Convergence of Continuous-Time Imprecise Markov Chains

Jasper De Bock Ghent University, SYSTeMS Research Group jasper.debock@ugent.be

We provide necessary and sufficient conditions for the unique convergence of a continuous-time imprecise Markov chain to a stationary distribution.

Problem Statement Consider the set of all the continuous-time non-stationary Markov chains with finite state space \mathcal{X} of which the transition rate matrix Q_t is a function of time such that $Q_t \in \mathcal{Q}$, where \mathcal{Q} is a closed convex set of transition rate matrices that has *separately specified rows*, meaning that

$$Q \in \mathcal{Q} \Leftrightarrow (\forall x \in \mathcal{X}) \ Q(x, *) \in \mathcal{Q}_x$$

where, for all $x \in \mathcal{X}$, \mathcal{Q}_x is a closed convex set of row vectors. We call such a set of Markov chains a *continuous-time imprecise Markov chain*.

Fix any t > 0. Then for all $f \in \mathbb{R}^{\mathcal{X}}$ and $x \in \mathcal{X}$, the expected value $E_t(f|X_0 = x)$ of f at time t, conditional on $X_0 = x$, ranges over a closed interval of which we will denote the lower bound by $\underline{T}_t(f|x)$. For all $x \in \mathcal{X}$, $\underline{T}_t(\cdot|x)$ is a *coherent lower prevision* on $\mathbb{R}^{\mathcal{X}}$. The corresponding *lower transition operator* $\underline{T}_t : \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ is defined by

$$\underline{T}_t f(x) \coloneqq \underline{T}_t(f|x) \text{ for all } x \in \mathcal{X}.$$

By a recent result of Škulj [1], $\underline{f}_t\coloneqq \underline{T}_t f$ is the solution to the differential equation

$$\frac{d}{dt}\underline{f}_t = \underline{Q}\,\underline{f}_t$$

with initial condition $\underline{f}_0 = f$, where for all $h \in \mathbb{R}^{\mathcal{X}}$:

$$\underline{Q}h(x) \coloneqq \min_{Q \in \mathcal{Q}} \sum_{y \in \mathcal{X}} Q(x, y)h(y) \text{ for all } x \in \mathcal{X}.$$

We study the limit behaviour of \underline{T}_t . In particular, we provide necessary and sufficient conditions for \mathcal{Q} to be *Perron-Frobenius-like (PF)*, meaning that there is some $\underline{P}_{\infty} : \mathbb{R}^{\mathcal{X}} \to \mathbb{R}$ such that, for all $x \in \mathcal{X}$:

$$\lim_{t \to +\infty} \underline{T}_t f(x) = \underline{P}_{\infty} f \text{ for all } f \in \mathbb{R}^{\mathcal{X}},$$

or, equivalently, for $\underline{T}_t(\cdot|x)$ to converge to a stationary distribution \underline{P}_{∞} that does not depend on x.

Results Our main result is that the following four conditions are equivalent:

- 1. Q is PF,
- 2. \underline{T}_t is PF for some t > 0,
- 3. \underline{T}_t is PF for all t > 0,
- 4. Q is regularly absorbing,

where (i) for any t > 0, we say that \underline{T}_t is PF if the discrete-time imprecise Markov chain that has \underline{T}_t as its lower transition operator is PF, in the sense that, for all $f \in \mathbb{R}^{\mathcal{X}}$, $\lim_{n\to\infty} \underline{T}_t^n f$ exists and is constant and (ii) 'regularly absorbing' is a qualitative property of \mathcal{Q} that is fully determined by the signs of the upper transition rates to singletons $\overline{Q}(x,y) \coloneqq \max_{Q \in \mathcal{Q}} Q(x,y)$ and the lower transition rates to sets $\underline{Q}(x,A) \coloneqq \min_{Q \in \mathcal{Q}} \sum_{y \in A} Q(x,y)$, for $x, y \in \mathcal{X}, x \neq \overline{y}$ and $A \subset \mathcal{X} \setminus \{x\}$. See the poster for more details.

As future work, we would like to develop *coefficients of ergodicity* that characterise whether Q is PF and that provide—tight—bounds on the rate of convergence. So far, we have found a coefficient of ergodicity whose positivity is sufficient—but not necessary—for Q to be PF and which, in that case, provides a conservative bound on the rate of convergence.

Acknowledgements Many thanks to Gert de Cooman, Matthias C. M. Troffaes and Stavros Lopatatzidis for stimulating discussions on the topic of continuous-time imprecise Markov chains.

Keywords. Perron-Frobenius, continuous-time imprecise Markov chains, convergence, lower and upper transition rates, coefficients of ergodicity.

References

 Damjan Škulj. Efficient computation of the bounds of continuous time imprecise Markov chains. Applied Mathematics and Computation, 250:165–180, 2015.