpN(S) :s€K, zpy(s) € Z, PN(s)s
Zp(s)\Pe(s) = *P(s)\Px(s)s P(5)NK C K CK,
fS’ZPN(s) 7é O},

which is a finite subset of 2y J to = posi(&z{K i ) To see why, first no-

tice that because PNk(s) = PN(s ) NK due to Lemma 79(iii) g4, I[{ZPN(S)QKI} is
clearly the (finite) sum of all indicators ]I{yPNK o} such that ypy, (5) € Zpny(s)
and ypy(s)nk; = ZPN(s)nk;- BY definition of the posi operator, we are now
left to show that for any YPN(s) € %PNK(S) such that ypy s )ﬂKl = ZpN(s)nK;» W€
have Iy, o1fson) € 'dlgjrxp By construction of «%, . we know that

Zp(s)\Px(s) = XP(s)\Px(s)> and it therefore suffices to show that YPx(s) = ZPg(s)"
To see why this last equality holds, first notice that Px(s) = P(s) N K due to
Lemma 76;31. Also, P(s) NK C PN(s) NK; because P(s) NK C K; by con-

struction of &/ It and P(s) NK C PN(s) by definition of PN(s). Therefore,

we find that Pk (s ) g PN(s) N K, implying that yp, () = zp, (s is a direct con-
sequence of ypy(s)nk; = ZPN(s)NK; -
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Bayesian networks: variables

= Variables X, take values x; in

a finite non-empty set X,
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Bayesian networks: graphical structure
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Bayesian networks: graphical structure

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
Vs € G: P(s), D(s), N(s)
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Bayesian networks: local models

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

Local uncertainty models



Bayesian networks: local models

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

" Local uncertainty models:
mass functions Ps|zp

Example: Palay gy
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Bayesian networks: independence

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

" Local uncertainty models:
mass functions Ps|zp

" |[ndependence assumptions



Bayesian networks: independence

Variables X, take values x. in
a finite non-empty set X’

Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

Local uncertainty models:
mass functions Ps|zp

Independence assumptions:
Vs e G: I(N(s),s|P(s))
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Bayesian networks: basic setup

Variables X, take values x. in
a finite non-empty set X’

Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

Local uncertainty models:
mass functions Ps|zp

Independence assumptions:
Vs e G: I(N(s),s|P(s))




Bayesian networks: the global model
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Independence assumptions:
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Bayesian networks: the global model

P(Zs]Tp(s), TN(s)) T P(Ts|TP(s)) = Ps|ap., (Ts)

Local uncertainty models:
mass functions Ps|zp

Independence assumptions:
Vs e G: I(N(s),s|P(s))



Bayesian networks: the global model

P(Ts]Tp(s), TN(s)) = P(Ts|TP(s)) = Ps|ap., (Ts)
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Local uncertainty models:
mass functions Ps|zp

Independence assumptions:
Vs e G: I(N(s),s|P(s))
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Bayesian networks: inference
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Bayesian networks: examples

<D A real medical example
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A real example in
advertisement,
used to optimise an
individualise the
advertisments that
are shown on
websites



Bayesian networks: in a perfect world...

What if we don’t
know them exactly?

T

Local uncertainty models:
mass functions Ps|zp
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Bayesian networks: in a perfect world...

<D A real medical example
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Credal networks: credal sets

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

" Local uncertainty models:

credal sets ]:sJa:ms)
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Credal networks: independence?

= Variables X, take values x; in
a finite non-empty set X’

" Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

" Local uncertainty models:
credal sets ]:sJa:ms)

" |ndependence assumptions:
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Credal networks: complete independence

Variables X, take values x. in
a finite non-empty set X’

Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

Local uncertainty models:
credal sets Fszp ., 2 Ps|zpq

Independence assumptions:
Vs e G: I(N(s),s|P(s))




Credal networks: complete independence
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Credal networks: inference
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Credal networks: inference

Lower and
p(rs) = Z P(rs,Ta\s) upper bounds!
N p(zQuE)
QUE
o |TE) =
Decision making plrglve) p(TE)

Multiple
decisions!



Credal networks: inference

<D A real medical example

MODERATE HIGH SERU CI-DLESTERQ
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Credal networks: in a perfect world...

Are you sure they Maybe they are almost
are completely independent?
independent?

What does
‘almost’
mean?

Independence assumptions:
Vs e G: I(N(s),s|P(s))
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Credal networks: epistemic irrelevance

Variables X, take values x. in
a finite non-empty set X’

Graphical structure: DAG
=>Vs € G: P(s),D(s), N(s)

Local uncertainty models:

credal sets ]:sJa:ms)

Epistemic irrelevance:

Vs € G: IR(N(s),s|P(s)) @



Credal networks: epistemic irrelevance
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Epistemic irrelevance:
Vs € G: IR(N(s),s|P(s))




Credal networks: epistemic irrelevance
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Credal networks: epistemic irrelevance

FSJfBP(s)a$N(s) — Y slzp(s
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Almost independence!



Credal networks: the global model?

FSJxP(s)axN(s) o SJCUP(S)
Ny Ny

P(Ts]Tps), Tn(s)) % P(Ts]Tp(s))




The irrelevant natural extension

Fs
Ny

lxps)y,TN(s) —

SJxP(s)
W

P(Ts]Tp(s), TN(s)) X P(Ts]Tp(s))

the set of all global probability
mass functions that are compatible
with our assessments




The irrelevant natural extension: inference?

Lower and
? p(rs) = Z p(zs,TG\s) upper bounds!

TG\ S
P(mQUE)

Decision making

Multiple ?

decisions!

the set of all global probability
mass functions that are compatible
with our assessments
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The global model can be described in terms of

linear constraints I Inference can be performed

(Cozman, 2000) using linear programming
techniques
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linear constraints I Inference can be performed

(Cozman, 2000) using linear programming
techniques

= Without a positivity assumption!

= Equally simple representations in terms
of three other frameworks!



The irrelevant natural extension

The global model can be described in terms of

linear constraints I Inference can be performed

(Cozman, 2000) using linear programming
techniques

= Without a positivity assumption!

= Equally simple representations in terms
of three other frameworks!

# constraints is exponential in the size of the network!
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The irrelevant natural extension

Theoretical properties

= Connections with marginal
and independent natural
extension

= Marginalisation properties

= AD-separation implies
epistemic irrelevance

6

THEORETICAL PROPERTIES

“One cannot really argue with a mathematical theorem.”

Stephen Hawking

Some of the results in the previous chapier already illustrate that the prop-
erties of the irrelevant natural extension are not limited to the ones that are
needed andfor used to define it; see for example Proposition 39;:; and Corol-
Iaries 40y, and 44;,,. However, so far, we have merely scratched the surface
of what can be done. As we are about to show, the irrelevant natral exteasion
satisfies numerous other, and often surprisingly strong, theoretical propertics.

Our main technical achicvement is a separating hyperplane result. As
we will see, it can be used to establish various connections between the ir-
relevant natural extension of a network and those of its subnetworks, includ-
ing marginalisation, factorisation and external additivity properties. Another
imporuant consequence is an analogon of the classical result for Bayesian
networks that d-separation implies independence. In our case. the symmet-
ic notion of d-separation is replaced by an asymmetric version, called AD-
separation, and epistemic irrelevance takes the place of independence. We also
establish connections between the irrelevant natural exension and the notions
of marginal extension and independent natural extension and discuss some
propertics of the updated models that result from applying regular exteasion
to the irrelevant natural extension.

125




The irrelevant natural extension

Inference algorithms

" FO r rec u rS ive |y L ”
decomposable networks,
inference is very efficient!

ol s
o SO o

For trees: (Cooman et al., 2010)

= Non-decomposable networks
can also be dealt with (on a case by case basis)

= Complex types of inference are possible!



For the second part of the proof, we start by considering the following
collection of gambles on Zk:

JyI;JxP(K) :Z{H{pr(s)nxl}fs’zpw(s) 15 €K, zpn(s) € Zpn(s)s
Zp(s)\Px(s) = *P(s)\Px(s)> P(s)NK S Ki CK,

fS‘,ZpN(S) # 0})

: : : irT —— : irT _
which is a finite subset of Zy [P posi (27 J xp(K))' To see why, first no
tice that because PNk (s) = PN(s) NK due to Lemma 79(iii); g4, ]I{ZPN(S)QKI} is

clearly the (finite) sum of all indicators H{yPNK 0} such that ypy, (5) € Zpng(s)

and ypy(s)nk, = ZPN(s)nk,- BY definition of the posi operator, we are now

left to show that for any YPNk(s) € ZpNg(s) such that ypyonk, = Zpn(s)nk,» We
irr - *

have ]I{yPNK 0} fs,zPN(s) € Ay i By construction of o7 Jxpry? Ve know that

Zp(s)\Pg(s) = XP(s)\Px(s)> and it therefore suffices to show that yp, () = zp(s)-
To see why this last equality holds, first notice that Px(s) = P(s) N K due to
Lemma 7618;. Also, P(s) NK C PN(s) NK; because P(s) N K C K by con-

struction of I;pr(x) and P(s) NK C PN(s) by definition of PN(s). Therefore,

we find that Px(s) C PN(s) N Ky, implying that yp (5) = zp,(s) 18 a direct con-
sequence of ypy(s)nk, = ZPN(s)NK; -
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An application: correcting OCR errors
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An application: correcting OCR errors

D1 P2, P3| xs

Bayesian

network H H

p4J331 p5JZB2 p6JLU3



An application: correcting OCR errors

Credal

= ‘ ‘FSJCBQ
network H H H
F4J:1:1 FGJ x3




An application: correcting OCR errors

- La Divina Commedia
Data is scarce (or expensive)

| ' Obtaining accurate

probabilities is unrealistic




An application: correcting OCR errors

original ‘ Solution Bayesian network ‘
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An application: correcting OCR errors

original ‘ Solution Bayesian network ‘

CON CON
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An application: correcting OCR errors

original

CHE

incorrectly read

digital

CNE

Solution Bayesian network

ONE

Solution(s) credal network

CBE CHE
CNE CZE
ONE




An application: correcting OCR errors

original Solution Bayesian network

EH EN

Solution(s) credal network

correctly read
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digital EH




An application: correcting OCR errors

TOTAL OCR correct OCR wrong
TOTAL 200 (100%) 137 (68.5%) 63 (31.5%)
Credal network
Includes correct answer 172 (86%) 137 35
Only wrong answers 28 (14%) 0 28
Bayesian network
Correct answer 157 (78.5%) 132 25
Wrong answer 43 (21.5%) 5 38

OCR
—_—

Bayesian or credal networks



An application: correcting OCR errors

Words for which the credal network suggests multiple answers

TOTAL

Credal network
Includes correct answer
Only wrong answers

Bayesian network
Correct answer
Wrong answer

TOTAL
45 (100%)

38 (84.4%)
7 (15.6%)

23 (51.1%)
22 (48.9%)

OCR correct
8 (17.8%)

o0

OCR wrong
37 (82.2%)

30
7

20
17
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