Convergence of Continuous-Time Imprecise Markov Chains

Jasper De Bock Jasper.DeBock@UGent.be SYSTeMS, Ghent University

Lower transition (rate) operators

Let \mathscr{X} be some finite set. A map $Q: \mathbb{R}^{\mathscr{X}} \to \mathbb{R}^{\mathscr{X}}$ is a lower transition rate operator if

LR1. $Q(\mu) = 0$ for all constant $\mu \in \mathbb{R}^{\mathscr{X}}$ **LR2.** $\underline{Q}(f+g) \ge \underline{Q}(f) + \underline{Q}(g)$ for all $f, g \in \mathbb{R}^{\mathscr{X}}$

The following conditions are necessary and sufficient:

Q is Perron-Frobenius-like

There is a unique lower expectation operator \underline{E}_{∞} on $\mathbb{R}^{\mathscr{X}}$ such that, for all $x \in \mathscr{X}$:

 $\lim_{t \to +\infty} \underline{T}_t f(x) = \underline{E}_{\infty} f \text{ for all } f \in \mathbb{R}^{\mathscr{X}},$

or, equivalently, such that for any initial lower expectation operator \underline{E}_0 , $\underline{E}_t := \underline{E}_0(\underline{E}_t(\cdot|X_0)) = \underline{E}_0\underline{T}_t$ converges to the stationary distribution \underline{E}_{∞} .

- **LR3.** $Q(\lambda f) = \lambda Q(f)$ for all $f \in \mathbb{R}^{\mathscr{X}}$ and $\lambda \ge 0$
- **LR4.** $Q(\mathbb{I}_y)(x) \ge 0$ for all $x, y \in \mathscr{X}$ such that $x \ne y$
- A map $\underline{T}: \mathbb{R}^{\mathscr{X}} \to \mathbb{R}^{\mathscr{X}}$ is a lower transition operator if
 - **L1.** $\underline{T}(f) \ge \min f$ for all $f \in \mathbb{R}^{\mathscr{X}}$
 - **L2.** $\underline{T}(f+g) \geq \underline{T}(f) + \underline{T}(g)$ for all $f, g \in \mathbb{R}^{\mathscr{X}}$
 - **L3.** $\underline{T}(\lambda f) = \lambda \underline{T}(f)$ for all $f \in \mathbb{R}^{\mathscr{X}}$ and $\lambda \geq 0$

These two notions are connected: every lower transition rate operator *Q* has corresponding lower transition operators \underline{T}_t , $t \geq 0$, as defined for all $f \in \mathbb{R}^{\mathscr{X}}$ by

 $\underline{T}_0 f = f \text{ and } (\forall t \ge 0) \frac{d}{dt} \underline{T}_t f = \underline{Q}(\underline{T}_t f)$

The conjugate upper transition (rate) operators \overline{T}_t , $t \ge 0$, and \overline{Q} are defined by $\overline{T}_t(f) := -\underline{T}_t(-f)$ and $\overline{Q}(f) \coloneqq -Q(-f)$ for all $f \in \mathbb{R}^{\mathscr{X}}$.

Continuous-Time Imprecise MCs

Definition A continuous-time imprecise Markov chain is a continuous-time Markov chain with state space \mathscr{X} of which the transition rate matrix Q_t is an unspecified function of time that takes values in some closed, convex, bounded set of transition rate matrices \mathcal{Q} that has separately specified rows, meaning that

U 0 pla E 0

 $Q \in \mathscr{Q} \Leftrightarrow (\forall x \in \mathscr{X}) \ Q(x, \cdot) \in \mathscr{Q}_x$

where, for all $x \in \mathscr{X}$, \mathscr{Q}_x is a set of row vectors.

Bounds on expectations For all $f \in \mathbb{R}^{\mathscr{X}}$ and $x \in \mathscr{X}$, the expected value $E_t(f|X_0 = x)$ of f at time t, conditional on $X_0 = x$, takes values in a closed interval with lower bound $\underline{T}_t(f)(x)$ and upper bound $\overline{T}_t(f)(x)$ (Skulj 2015), where \underline{T}_t is the lower transition operator that corresponds to the lower transition rate operator Q, with Q(h) defined for all $h \in \mathbb{R}^{\mathscr{X}}$ by

 $\underline{Q}(h)(x) \coloneqq \min_{Q \in \mathscr{Q}} \sum_{y \in \mathscr{X}} Q(x, y) h(y) \text{ for all } x \in \mathscr{X}.$

Lower and Upper Reachability

For any $x \in \mathscr{X}$ and $y \in \mathscr{X}$, we say that x is **upper reach**able from y and write $y \xrightarrow{up} x$ if there is some sequence $y = x_0, ..., x_n = x$ such that, for all $k \in \{1, ..., n\}$:

the **t0** come vou've Then infinity at happens what MO **K**

t0

Want

 \underline{E}_0

\underline{T}_t is regularly absorbing

$$\mathscr{R} := \{ x \in \mathscr{X} : (\exists n \in \mathbb{N}) \ \min \overline{T}_t^n \mathbb{I}_x > 0 \} \neq \emptyset$$

 $(\forall x \in \mathscr{X} \setminus \mathscr{R}) (\exists n \in \mathbb{N}) \ \underline{T}_t^n \mathbb{I}_{\mathscr{R}}(x) > 0$

 \underline{T}_t is 1-step absorbing

 $\mathscr{R} := \{ x \in \mathscr{X} : \min \overline{T}_t \mathbb{I}_x > 0 \} \neq \emptyset$

 $(\forall x \in \mathscr{X} \setminus \mathscr{R}) \ \underline{T}_t \mathbb{I}_{\mathscr{R}}(x) > 0$

$x_k \neq x_{k-1}$ and $\overline{Q}(\mathbb{I}_{x_k})(x_{k-1}) > 0$.

For any $x \in \mathscr{X}$ and $A \subseteq \mathscr{X}$, we say that A is lower **reachable** from x and write $x \xrightarrow{\text{low}} A$ if $x \in A_n$, where A_k , $k \in \mathbb{N}_0$, is the nested sequence defined by $A_0 := A$ and

 $A_{k+1} \coloneqq A_k \cup \{y \in \mathscr{X} \setminus A_k \colon Q(\mathbb{I}_{A_k})(y) > 0\}$ for all $k \in \mathbb{N}$,

and where *n* is the first index such that $A_n = A_{n+1}$.

Q is regularly absorbing $\mathscr{R} := \{ x \in \mathscr{X} : (\forall y \in \mathscr{X}) \ y \xrightarrow{up} x \} \neq \emptyset$ $(\forall x \in \mathscr{X} \setminus \mathscr{R}) \ x \xrightarrow{\text{low}} \mathscr{R}$