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We present a new approach to credal networks, which are graphical models that generalise 
Bayesian networks to deal with imprecise probabilities. Instead of applying the commonly 
used notion of strong independence, we replace it by the weaker, asymmetrical notion 
of epistemic irrelevance. We show how assessments of epistemic irrelevance allow us to 
construct a global model out of given local uncertainty models, leading to an intuitive 
expression for the so-called irrelevant natural extension of a credal network. In contrast 
with Cozman [4], who introduced this notion in terms of credal sets, our main results are 
presented using the language of sets of desirable gambles. This has allowed us to derive 
some remarkable properties of the irrelevant natural extension, including marginalisation 
properties and a tight connection with the notion of independent natural extension. Our 
perhaps most important result is that the irrelevant natural extension satisfies a collection 
of epistemic irrelevancies that is induced by AD-separation, an asymmetrical adaptation of 
d-separation. Both AD-separation and the induced collection of irrelevancies are shown to 
satisfy all graphoid properties except symmetry.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Bayesian network [26] is a probabilistic graphical model [20] that is popular in fields such as statistics, machine learning 
and artificial intelligence. It identifies the nodes of a Directed Acyclic Graph (DAG) with random variables and interprets 
the graphical structure of the DAG as an assessment of the independencies amongst these variables; nodes that are not 
connected represent variables that are conditionally independent of each other. By exploiting these independencies, a global 
uncertainty model can be constructed easily out of local ones, allowing for a compact representation of the model. Efficient 
algorithms have been developed for performing inferences in such Bayesian networks, leading to their successful application 
in a multitude of real-life problems [20,28].

Despite their success, Bayesian networks have an important limitation: the construction of a Bayesian network requires 
the exact specification of a conditional probability distribution for all variables in the network. In case of limited data or dis-
agreeing and/or partial expert opinions, this requirement is clearly unrealistic and renders the resulting model arbitrary; see 
Ref. [37, Section 1.1.4] for numerous other arguments against this ‘precision requirement’. In order to avoid those problems, 
one can use the theory of credal networks, which, simply put, are Bayesian networks that allow for imprecisely specified local 
models. Initially, these were taken to be credal sets [21] (closed and convex sets of probability distributions), which explains 
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the terminology. However, as the theory progressed, other imprecise-probabilistic models such as lower previsions [24,37]
and sets of desirable gambles entered the field as well [9–11,14,23].

In the present paper, we use the very general theory of sets of desirable gambles [3,17,38]. The key idea of this theory 
is that a subject’s beliefs about the unknown outcome of an experiment can be modelled by means of the bets on this 
outcome—referred to as gambles—that he is willing to accept. Although sets of desirable gambles are not as well known as 
other (imprecise) probability models, they have definite advantages. To begin with, they are more expressive than most—if 
not all—other imprecise-probabilistic models, including the theories of credal sets and coherent lower previsions [32,37,
38,42]: every set of desirable gambles has an associated lower prevision and credal set, but—in general—the original set 
of desirable gambles cannot be recovered from these derived models. A particularly interesting consequence of this added 
expressiveness is that conditioning on events with (lower or upper) probability zero becomes non-problematic [3,16,30]. 
Secondly, sets of desirable gambles are strongly connected to classical propositional logic [13,16,41], thereby providing a 
unified language for both logic and probability. Thirdly, they have the advantage of being operational, meaning that there is 
a practical way of constructing a model that represents a subject’s beliefs [31,37].1 And finally, our experience tells us that 
it is usually easier to construct proofs in the geometrically flavoured language of coherent sets of desirable gambles than in 
other, perhaps more familiar frameworks.

Three main kinds of credal networks can be distinguished, the difference between them being the notion of indepen-
dence they adopt: strong independence, epistemic independence or epistemic irrelevance; see Cozman’s pioneering work [4]
for an overview. In a precise-probabilistic context, all these approaches coincide and reduce to a Bayesian network. Credal 
networks under strong independence are by far the most popular ones; see Refs. [2,6,27] for some nice overviews, con-
taining numerous references to both theoretical results, algorithms and applications. In contrast, credal networks under 
epistemic independence have received almost no attention [4,12], a situation which is likely to persist due to their compu-
tational intractability. The current paper deals with the remaining option: credal networks under epistemic irrelevance. Let 
us start by stating some of their advantages.

(i) If the topology of the network is a tree, there is a polynomial-time updating algorithm that can compute posterior beliefs 
about a single target variable conditional on the observation of others [14]. We believe this to be promising, especially 
since the same inference problem is NP-hard for credal trees under strong independence [22]. Other promising algo-
rithmic developments have also been made for the special case of imprecise hidden Markov models under epistemic 
irrelevance [1,9].

(ii) Epistemic irrelevance has a very intuitive definition: Y is irrelevant to X if knowing the value of Y does not change your 
beliefs about X ; this is especially compelling if local models are elicited from expert knowledge. More technically, and 
in contrast with strong independence, it can also be given a direct behavioural interpretation [37].

(iii) Unlike the other two notions of independence, epistemic irrelevance is an asymmetrical concept. Since the graphical 
structure that underlies a credal network—a Directed Acyclic Graph—is asymmetrical in nature as well, they are partic-
ularly well suited to be combined with one another, both from a mathematical and a philosophical point of view.

(iv) Credal networks under epistemic irrelevance are based on assessments that are less committal. Therefore, they provide 
conservative outer approximations for the other two approaches.

Despite these advantages, credal networks under epistemic irrelevance have received relatively little attention so far; to 
our knowledge, Refs. [1,4,9–12,14,22,23] are the main contributions to the field. One of the main persisting problems is 
that—except for networks that are sufficiently small or have a tree topology—no efficient, exact or even approximate infer-
ence algorithm is known. We believe that this is to a great extent due to a profound lack of known theoretical properties. 
In the present paper, we start to remedy this situation by providing a firm theoretical foundation for credal networks under 
epistemic irrelevance.

We begin in Section 2 by providing a short introduction to the theory of sets of desirable gambles. We then go on to 
introduce and discuss important concepts such as directed acyclic graphs and epistemic irrelevance in Section 3, and use 
these in Section 4 to show how assessments of epistemic irrelevance can be combined with given local sets of desirable 
gambles to construct a joint model for a credal network under epistemic irrelevance. We call this the irrelevant natural 
extension of the credal network and prove that it is the most conservative coherent model that extends the local models and 
expresses all conditional irrelevancies encoded in the network. In the remainder of the paper, we develop some remarkable 
properties of this irrelevant natural extension. Section 5 presents what we consider to be our main technical achievement: 
a very general factorisation result and a closely related marginalisation property. In Section 6, we develop a tight connection 
with the independent natural extension [15,16] and show that it corresponds to a special case of the irrelevant natural 
extension. Our perhaps most important result is presented in Section 7: the irrelevant natural extension satisfies separation 
properties similar to the ones that are induced by d-separation in Bayesian networks. We introduce an asymmetrical version 
of d-separation, called AD-separation, and show that it implies epistemic irrelevance. Furthermore, since AD-separation is 
shown to satisfy all asymmetric graphoid properties (all graphoid properties except symmetry), the induced set of epistemic 
irrelevancies does so as well. We conclude the paper in Section 8, comment on how to translate our results to the framework 

1 This can be done, for example, by offering the subject certain gambles and asking him whether or not he strictly prefers them to the status quo.
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of coherent lower previsions, discuss some algorithmic applications and present future avenues of research. In order to make 
our main argumentation as readable as possible, all technical proofs are collected in Appendix A.

We should note that some of our results have already been published in an earlier conference version of this paper [10]. 
The current version gives a more detailed exposition of these results, provides them with proofs—which were omitted in 
the conference version—, and extends them; notable examples of additional results are the connections with independent 
natural extension, presented in Section 6.

2. Sets of desirable gambles

Consider a variable X taking values in some non-empty finite set X . Beliefs about the possible values this variable 
may assume can be modelled in various ways: probability mass functions, credal sets and coherent lower previsions are 
only a few of the many options. We choose to adopt a different approach: sets of desirable gambles. We will model a 
subject’s beliefs regarding the value of a variable X by means of his behaviour: which gambles (or bets) on the unknown 
value of X does our subject strictly prefer to the status quo (the zero gamble). We give a brief survey of the basics of 
sets of desirable gambles; see Refs. [3,17,30–32,37,38,42] for more details, further discussion and connections with other 
imprecise-probabilistic models.

2.1. Desirable gambles

A gamble f is a real-valued map on X that is interpreted as an uncertain reward. If the value of the variable X turns 
out to be x, the (possibly negative) reward is f (x). A non-zero gamble is called desirable to a subject if he strictly prefers to 
zero the transaction in which (i) the actual value x of the variable is determined, and (ii) he receives the reward f (x). The 
zero gamble is therefore not considered to be desirable.

We model a subject’s beliefs regarding the possible values X that a variable X can assume by means of a set D of 
desirable gambles—some subset of the set G(X ) of all gambles on X . For any two gambles f and g in G(X ), we say that 
f ≥ g if f (x) ≥ g(x) for all x in X and f > g if both f ≥ g and f �= g . We use G(X )>0 to denote the set of all gambles 
f ∈ G(X ) for which f > 0 and G(X )≤0 to denote the set of all gambles f ∈ G(X ) for which f ≤ 0. As a special kind of 
gambles we consider indicators IA of events A ⊆ X . IA is equal to 1 if the event A occurs—the variable X assumes a value 
in A—and zero otherwise.

2.2. Coherence

In order to represent a rational subject’s beliefs about the values a variable can assume, a set D ⊆ G(X ) of desirable 
gambles should satisfy some rationality requirements. If these requirements are met, we call the set D coherent. We require 
that for all f , f1, f2 ∈ G(X ) and all real λ > 0:

D1. if f ≤ 0 then f /∈D; [avoiding null gain]
D2. if f > 0 then f ∈D; [desiring partial gain]
D3. if f ∈D then λ f ∈D; [scaling]
D4. if f1, f2 ∈D then f1 + f2 ∈D. [combination]

Requirements D3 and D4 turn D into a convex cone: posi(D) = D, where we use the positive hull operator ‘posi’ that 
generates the set of finite strictly positive linear combinations of elements of its argument set:

posi(D) :=
{

n∑
k=1

λk fk: fk ∈ D, λk ∈R
+
0 ,n ∈N0

}
.

Here R+
0 is the set of all (strictly) positive real numbers, and N0 the set of all natural numbers (zero not included).

2.3. Natural extension

In practice, a set of desirable gambles is often elicited by presenting an expert a number of gambles and asking him 
whether or not he finds them desirable, resulting in an assessment of desirable gambles A ⊆ G(X ). However, such an 
assessment is not guaranteed to be coherent. Hence, the question arises whether A can be extended to—included in—a co-
herent set D. It turns out that this is easily done; by applying D2–D4, we can use A to infer the desirability of other 
gambles. The largest set of desirable gambles that can be constructed in this way is

E(A) := posi
(
A∪ G(X )>0

)
.

Since E(A) trivially satisfies D2–D4, we see that E(A) is coherent if and only if it avoids null gain [D1]. Furthermore, if 
E(A) is coherent, then it is the smallest—most conservative—coherent set of desirable gambles that contains A and it is 
then also equal to the intersection of all the coherent supersets of A [17]; in that case, we call E(A) the natural extension
of A.
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Fig. 1. Example of a directed acyclic graph (DAG). The sub-DAG that is associated with K is depicted in boldface.

3. Credal networks under epistemic irrelevance

In order to develop our results, we need to introduce some elementary, but nevertheless essential concepts. We start with 
important terminology related to Directed Acyclic Graphs (DAGs). Next, we show how we can use sets of desirable gambles 
to model our beliefs about the variables that are associated with such a DAG and how to express epistemic irrelevance in 
this language. Finally, we introduce local uncertainty models and explain our interpretation of the DAG that is associated 
with a credal network.

3.1. Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is well known for its use in Bayesian networks. It consists of a 
finite set of nodes (vertices), joined into a network by a set of directed edges, each edge connecting one node with another. 
Since this directed graph is assumed to be acyclic, it is not possible to follow a sequence of edges from node to node and 
end up at the same node one started out from.

We will call G the set of nodes s associated with a given DAG. For two nodes s and t , if there is a directed edge from s
to t , we denote this as s → t and say that s is a parent of t and t is a child of s. For any node s, its set of parents is denoted 
by P (s) and its set of children by C (s). If a node s has no parents, that is, P (s) = ∅, then we call s a root node. If C (s) = ∅, 
then we call s a leaf, or terminal node.

Two nodes s and t are said to have a path between them if one can start from s, follow the edges of the DAG regardless 
of their direction and end up in t . In other words: one can find a sequence of nodes s = s1, . . . , sn = t , n ≥ 1, such that for 
all i ∈ {1, . . . , n − 1} either si → si+1 or si ← si+1. If this sequence is such that si → si+1 for all i ∈ {1, . . . , n − 1} (all edges 
in the path point away from s), we say that there is a directed path from s to t and write s � t . In that case we also say 
that s precedes t . If s � t and s �= t , we say that s strictly precedes t and write s � t . For any node s, we denote its set of 
descendants by D(s) := {t ∈ G: s � t} and its set of non-parent non-descendants by N(s) := G \ (P (s) ∪ {s} ∪ D(s)). We also use 
the shorthand notation P N(s) := P (s) ∪ N(s) = G \ ({s} ∪ D(s)) to refer to the so-called non-descendants of s.

Example 1. Consider the DAG in Fig. 1. For the node s7 ∈ G , we find that P (s7) = {s4, s5}, D(s7) = {s9, s10} and N(s7) =
{s1, s2, s3, s6, s8}.

We extend these notions to subsets of G in the following way. For any K ⊆ G , P (K ) := (
⋃

s∈K P (s)) \ K is its set of 
parents and D(K ) := (

⋃
s∈K D(s)) \ K is its set of descendants. The non-parent non-descendants of K are given by2 N(K ) :=

G \ (P (K ) ∪ K ∪ D(K )) = ⋂
s∈K N(s) and we also define P N(K ) := P (K ) ∪ N(K ). In general, this last set cannot be referred 

to as the non-descendants of K since P (K ) and D(K ) are not necessarily disjoint. We call those subsets of G for which they 
are disjoint closed: a set K ⊆ G is closed if for all s, t ∈ K and any k ∈ G such that s � k � t , it holds that k ∈ K . For closed 
K ⊆ G , we find that3 P (K ) ∩ D(K ) = ∅ and therefore P N(K ) = G \ (K ∪ D(K )). This means that, for closed K , P N(K ) can 
rightfully be referred to as the non-descendants of K .

Example 2. Let us illustrate these notions by means of the DAG in Fig. 1. For K = {s5, s7, s9}, which is a closed subset of G , 
we find that P (K ) = {s3, s4}, D(K ) = {s8, s10} and N(K ) = {s1, s2, s6}, implying that P (K ) ∩ D(K ) = ∅.

With any subset K of G , we can associate a so-called sub-DAG of the DAG that is associated with G . The nodes of 
this sub-DAG are the elements of K and the directed edges of this sub-DAG are those edges in the original DAG that 
connect elements in K . For a sub-DAG that is associated with some subset K of G , we will use similar definitions as those 

2 A proof for the last equality can be found in Lemma 20(vii) in Appendix A.
3 See Lemma 20(i) in Appendix A for a proof.
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for the original DAG, adding the subset K as an index. As an example: for all k ∈ K , we denote by P K (k) the parents 
of k in the sub-DAG that is associated with the nodes in K . For all K ⊆ G and k ∈ K , we have4 P K (k) = P (k) ∩ K and 
P (k) \ P K (k) = P (k) ∩ P (K ).

Example 3. Consider again the DAG in Fig. 1, where the sub-DAG that is associated with K = {s5, s7, s9} ⊂ G is depicted in 
boldface. We find that P K (s7) = {s5}, D K (s7) = {s9} and NK (s7) = ∅.

3.2. Variables and gambles on them

With each node s of the network, we associate a variable Xs assuming values in some non-empty finite set Xs . We 
denote by G(Xs) the set of all gambles on Xs . We extend this notation to more complicated situations as follows. If S is any 
subset of G , then we denote by X S the tuple of variables whose components are the Xs for all s ∈ S . This new joint variable 
assumes values in the finite set XS :=×s∈S Xs and the corresponding set of gambles is denoted by G(XS ). When S = ∅, 
we let X∅ be a singleton. The corresponding variable X∅ can then only assume this single value, so there is no uncertainty 
about it. G(X∅) can then be identified with the set R of real numbers. Generic elements of Xs are denoted by xs or zs and 
similarly for xS and zS in XS . Also, if we mention a tuple zS , then for any t ∈ S , the corresponding element in the tuple 
will be denoted by zt .

We will use the simplifying device of identifying a gamble f S on XS with its cylindrical extension to XU , where 
S ⊆ U ⊆ G: the gamble fU on XU defined by fU (xU ) := f S (xS ) for all xU ∈ XU . For instance, if K ⊆ G(XG), this allows 
us to consider K ∩ G(XS ) as the set of those gambles in K that depend only on the variable X S .

3.3. Modelling our beliefs about the network

Throughout, we consider sets of desirable gambles as models for a subject’s beliefs about the values that certain variables 
in the network may assume. An important contribution of this paper, further on in Section 4, will be to show how to 
construct a joint model for our network, being a coherent set DG of desirable gambles on XG .

From such a joint model, one can derive both conditional and marginal models [16,17]. Let us start by explaining how 
to condition the global model DG . Consider a non-empty set AI ⊆XI , with I ⊆ G , and assume that we want to update the 
model DG with the information that XI ∈ AI . This leads to the following updated set of desirable gambles:

DG�AI := {
f ∈ G(XG\I ): IAI f ∈ DG

}
,

which represents our subject’s beliefs about the value of the variable XG\I , conditional on the observation that XI assumes 
a value in AI . This definition is very intuitive, since IAI f is the unique gamble that is called off (is equal to zero) if XI /∈ AI

and equal to f if XI ∈ AI . Since I{x∅} = 1, the special case of conditioning on the certain variable X∅ yields no problems: 
it amounts to not conditioning at all. The connection with the precise-probabilistic version of conditioning is discussed in 
Ref. [3].

Marginalisation too is very intuitive in the language of sets of desirable gambles. Suppose we want to derive a marginal 
model for our subject’s beliefs about the variable X O , where O is some subset of G . This can be done by using the set of 
desirable gambles that belong to DG but only depend on the variable X O :

margO (DG) := {
f ∈ G(XO ): f ∈ DG

} = DG ∩ G(XO ).

Now let I and O be disjoint subsets of G and let AI be any non-empty subset of XI . By sequentially applying the process 
of conditioning and marginalisation we can obtain conditional marginal models for our subject’s beliefs about the value of 
the variable X O , conditional on the observation that XI assumes a value in AI :

margO (DG�AI ) = {
f ∈ G(XO ): IAI f ∈ DG

}
. (1)

Conditioning and marginalisation are special cases of Eq. (1); they can be obtained by letting O  = G \ I or I = ∅. If AI is a 
singleton {xI }, with xI ∈XI , we will use the shorthand notation margO (DG�xI ) := margO (DG�{xI }).

Since coherence is trivially preserved under both conditioning and marginalisation, we find that if the joint model DG is 
coherent, all the derived models will also be coherent. For additional properties of these marginalisation and conditioning 
operators, we refer to Ref. [16].

3.4. Epistemic irrelevance

At this point, we have the necessary tools to introduce one of the most important concepts for this paper, that of 
epistemic irrelevance. We describe the case of conditional irrelevance, as the unconditional version of epistemic irrelevance 
can easily be recovered as a special case.

4 See Lemma 19 in Appendix A for a proof.
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Consider three disjoint subsets C , I , and O of G . When a subject judges XI to be epistemically irrelevant to X O conditional 
on XC , denoted as IR(I, O |C), he assumes that if he knew the value of XC , then learning in addition which value XI assumes 
in XI would not affect his beliefs about X O . More formally put, he assumes for all xC ∈XC and xI ∈XI that:

margO (DG�xC∪I ) = margO (DG�xC ).

Alternatively, a subject can make the even stronger statement that he judges XI to be epistemically subset-irrelevant to X O
conditional on XC , denoted as SIR(I, O |C). In that case, he assumes that if he knew the value of XC , then receiving the 
additional information that XI is an element of any non-empty subset AI of XI would not affect his beliefs about X O . In 
other words, he assumes for all xC ∈XC and all non-empty AI ⊆XI that:

margO

(
DG�{xC } × AI

) = margO (DG�xC ).

Making a subset-irrelevance statement SIR(I, O |C) implies the corresponding irrelevance statement IR(I, O |C). Even 
stronger, it implies for all I ′ ⊆ I that IR(I ′, O |C). The converse does not hold in general; see Example 4. However, as we will 
show further on, credal networks under epistemic irrelevance are a useful exception: although we define the joint model 
by imposing irrelevance, it will also satisfy subset-irrelevance.

For the unconditional irrelevance case it suffices, in the discussion above, to let C = ∅. This makes sure the variable XC
has only one possible value, so conditioning on that variable amounts to not conditioning at all.

Example 4. Consider two variables Xs1 and Xs2 that take values in Xs1 := {a, b, c} and Xs2 := {0, 1}, respectively. Hence, 
G = {s1, s2}. Furthermore, let I := {s1}, O  := {s2}, C := ∅, AI := {a, b} ⊆ XI and let g ∈ G(XO ) be the gamble that is defined 
by g(1) = −g(0) := 1. Consider now the set of desirable gambles

DG := E
({IAI g}) = {

f ∈ G(XG): f ≥ IAI g or f > 0
}
.

Then, for all xI ∈XI , margO (DG�xI ) = G(XO )>0 = margO (DG), implying that XI is epistemically irrelevant to X O . However, 
XI is not subset-irrelevant to X O because margO (DG�AI ) = E({g}) = { f ∈ G(XO ): f ≥ g or f > 0}.

We consider subset-irrelevance to be the more natural of the two concepts, as it requires all information about XI
to be irrelevant, which is what—in our opinion—irrelevance should mean. For example, in Example 4, although Xs1 is 
epistemically irrelevant to Xs2 , learning that Xs1 �= c does affect our belief model for Xs2 ; this would be impossible if Xs1

were epistemically subset-irrelevant to Xs2 .
Irrelevance and subset-irrelevance can also be extended to cases where I , O and C are not disjoint, but I \ C and 

O  \ C are. We then call XI epistemically (subset-)irrelevant to X O conditional on XC provided that XI\C is epistemically 
(subset-)irrelevant to X O\C conditional on XC . Although these cases are admittedly artificial, they will help us state and 
prove some of the graphoid properties further on.

3.5. Local uncertainty models

We now add local uncertainty models to each of the nodes s in our network. These local models are assumed to be given 
beforehand and will be used further on in Section 4 as basic building blocks for constructing a joint model for a given 
network.

If s is not a root node of the network, i.e., has a non-empty set of parents P (s), then we have a conditional local model 
for every instantiation of its parents: for each xP (s) ∈ XP (s) , we have a coherent set Ds�xP (s) of desirable gambles on Xs . It 
represents our subject’s beliefs about the variable Xs conditional on its parents X P (s) assuming the value xP (s) .

If s is a root node, i.e., has no parents, then our subject’s local beliefs about the variable Xs are represented by an 
unconditional local model. It should be a coherent set of desirable gambles and will be denoted by Ds . As was explained in 
Section 3.3, we can also use the common generic notation Ds�xP (s) in this unconditional case, since for a root node s, its set 
of parents P (s) is equal to the empty set ∅.

3.6. The interpretation of the graphical model

In classical Bayesian networks, the graphical structure is taken to represent the following assessments: for any 
node s, conditional on its parent variables, the associated variable is independent of its non-parent non-descendant vari-
ables [20, Section 3.2.2]. When generalising this interpretation to credal networks, the classical notion of independence gets 
replaced by a more general, imprecise-probabilistic notion of independence. In this paper, we choose to use epistemic ir-
relevance, as introduced in Section 3.4; see the Introduction for discussion, motivation, and relevant references. It is useful 
to know that in the special case of precise uncertainty models, epistemic irrelevance is equivalent to the classical notion 
of independence, making the interpretation of the graphical structure of the network equivalent to the one in Bayesian 
networks.

Let us state our interpretation more formally. We assume that the graphical structure of the network embodies the 
following conditional irrelevance assessments, turning the network into a credal network under epistemic irrelevance. Consider 
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any node s in the network, its set of parents P (s) and its set of non-parent non-descendants N(s). Then conditional on X P (s) , 
XN(s) is assumed to be epistemically irrelevant to Xs:

IR
(
N(s), {s}∣∣P (s)

)
.

For a coherent set of desirable gambles DG that describes our subject’s global beliefs about all the variables in the network, 
this has the following consequences. For every s ∈ G and all xP N(s) ∈XP N(s) , DG must satisfy:

margs(DG�xP N(s)) = margs(DG�xP (s)). (2)

4. Constructing a joint model

We now show how to construct a joint model for the variables in the network, and argue that it is the most conservative 
coherent model that extends the local models and expresses all conditional irrelevancies encoded in the network. But before 
we do so, we need to ask ourselves the following question: suppose we have a global set of desirable gambles DG , how do 
we express that such a model is compatible with the assessments encoded in the network?

4.1. Defining properties of the joint model

We will require our joint model to satisfy the following four properties. First of all, our global model should extend 
the local assessments, in the sense that the local models that are derived from the global one by marginalisation should 
include—be at least as informative as—the given local models:

G1. The joint model DG marginalises to supersets of the local uncertainty models:

Ds�xP (s) ⊆ margs(DG�xP (s)) for all s ∈ G and xP (s) ∈ XP (s).

The second requirement is that our model should reflect all epistemic irrelevancies encoded in the graphical structure of 
the network:

G2. DG satisfies all equalities that are imposed by Eq. (2).

The third requirement is that our model should be coherent:

G3. DG is coherent (satisfies requirements D1–D4).

Since requirements G1–G3 do not determine a unique global model, we impose a final requirement to ensure that all 
inferences we make on the basis of our global models are as conservative as possible, and are therefore based on no other 
considerations than what is encoded in the network:

G4. DG is the smallest set of desirable gambles on XG satisfying requirements G1–G3: it is a subset of any other set that 
satisfies them.

We will now show how to construct the unique global model DG that satisfies all four requirements G1–G4.

4.2. An intuitive expression for the joint model

Let us start by looking at a single given marginal model Ds�zP (s) and investigate some of its implications for the joint 
model DG . Consider any node s and fix values zP (s) and zN(s) for its parents and non-parent non-descendants. Due to 
requirements G1 and G2, any gamble f ∈ Ds�zP (s) should also be an element of margs(DG�zP N(s)), which by definition 
means that I{zP N(s)} f ∈DG . Inspired by this observation, we introduce the following set of gambles on XG :

Airr
G := {I{zP N(s)} f : s ∈ G, zP N(s) ∈ XP N(s), f ∈ Ds�zP (s)}. (3)

It should now be clear that Airr
G must be a subset of our joint model DG .

Proposition 1. Airr
G is a subset of any joint model DG that satisfies requirements G1 and G2.

Since our eventual joint model should also be coherent (satisfy requirement G3), and thus in particular should be a 
convex cone, we can derive the following corollary.

Corollary 2. posi(Airr) is a subset of any joint model DG that satisfies requirements G1–G3.
G
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We now suggest the following expression for the joint model describing our subject’s beliefs about the variables in the 
network:

Dirr
G := posi

(
Airr

G

)
. (4)

We will refer to Dirr
G as the irrelevant natural extension of the local models Ds�xP (s) . Since we know from Corollary 2 that 

it is guaranteed to be a subset of the joint model we are looking for, it is rather natural to propose it as a candidate for 
the joint model itself. In the next section, we set out to prove that Dirr

G is indeed the unique joint model satisfying all four 
requirements G1–G4.

4.3. Justifying our expression for the joint model

We start by proving a number of useful properties of Dirr
G .

Proposition 3. A gamble f ∈ G(XG) is an element of Dirr
G if and only if it can be written as:

f =
∑
s∈G

∑
zP N(s)∈XP N(s)

I{zP N(s)} f s,zP N(s) , (5)

where f s,zP N(s) ∈Ds�zP (s) ∪ {0} for every s ∈ G and all zP N(s) ∈XP N(s) , and at least one of them is non-zero.

Proposition 4. G(XG)>0 is a subset of Dirr
G and, consequently, Dirr

G = E(Airr
G ).

These two propositions serve as a first step towards the following coherence result, which states that our joint model 
Dirr

G satisfies requirement G3.

Proposition 5. Dirr
G satisfies requirement G3: it is a coherent set of desirable gambles.

The crucial step in our proof for this result is to consider a specific Bayesian network that has the same topology as our 
credal network and to use the corresponding joint probability mass function to construct a separating hyperplane argument. 
In this way, we are using existing coherence results for Bayesian networks to prove their counterparts for credal networks.

Next, we turn to an important factorisation result that is essential in order to prove that our joint model extends the 
local models and expresses all conditional irrelevancies encoded in the network, and therefore satisfies G1 and G2.

Proposition 6. Fix arbitrary s ∈ G, xP (s) ∈XP (s) and g ∈ G(XN(s))>0 . Then for every f ∈ G(Xs):

gI{xP (s)} f ∈ Dirr
G ⇔ f ∈ Ds�xP (s) .

Corollary 7. Dirr
G satisfies requirements G1 and G2. Even stronger: it holds for every s ∈ G and all xP N(s) ∈XP N(s) that

margs

(
Dirr

G �xP N(s)
) = margs

(
Dirr

G �xP (s)
) = Ds�xP (s) .

Notice that, although G1 only requires margs(DG�xP (s)) to be a superset of Ds�xP (s) , the irrelevant natural extension Dirr
G

also satisfies a modified, stronger version of G1: margs(Dirr
G �xP (s)) =Ds�xP (s) .

We now have all tools necessary to formulate a crucial result. It is the first important contribution of this paper and 
provides a justification for the joint model Dirr

G that was proposed in Eq. (4).

Theorem 8. The irrelevant natural extension Dirr
G is the unique set of desirable gambles on XG that satisfies all four require-

ments G1–G4.

It is already apparent from Proposition 6 that the properties of the irrelevant natural extension Dirr
G are not limited to 

G1–G4. As a first example, Proposition 6 implies that for any node s, conditional on its parent variables X P (s) , the non-parent 
non-descendant variables XN(s) are not only epistemically irrelevant, but also subset-irrelevant to Xs .

Corollary 9. For all nodes s ∈ G, the subset-irrelevance statement SIR(N(s), {s}|P (s)) is satisfied: for any xP (s) ∈XP (s) and non-empty 
AN(s) ⊆XN(s) , it holds that

margs

(
Dirr

G �{xP (s)} × AN(s)
) = margs

(
Dirr

G �xP (s)
)
.
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Fig. 2. Local models for a sub-DAG.

In the remainder of this paper, we establish a number of even stronger properties of Dirr
G . However, before we do so, let 

us take a small step back to take a look at the larger picture.
If we were to drop the irrelevance assessments, that is, if we were only to impose requirements G1, G3 and G4, then the 

unique model to satisfy these three requirements would be the smallest coherent set of desirable gambles that extends the 
local models or, in other words, the natural extension of

AG := {I{zP (s)} f : s ∈ G, zP (s) ∈ XP (s), f ∈ Ds�zP (s)}.
By including G2, we are applying a more general form of natural extension that combines an assessment of gambles with 
structural assessments. In our case, these structural assessments consist of a very specific set of epistemic irrelevancies—
G2—and the resulting ‘generalised’ natural extension of AG , which we call the irrelevant natural extension, turns out to be 
the ‘traditional’ natural extension of the extended assessment Airr

G , which is obtained by combining the original assessment 
AG with the irrelevancies that are imposed by G2.

In principle, this generalised form of natural extension can be applied to other structural assessments as well. Cozman [4, 
p. 208] discusses the possibility of considering credal networks with arbitrary assessments of epistemic irrelevance; the 
special case of credal networks under epistemic independence is discussed in Ref. [12]. However, unlike in our special case, 
it is not always easy—and sometimes even impossible—to obtain a closed-form expression for the resulting joint model of 
these credal networks. Finally, one can also combine natural extension with structural judgements other than epistemic 
irrelevance. For example: Ref. [17] considers the structural judgement of exchangeability. That being said, for the remainder 
of this paper, we focus on the special case of the irrelevant natural extension Dirr

G .

5. Additional marginalisation properties

As explained in Section 3.1, a subset K of G can be associated with a so-called sub-DAG of the original DAG. Similarly to 
what we have done for the original DAG, we can use Eq. (4) to construct a joint model for this sub-DAG. All we need to do 
is to provide, for every s ∈ K and zP K (s) ∈XP K (s) , a local model Ds�zP K (s) .

One particular way of providing these local models is to derive them from the ones of the original DAG. The starting 
point to do so is fixing a value xP (K ) ∈ XP (K ) for the parent variables of K . This provides us, for every s ∈ K , with a value 
xP (s)\P K (s) ∈XP (s)\P K (s) because P (s) \ P K (s) ⊆ P (K ). For every s ∈ K and zP K (s) ∈ XP K (s) , we can then identify the local 
model Ds�zP K (s) of the sub-DAG with the local model Ds�zP (s) of the original DAG, where zP (s)\P K (s) = xP (s)\P K (s) . In other 
words, for every s ∈ K and zP K (s) ∈XP K (s)

Ds�zP K (s) = Ds�(zP K (s),xP (s)\P K (s)). (6)

For every K ⊆ G and all xP (K ) ∈XP (K ) , the resulting joint model for the sub-DAG that is associated with K is given by

Dirr
K�xP (K )

:= posi
(
Airr

K�xP (K )

)
, (7)

where

Airr
K�xP (K )

:= {I{zP NK (s)} f : s ∈ K , zP NK (s) ∈ XP NK (s), f ∈ Ds�(zP K (s),xP (s)\P K (s))}.

Example 5. Consider again the DAG in Fig. 1 and the sub-DAG induced by the closed subset K = {s5, s7, s9} ⊂ G . In order to 
use Eq. (7) to construct a joint model for this sub-DAG, we need to fix a value xP (K ) ∈XP (K ) for the variables associated with 
the parents of K . Equivalently, since P (K ) = {s3, s4}, we need to fix values xs3 ∈ Xs3 and xs4 ∈ Xs4 . We can now construct 
local models by means of Eq. (6). For the node s5, we obtain an unconditional local model Ds5 =Ds5�xs3

. For the node s7, 
this yields, for every zs5 ∈ Xs5 , a conditional local model Ds7�zs5

=Ds7�(zs5 ,xs4 ) . Finally, for the node s9, we obtain, for every 
zs7 ∈ Xs7 , a conditional local model Ds9�zs7

. Fig. 2 provides a graphical representation of the construction of these local 
models.
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Fig. 3. Example of a credal network consisting of disconnected nodes.

A question that now naturally arises is whether these joint models for sub-DAGs, as given by Eq. (7), can be related to 
the original joint model Dirr

G . It turns out that, for subsets K of G that are closed, this is indeed the case.

Theorem 10. If K is a closed subset of G, then for any xP (K ) ∈XP (K ) , g ∈ G(XN(K ))>0 and f ∈ G(XK ):

gI{xP (K )} f ∈ Dirr
G ⇔ f ∈ Dirr

K�xP (K )
.

Our proof for the reverse implication is complex and elaborate, but its core is a simple separating hyperplane argument. 
Similar to what we have done in the proof of Proposition 6, we construct a joint probability mass function to perform 
the separation. However, in contrast with the proof of Proposition 6, a factorising probability mass function is no longer 
sufficient. This makes constructing the joint probability mass function that is used in Theorem 10 both complex and elab-
orate. We consider Theorem 10 to be the main technical achievement of this paper. It is a significant generalisation of 
Proposition 6 [with K = {s}] and has a number of important consequences. As a first example, it implies the following 
generalisations of Corollaries 7 and 9.

Corollary 11. For all closed K ⊆ G, xP (K ) ∈XP (K ) and non-empty AN(K ) ⊆XN(K ) , we have that

margK

(
Dirr

G �{xP (K )} × AN(K )

) = Dirr
K�xP (K )

.

Corollary 12. For all closed sets K ⊆ G, we have that the subset-irrelevance statement SIR(N(K ), K |P (K )) is satisfied: for any 
xP (K ) ∈XP (K ) and non-empty AN(K ) ⊆XN(K ) , it holds that

margK

(
Dirr

G �{xP (K )} × AN(K )

) = margK

(
Dirr

G �xP (K )

)
.

6. Connections with independent natural extension

Let us now consider the special case of a credal network for which the underlying DAG has no edges or, equivalently, 
consists of disconnected nodes only; see Fig. 3 for an example with four nodes. In that case, these nodes clearly have neither 
parents nor descendants. Consequently, for every s ∈ G , the local model Ds is unconditional and the non-descendants are 
given by P N(s) = G \ {s}. It is therefore easy to see that in this particular case, Eq. (4) reduces to

Dirr
G = posi

({I{zG\{s}} f : s ∈ G, zG\{s} ∈ XG\{s}, f ∈ Ds}
)
. (8)

Due to Corollary 12, we know that Dirr
G , as given by Eq. (8), is independent [16, Definition 5], meaning that

margO

(
Dirr

G �xI
) = margO

(
Dirr

G

)
for all disjoint subsets I and O of G, and all xI ∈ XI .

Since Dirr
G also marginalises to its local models (Corollary 7), we find that Dirr

G , as given by Eq. (8), is an independent product
of the local models Ds , s ∈ G , that is also coherent (Proposition 5).5 Moreover, due to Corollary 2 and Eq. (4), it is a subset of 
any other coherent independent product of Ds , s ∈ G . This makes Dirr

G , as given by Eq. (8), the unique smallest coherent set 
of desirable gambles on XG that is an independent product of Ds , s ∈ G . This is called the independent natural extension of 
the local models Ds , s ∈ G , and is denoted as 

⊗
s∈G Ds [16, Section 7]. We can therefore conclude that, for credal networks 

for which the underlying DAG consists of disconnected nodes only,

Dirr
G =

⊗
s∈G

Ds = posi
({I{zG\{s}} f : s ∈ G, zG\{s} ∈ XG\{s}, f ∈ Ds}

)
, (9)

a result that was already mentioned in Ref. [16, Section 10]. Consequently, quite a few of the results we obtain in the 
present paper can be regarded as generalisations of those in Ref. [16].6 Our next two results show that the connection 
between our irrelevant natural extension of a network and the independent natural extension, as defined in Ref. [16], goes 
much further than Eq. (9).

5 DG is an independent product of the local models Ds , s ∈ G , if it marginalises to these local models and is furthermore independent [16, p. 618].
6 Ref. [16, Proposition 15] is a special case of Proposition 5, Ref. [16, Propositions 17 and 18] are both special cases of Theorem 11 and by combining 

Theorem 8 with Corollary 12, we can generalise Ref. [16, Theorem 19]. Finally, the associativity result in Ref. [16, Theorem 20] can be regarded as a special 
case of Proposition 13. Indeed, it suffices to (i) apply Proposition 13 to a DAG consisting of two separate, disconnected sub-DAGs, each of which consists of 
disconnected nodes only, and (ii) to subsequently apply Eq. (9) to Dirr

G , Dirr
G and Dirr

G .

1 2
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Fig. 4. Illustration of Proposition 13.

Fig. 5. Illustration of Theorem 14.

Proposition 13. Consider any partition G1, . . . , Gn of G such that P (Gi) = ∅ for all i ∈ {1, . . . , n}. Or equivalently, let the DAG of the 
complete network consist of n separate, disconnected sub-DAGs, each of which has Gi as its set of nodes, with i ∈ {1, . . . , n}. Then

Dirr
G =

n⊗
i=1

Dirr
Gi

= posi
({
I{zG\Gi } f : i ∈ {1, . . . ,n}, zG\Gi ∈ XG\Gi , f ∈ Dirr

Gi

})
,

where Dirr
G is the irrelevant natural extension of the complete network, as given by Eq. (4), and, for all i ∈ {1, . . . , n}, Dirr

Gi
is the 

irrelevant natural extension of the network that has the sub-DAG associated with Gi as its graphical structure, as given by Eq. (7).7

Fig. 4 illustrates this result with a simple example. It should be clear that Eq. (9) is a special case of Proposition 13.8

Theorem 14 generalises Proposition 13 even further.

Theorem 14. Consider a closed subset K of G and a partition K1, . . . , Kn of K such that P K (Ki) = ∅ for all i ∈ {1, . . . , n}. Or equiv-
alently, let the sub-DAG that corresponds to the set K consist of n separate, disconnected sub-DAGs, each of which has Ki as its set of 
nodes, with i ∈ {1, . . . , n}. Then P (Ki) ⊆ P (K ) for all i ∈ {1, . . . , n} and, for all xP (K ) ∈XP (K ) ,

Dirr
K�xP (K )

=
n⊗

i=1

Dirr
Ki�xP (Ki )

= posi
({
I{zK\Ki } f : i ∈ {1, . . . ,n}, zK\Ki ∈ XK\Ki , f ∈ Dirr

Ki�xP (Ki )

})
,

where Dirr
K�xP (K )

and Dirr
Ki�xP (Ki )

, with i ∈ {1, . . . , n}, are given by Eq. (9).

Fig. 5 illustrates this result with an example.

7. AD-separation and its consequences for the irrelevant natural extension

In Bayesian networks, there exists a simple criterion, called d-separation, that is capable of detecting independencies 
in the joint model, based only on the graphical structure of the underlying DAG [26]. Due to their close connection with 
Bayesian networks, credal networks under strong independence inherit this property almost trivially [4]: every d-separation 

7 We would like to thank one of the referees of a previous conference version of this paper [10] for suggesting this result.
8 Choose n = |G| and let Gi be singletons, each of which contains a different s ∈ G .
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in the DAG corresponds to a (strong) independence in the joint model. For credal networks under epistemic independence, 
no such result exists. We do know that for general credal networks under epistemic independence, d-separation does not 
imply epistemic independence [5]. However, it is considered an important open problem [4,5,12,14] whether or not this 
holds for the most conservative joint model, also referred to as the independent natural extension9 of a credal network [5]; 
see Ref. [12] for some partial but promising results for Markov chains. For the irrelevant natural extension of a credal net-
work, which is the subject of the current paper, d-separation does not imply epistemic irrelevance; see Ref. [14, Section 7]
for a counterexample. However, as we will show, it is possible to derive very similar results by employing an asymmetrical 
version of d-separation, which we call AD-separation. As we will see, AD-separation satisfies all graphoid properties except 
symmetry. Furthermore, and perhaps most importantly: we show that in the irrelevant natural extension of a credal net-
work, AD-separation implies epistemic irrelevance, thereby establishing an asymmetric version of the classical d-separation 
result. We should note that our results are inspired by the work of Moral [23], who developed similar results in a much 
more restricted context; we comment on the restrictions he imposes further on in Section 7.2.

7.1. AD-separation

In probabilistic graphical networks that are defined by means of a symmetrical independence concept, the notion of 
d-separation is a very powerful tool [26]. However, for asymmetrical independence concepts such as epistemic irrelevance, 
there seems to be no convincing reason for using a symmetrical separation criterion such as d-separation. If learning Y is 
irrelevant to X , must it follow that learning X is irrelevant to Y ? We agree with Dawid [8] that such a requirement is not 
obvious. Hence, we prefer to consider a modified version of d-separation that does not require symmetry. Moral [23] speaks 
of asymmetrical D-separation10 (AD-separation) and Vantaggi [33–36] has introduced the very similar L-separation criterion. 
Here, we do not use one of these existing concepts, but choose to introduce a slightly modified version, which we will 
call AD-separation (asymmetrical d-separation) as well.11 We prefer our version because our definition is weaker than—in 
the sense that it is implied by—Moral’s AD-separation, slightly more general12 than Vantaggi’s L-separation and yet, it has 
stronger properties than both of these other concepts.

Consider any path s1, . . . , sn in G , with n ≥ 1. We say that this path is blocked by a set of nodes C ⊆ G whenever at least 
one of the following four conditions holds:

B1. s1 ∈ C ;
B2. there is some 1 < i < n such that si → si+1 and si ∈ C ;
B3. there is some 1 < i < n such that si−1 → si ← si+1, si /∈ C and D(si) ∩ C = ∅;
B4. sn ∈ C .

In Moral’s version of AD-separation, the notion of a blocked path is very similar. The only difference is condition B1, 
which he strengthens by requiring that s1 → s2. Clearly, our condition is implied by Moral’s. Vantaggi uses the same notion 
of blocked path as we do,13 but leaves out conditions B1 and B4. They are redundant in her case, because she does not 
need to consider cases in which s1 or sn are elements of C .14

Example 6. Fig. 6 illustrates how each of the blocking conditions B1–B4 can block a path. The examples for B1 and B4 
are straightforward. Note that in the example of B2, the crucial point is the arrow between s3 and s5. If that arrow were 
reversed, the path would no longer be blocked. In the example of B3, it is essential that s5 , s6 and s7 are not elements 
of C . If any of them were, the path would not be blocked. Notice also that the path in the example for B1 is not blocked 
according to Moral’s version of AD-separation, the reason being that the arrow between s3 and s2 is pointing in the wrong 
direction.

Now consider (not necessarily disjoint) subsets I , O and C of G . We say that O is AD-separated from I by C , denoted 
as AD(I, O |C), if every path i = s1, . . . , sn = o, n ≥ 1, from a node i ∈ I to a node o ∈ O , is blocked by C ; see Fig. 7 for an 
example of AD-separated sets.

9 Not to be confused with the independent natural extension of a number of separate, unconditional models, which was the subject of our Section 6. 
However, there is no conflict in terminology since the latter corresponds to a special case.
10 Judging by the references he provides [25,26], Moral actually seems to mean asymmetrical d-separation rather than asymmetrical D-separation; D-

separation is an enhanced version of d-separation that allows for deterministic nodes [18]. However, since d-separation is a special case of D-separation, 
the term asymmetrical D-separation (AD-separation) does not produce a conflict in terminology and we choose to adopt it as well.
11 We prefer Moral’s terminology over the one by Vantaggi because (i) we think that the term asymmetrical d-separation really captures the meaning of 

the concept and (ii) the L in L-separation refers to the logical constraints that can be imposed in Vantaggi’s framework, which do not seem relevant for our 
current purposes. It is however important to keep in mind that our notion of AD-separation is different than the one by Moral. We consider the resulting 
conflict in terminology to be minor, especially since our version of AD-separation is implied by Moral’s version.
12 At least as far as the sets on which it can defined is concerned: L-separation is only defined for disjoint sets. We should however mention that, if 

one restricts himself to disjoint sets, Vantaggi’s L-separation criterion is more general than ours because it also includes the possibility to include logical 
constraints, which our notion of AD-separation does not.
13 At first sight, it might seem as if she does not; loosely speaking, the confusion arises because she applies her definition to the reversed path.
14 Because L-separation is defined for disjoint sets only; see the definition of AD-separation further on.
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Fig. 6. Illustration of paths that are blocked by conditions B1–B4.

Fig. 7. Illustration of AD-separation.

Moral and Vantaggi define their separation criteria in much the same way. The only difference with Moral’s version 
of AD-separation is his notion of a blocked path, as explained earlier. Clearly, AD-separation in Moral’s sense implies AD-
separation in our sense. The difference with Vantaggi’s criterium is that L-separation is defined for disjoint sets only. Notice 
that if we restrict ourselves to disjoint sets, AD-separation (both our version and the one by Moral) is identical to L-
separation.15

It turns out that our version of AD-separation satisfies all graphoid properties except symmetry.

Theorem 15. For any subsets I , O , S and C of G, the following properties hold16:

Direct redundancy: AD(I, O |I)
Reverse redundancy: AD(I, O |O )

Direct decomposition: AD(I, O  ∪ S|C) ⇒ AD(I, O |C)

Reverse decomposition: AD(I ∪ S, O |C) ⇒ AD(I, O |C)

Direct weak union: AD(I, O  ∪ S|C) ⇒ AD(I, O |C ∪ S)

Reverse weak union: AD(I ∪ S, O |C) ⇒ AD(I, O |C ∪ S)

Direct contraction: AD(I, O |C) & AD(I, S|C ∪ O ) ⇒ AD(I, O  ∪ S|C)

Reverse contraction: AD(I, O |C) & AD(S, O |C ∪ I) ⇒ AD(I ∪ S, O |C)

Direct intersection: if O  ∩ S = ∅, then AD(I, O |C ∪ S) & AD(I, S|C ∪ O ) ⇒ AD(I, O  ∪ S|C)

Reverse intersection: if I ∩ S = ∅, then AD(I, O |C ∪ S) & AD(S, O |C ∪ I) ⇒ AD(I ∪ S, O |C)

This result (and our proof for it) is very similar to, and heavily inspired by, the work of Vantaggi [34, Theorem 7.1].17

The main difference is that Vantaggi does not include the two redundancy properties, since L-separation is defined only for 

15 Making abstraction of the logical component of L-separation.
16 We follow Refs. [7,23] in naming these properties. Vantaggi [34] uses a different terminology: for example, her notion of reverse decomposition refers 

to a property denoted as (I ∪ S, O |C)l
G ⇒ (I, O |C)l

G , which seems similar to our notion of reverse decomposition, but actually, corresponds to what we 
call direct decomposition, since, loosely speaking, Vantaggi reverses the order in which I and O occur in the notation. Care should therefore be taken in 
comparing results.
17 We provide a direct proof for Theorem 15. However, as suggested to us by Barbara Vantaggi, our result can probably be derived as a corollary of 

Ref. [34, Theorem 7.1] as well. A possible way of doing so could be to first prove (direct and reverse) redundancy and decomposition (which is trivial) and 
to use these properties to try and infer (direct and reverse) weak union, contraction and intersection from their ‘disjoint’ versions (which are proven in 
Ref. [34, Theorem 7.1]).
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disjoint subsets I , O and C of G . Moral’s version of AD-separation does not require I , O and C to be disjoint, but it does 
not satisfy direct redundancy, and proofs for a number of other properties are not given [23, Theorem 4].

7.2. Separation properties of the irrelevant natural extension

The reason why we have introduced AD-separation, is because it can be used to state the following very general factori-
sation result, the proof of which relies heavily on Theorem 10.

Theorem 16. Consider any I, O , C ⊆ G such that AD(I, O |C). Then for all xC ∈XC , g ∈ G(XI )>0 and f ∈ G(XO )

gI{xC } f ∈ Dirr
G ⇔ I{xC } f ∈ Dirr

G .

By combining this with Theorem 15, we can prove a result that is very similar to the classical d-separation result: 
AD-separation implies epistemic irrelevance in the irrelevant natural extension of a credal network.

Corollary 17. For any I, O , C ⊆ G such that AD(I, O |C) we have that SIR(I, O |C) (and thus also IR(I, O |C)): for all xC ∈ XC and 
non-empty AI\C ⊆XI\C it holds that

margO\C

(
Dirr

G �{xC } × AI\C
) = margO\C

(
Dirr

G �xC
)
.

This family of subset-irrelevance statements satisfies all graphoid properties except symmetry: it satisfies redundancy, decomposition, 
weak union, contraction and intersection, both in their direct and reverse form.

We leave it to the reader to show that Theorem 16 is a generalisation of Theorem 10 and that Corollary 17 generalises 
the first part of Corollary 12. In other words: for any closed subset K of G , it holds that AD(N(K ), K |P (K )).

What is particularly nice about Corollary 17 is that it allows us to detect epistemic irrelevancies in the joint model in a 
purely graphical way, without resorting to numerical computations; all we have to do is to check for AD-separation. Note 
however that AD-separation is only a sufficient condition for epistemic irrelevance. An important—and so far open—question 
is therefore whether the epistemic irrelevancies that are detected by AD-separation are the only ones that can be detected 
based on the graphical structure of the network. In other words, to put it more technically: is AD-separation complete with 
respect to epistemic irrelevance? We conjecture that it is, but provide no proof. Another important question is whether or 
not AD-separation can be checked efficiently. We suspect that this is indeed the case and that polynomial time solutions 
can be obtained by suitably adapting existing algorithms for d-separation [19,20]. However, this too, we leave as a possible 
topic for future research.

7.3. A crucial difference with earlier work by Moral

Readers who are familiar with the work in Ref. [23] might have noticed the similarity between Ref. [23, Theorem 5] and 
the first part of Corollary 17. The main difference between our approach and Moral’s approach [23], besides the fact that 
we use a slightly different separation criterion, is that he enforces a more stringent version of epistemic irrelevance than 
we do. He calls XI epistemically irrelevant to X O if and only if the model DI∪O for the variable XI∪O is the unique smallest 
set that marginalises to the marginal models DI and DO and for which XI is irrelevant to X O in our sense. He refers to 
our concept of irrelevance as ‘weak’ epistemic irrelevance. Consequently, Moral’s results in Ref. [23] are not applicable to all 
directed acyclic networks. As a simple example: his concept of irrelevance does not allow for two variables to be mutually 
irrelevant, except in some degenerate uninformative cases. Therefore, his results cannot be applied to a network consisting 
of two unconnected nodes. More generally speaking, it seems to us his results can only be applied to networks in which 
every pair of nodes can be connected by means of a directed path.

7.4. Further comments and some clarification

As far as the second part of Corollary 17 is concerned, some clarification is perhaps in order. We do not claim that 
epistemic irrelevance satisfies the graphoid axioms that are stated in Theorem 15. As was proven in Ref. [7], epistemic 
irrelevance can violate direct contraction and both direct and reverse intersection. In fact, we believe that this negative 
result might even be one of the main reasons why a result such as Corollary 17 has thus far not appeared in any literature.

Indeed, in Bayesian networks, proving the counterpart to Corollary 17—with AD-separation replaced by d-separation and 
epistemic irrelevance replaced by stochastic independence—is usually done by using the fact that stochastic independence 
satisfies the graphoid axioms [26]. By applying these axioms to the independence assessments that are used to define a 
Bayesian network, one can infer new independencies, namely those that correspond to d-separations in the DAG of that 
network.

If one tries to mimic this approach in our context, then since epistemic irrelevance can fail some of the graphoid axioms, 
one might suspect that Corollary 17 cannot be proven. However, it is not necessary to use the axioms: our proof for 
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Theorem 16—of which the first part of Corollary 17 is a straightforward consequence—uses only Theorem 10 and a number 
of properties of AD-separation. At no point does it invoke graphoid properties of epistemic irrelevance. The second part 
of Corollary 17 is then but a mere consequence of the first part and Theorem 15. It states that the family of irrelevance 
statements that are proven to hold in the first part, are closed under the graphoid properties in Theorem 15.

So in order to conclude this section: epistemic irrelevance can fail a number of graphoid axioms, which implies that 
the irrelevance statements that are proven in Corollary 17 do not necessarily hold for every joint model DG that satisfies 
requirements G1–G3. However for the unique one that also satisfies G4, being the irrelevant natural extension Dirr

G of the 
network, this family of irrelevance statements does hold, the reason being that for this specific model, one can provide a 
direct proof that does not invoke any graphoid axioms of epistemic irrelevance.

8. Summary and conclusions

This paper has developed the notion of a credal network under epistemic irrelevance within the framework of sets of 
desirable gambles. By combining local sets of desirable gambles with assessments of epistemic irrelevance, and by doing 
so in the most conservative way possible, we have constructed an intuitive expression for the irrelevant natural extension 
of a credal network. We then went on to establish a number of theoretical properties of this irrelevant natural extension. 
It satisfies a powerful factorisation property, marginalises in an intuitive way and has tight connections with the indepen-
dent natural extension. Furthermore, the irrelevant natural extension satisfies a result that is very similar to the classical 
d-separation result in Bayesian networks. We have introduced the notion of AD-separation, an asymmetrical adaptation of 
d-separation, have shown that it satisfies all graphoid properties except symmetry and, most importantly, that it implies 
epistemic irrelevance.

As far as future work is concerned, the most immediate task seems to be translating our results to the framework of 
coherent lower previsions. Although the expressiveness of sets of desirable gambles renders them extremely useful from a 
theoretical point of view, and as such allowed us to develop the results in this paper, representing them in a computer in 
order to manipulate them using algorithms quickly becomes overly complicated; see for example Refs. [3,29]. Since part of 
the expressiveness of sets of desirable gambles is not relevant as far as probabilistic inference is concerned [42, Example 10], 
it seems preferable to use less expressive frameworks for the development of algorithms. Inspired by the recent linear time 
algorithm for credal trees [14], coherent lower previsions seem to provide the right balance between expressiveness and 
algorithmic power.

We are confident that it is indeed possible to translate our results to the framework of coherent lower previsions. In 
fact, we have concrete ideas on how to do so; see Refs. [40,42] for some essential theoretical results, establishing an elegant 
connection between the theories of sets of desirable gambles and coherent lower previsions in a very general setup. For 
the particular case of credal networks under epistemic irrelevance, some preliminary results in terms of coherent lower 
previsions (and credal sets) can already be found in Refs. [10,11]. Using these techniques, it is possible to express our more 
fundamental results—such as those concerned with marginalisation, independent natural extension and AD-separation—
directly in terms of coherent lower previsions. We intend to publish this in the near future.

Another important avenue for future research would be to try and establish similar results for credal networks under 
epistemic independence [4,12]. Do these networks satisfy marginalisation properties such as the one presented in Section 5? 
Do they exhibit the connection with the independent natural extension that was discussed in Section 6? And perhaps 
the most important open question related to credal networks under epistemic independence: do they satisfy the same 
separation properties as Bayesian networks? See the introduction of Section 7 for some comments on this last question, 
including relevant references.

Our ultimate goal, which served as a motivation to develop the present results, is to develop an efficient inference 
algorithm for credal networks under epistemic irrelevance whose underlying graphical structure is not necessarily a tree, 
extending the developments in Ref. [14]. We would like to point out that some of the properties in this paper already 
provide a direct tool to do so. Similar to what is usually done in Bayesian networks, our marginalisation properties and 
the separation properties that are induced by AD-separation can be used to reduce the size of the network in which 
the inference problem at hand needs to be solved; see Ref. [12, Section 5] as well. If after such a preprocessing step, 
the graphical structure of the network is reduced to a tree, the algorithm in Ref. [14] can be applied. On top of these 
preprocessing steps, we think that further algorithmic developments could also benefit greatly from our results in Section 6
on the connection with the independent natural extension, especially since the strong factorisation [15] property of the 
independent natural extension has been an essential tool in the development of the aforementioned algorithm for credal 
trees under epistemic irrelevance [14].
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Appendix A. Proofs of our results

This appendix provides proofs for the results in this paper. It also contains some additional results that are needed in the 
proofs, a short introduction to maximal sets of desirable gambles (included just before the proof of Proposition 6) and two 
definitions that are used in some of the proofs related to AD-separation (included just before the proof of Proposition 23).

Proof of Proposition 1. Consider any s ∈ G and zP N(s) ∈ XP N(s) . As a consequence of requirements G1 and G2, we see that 
margs(DG�zP N(s)) should be a superset of the given local model Ds�zP (s) . If we now choose f ∈Ds�zP (s) and apply Eq. (1), it 
follows immediately that I{zP N(s)} f is an element of DG . �
Proof of Corollary 2. We know from Proposition 1 that Airr

G is a subset of any joint model that satisfies requirements G1 
and G2: Airr

G ⊆DG . Applying the posi operator to both sides, we obtain that posi(Airr
G ) ⊆ posi(DG). If in addition to satisfying 

requirements G1 and G2, DG is also coherent (satisfies requirement G3), and thus in particular is a convex cone (satisfies 
properties D3 and D4), then posi(DG) =DG and we get that posi(Airr

G ) ⊆DG . �
Proof of Proposition 3. Since Dirr

G := posi(Airr
G ), the if part of this proof is trivial. For the only if part, fix any f ∈ Dirr

G . We 
know by definition that

f =
∑
s∈G

∑
zP N(s)∈XP N(s)

∑
i∈I(s,zP N(s))

λs,zP N(s),iI{zP N(s)} f s,zP N(s),i,

where, for all s ∈ G and zP N(s) ∈ XP N(s) , I(s, zP N(s)) is a (possibly empty) finite index set (but with at least one of them 
non-empty) and for all s ∈ G , zP N(s) ∈ XP N(s) and i ∈ I(s, zP N(s)), λs,zP N(s),i is a strictly positive real number and f s,zP N(s),i is 
an element of Ds�zP (s) .

We now construct, for all s ∈ G and zP N(s) ∈ XP N(s) , a gamble f s,zP N(s) ∈ G(Xs). If I(s, zP N(s)) = ∅, we let f s,zP N(s) = 0. If 
I(s, zP N(s)) �= ∅, we let

f s,zP N(s) =
∑

i∈I(s,zP N(s))

λs,zP N(s),i f s,zP N(s),i,

which is an element of Ds�zP (s) (and thus different from zero) due to the fact that f s,zP N(s),i ∈ Ds�zP (s) for all i ∈ I(s, zP N(s))

and because Ds�zP (s) is assumed to be coherent. It should now be clear that

f =
∑
s∈G

∑
zP N(s)∈XP N(s)

I{zP N(s)} f s,zP N(s) ,

in which the gambles f s,zP N(s) are elements of Ds�zP (s) ∪ {0} and at least one of them is non-zero. �
Proof of Proposition 4. The crucial step in the proof consists in showing that for any zG ∈ XG , the indicator I{zG } is an 
element of Airr

G . To prove this, pick an arbitrary leaf s ∈ G . This is possible because a DAG with a finite amount of nodes 
always has at least one leaf. Since s is a leaf, it has no descendants and we therefore have that G = {s} ∪ P N(s). Due to the 
coherence of the local models, and in particular property D2, we know that the indicator I{zs} is an element of Ds�zP (s) . We 
can therefore apply Eq. (3) to see that I{zs}I{zP N(s)} = I{z{s}∪P N(s)} = I{zG } is an element of Airr

G . Since every f ∈ G(XG)>0 is a 
finite strictly positive linear combination of indicators I{zG } that were constructed above, it follows that G(XG )>0 is indeed 
a subset of posi(Airr

G ).
To prove the second part, notice that any gamble in E(Airr

G ) is a finite, strictly positive linear combination of gambles in 
Airr

G and gambles in G(XG )>0. However, since we have just shown that gambles in G(XG )>0 are themselves finite strictly 
positive linear combinations of specific indicators in Airr

G , this implies that E(Airr
G ) ⊆ posi(Airr

G ). The converse inclusion is 
trivial and we thus find that E(Airr

G ) = posi(Airr
G ) =:Dirr

G . �
Our proof for Proposition 5 and Theorem 10 uses the following convenient version of the separating hyperplane theorem. 

It is proved in Ref. [16, Lemma 2] and repeated here to make the paper more self-contained.

Lemma 18. Consider any finite subset A of G(X). Then 0 /∈ E(A) if and only if there is some probability mass function p such that ∑
x∈X p(x) f (x) > 0 for all f ∈A and p(x) > 0 for all x ∈X .

Proof of Proposition 5. Since, by Proposition 4, Dirr
G = E(A), we know that Dirr

G is coherent if and only if it satisfies D1, 
which states that any gamble f ∈ G(XG) for which f ≤ 0 cannot be an element of Dirr

G . So consider any f ∈Dirr
G and assume 

ex absurdo that f ≤ 0. We will show that this leads to a contradiction.
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Since f is an element of Dirr
G , we know from Proposition 3 that

f =
∑
s∈G

∑
zP N(s)∈XP N(s)

I{zP N(s)} f s,zP N(s) ,

where every f s,zP N(s) is an element of Ds�zP (s) ∪ {0} and at least one of them is non-zero. We now construct, for every s ∈ G
and zP (s) ∈XP (s) , a finite subset of the local model Ds�zP (s) :

A f
s�zP (s)

:= { f s,xP N(s) : xP N(s) ∈ XP N(s), xP (s) = zP (s) and f s,xP N(s) �= 0}.
As a consequence of the coherence of Ds�zP (s) , we have that 0 /∈ Ds�zP (s) = posi(Ds�zP (s) ). This in turn implies that 0 /∈
posi(A f

s�zP (s)
∪ G(Xs)>0) =: E(A f

s�zP (s)
), because both A f

s�zP (s)
and G(Xs)>0 are subsets of Ds�zP (s) , and we can therefore 

apply Lemma 18. This yields for every s ∈ G and zP (s) ∈ XP (s) a mass function ps(·|zP (s)) on Xs with expectation operator 
Es(·|zP (s)) on G(Xs) such that ps(zs|zP (s)) > 0 for all zs ∈Xs and Es(g|zP (s)) > 0 for each g ∈A f

s�zP (s)
.

The trick is now to create a Bayesian network that has the conditional mass functions ps(·|zP (s)) as its local models and 
has the same graphical structure as our credal network under epistemic irrelevance. If we let EG be the joint expectation 
operator for this Bayesian net, we find that

EG( f ) =
∑
s∈G

∑
zP N(s)∈XP N(s)

EG(I{zP N(s)} f s,zP N(s) ) =
∑
s∈G

∑
zP N(s)∈XP N(s)

pG(zP N(s))Es( f s,zP N(s) |zP N(s))

=
∑
s∈G

∑
zP N(s)∈XP N(s)

pG(zP N(s))Es( f s,zP N(s) |zP (s)),

where pG is the global mass function of the Bayesian net and where we have applied Bayes’ rule and the conditional 
independencies encoded in the graph. Since all the local probabilities ps(·|zP (s)) are strictly positive, this is also true for the 
global ones and we find that pG (zP N(s)) > 0. For the conditional expectations Es( f s,zP N(s) |zP (s)) there are two possibilities. 
Either f s,zP N(s) = 0, in which case Es( f s,zP N(s) |zP (s)) = 0, or f s,zP N(s) ∈ A f

s�zP (s)
, in which case Es( f s,zP N(s) |zP (s)) > 0. However, 

since at least one of the gambles f s,zP N(s) in Eq. (5) has to be non-zero, it is not possible that Es( f s,zP N(s) |zP (s)) = 0 for all 
gambles f s,zP N(s) and we can therefore conclude that EG ( f ) > 0. If we now apply our assumption that f ≤ 0, we also obtain 
that EG( f ) ≤ 0, a contradiction. �

Since Theorem 10 generalises Proposition 6 without building upon it, it is not necessary to provide Proposition 6 with 
a separate proof. However, we feel that the complexity of the proof for Theorem 10 obscures the ease with which Propo-
sition 6 can be proved. We therefore choose to provide Proposition 6 with a proof of its own. As it makes use of so-called 
maximal sets of desirable gambles, a concept that has not been introduced in the main text of this paper, we provide a 
short introduction here.

A coherent set D of desirable gambles on X is called maximal if it is not included in any other coherent set of desirable 
gambles on X—in other words, if adding any gamble f to D makes sure we can no longer extend the resulting D ∪ { f } to 
a coherent set. We generically denote maximal sets of desirable gambles as M instead of using the general notation D.

Maximal sets of desirable gambles have a number of useful properties. For example, a coherent set D of desirable 
gambles on X is always the intersection of all the maximal coherent sets M of desirable gambles on X that include it; see 
Ref. [17]. In other words, f ∈D if and only if f ∈M for every M ⊇D. As a consequence, we have the following separation 
property: if a gamble f ∈ G(X) is not an element of D, there is at least one maximal set M ⊇ D for which f /∈M. Another 
useful property is that maximal sets of desirable gambles resolve points: for any maximal set M and non-zero gamble f in 
G(X ), either f or − f is an element of M; see Ref. [3].

Proof of Proposition 6. Fix s ∈ G , g ∈ G(XN(s))>0, f ∈ G(Xs) and xP (s) ∈XP (s) .
We begin by proving the converse implication: f ∈ Ds�xP (s) ⇒ gI{xP (s)} f ∈ Dirr

G . As explained both in Section 4.2 and 
the proof of Proposition 1, it holds for any xN(s) ∈ XN(s) that I{xP N(s)} f is an element of Dirr

G . If we then realise that g =∑
xN(s)∈XN(s)

g(xN(s))I{xN(s)} , we get that

gI{xP (s)} f =
∑

xN(s)∈XN(s)

g(xN(s))I{xP N(s)} f

is a finite strictly positive linear combination of elements of Dirr
G and thus also an element of Dirr

G , due to its coherence.
To prove the direct implication, we assume ex absurdo that f /∈ Ds�xP (s) and show that it implies gI{xP (s)} f /∈ Dirr

G , a con-

tradiction. The case f = 0 is trivial because gI{xP (s)} f is then equal to zero, which cannot be an element of Dirr
G due to its 

coherence; see Proposition 5. If f �= 0, we start by applying some of the properties of maximal coherent sets of desirable 
gambles that were introduced in the text preceding this proof. Due to the first property, we can infer from f /∈Ds�xP (s) that 
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there is at least one maximal set of desirable gambles M∗
s�xP (s)

⊇Ds�xP (s) for which f /∈M∗
s�xP (s)

. Due to the second property 
and the fact that f �= 0, this in turn implies that − f ∈ M∗

s�xP (s)
. We will now denote by Dirr∗

G the set that is obtained by 
Eq. (4) if we replace the local model Ds�xP (s) by the specific maximal superset M∗

s�xP (s)
. It should be clear that Dirr∗

G ⊇ Dirr
G . 

Next, since − f ∈ M∗
s�xP (s)

, it follows from a similar argument as the one used in the proof of the converse implication 
that was given above, that gI{xP (s)}(− f ) ∈ Dirr∗

G . Hence, due to the coherence of Dirr∗
G , gI{xP (s)} f /∈ Dirr∗

G and therefore, since 
Dirr∗

G ⊇Dirr
G , we find that gI{xP (s)} f /∈Dirr

G . �
Proof of Corollary 7. Fix s ∈ G , f ∈ G(Xs) and xP N(s) ∈ XP N(s) . Since I{xN(s)} and 1 are both elements of G(XN(s))>0, we 
derive from Eq. (1) and Proposition 6 that

f ∈ margs

(
Dirr

G �xP N(s)
) ⇔ I{xP N(s)} f ∈ Dirr

G ⇔ f ∈ Ds�xP (s) ⇔ I{xP (s)} f ∈ Dirr
G ⇔ f ∈ margs

(
Dirr

G �xP (s)
)
. �

Proof of Theorem 8. We know from Proposition 5 and Corollary 7 that Dirr
G := posi(Airr

G ) satisfies requirements G1–G3. 
Because of Corollary 2, it is also the smallest set of desirable gambles on XG that does so and therefore, it is the unique set 
of desirable gambles on XG that satisfies G1–G4. �
Proof of Corollary 9. Fix arbitrary s ∈ G , f ∈ G(Xs), xP (s) ∈ XP (s) and any non-empty AN(s) ⊆ XN(s) . Since IAN(s) and 1 are 
both elements of G(XN(s))>0, we derive from Eq. (1) and Proposition 6 that

f ∈ margs

(
Dirr

G �{xP (s)} × AN(s)
) ⇔ IAN(s)I{xP (s)} f ∈ Dirr

G ⇔ f ∈ Ds�xP (s)

⇔ I{xP (s)} f ∈ Dirr
G ⇔ f ∈ margs

(
Dirr

G �xP (s)
)
. �

Lemma 19. Consider any K ⊆ G and any k ∈ K . Then P K (k) = P (k) ∩ K = P (k) \ P (K ) and P (k) \ P K (k) = P (k) ∩ P (K ).

Proof. We start by proving that P K (k) = P (k) ∩ K . An element q ∈ P K (k) is by definition a parent of k according to the 
sub-DAG that corresponds to K , therefore q is also a parent of k in the original DAG: q ∈ P (k). Since q is an element of 
the sub-DAG, we have q ∈ K and therefore q ∈ P (k) ∩ K . Conversely, if q ∈ P (k) ∩ K , then q is clearly a parent of k in the 
sub-DAG that corresponds to K and therefore q ∈ P K (k).

Next we show that P (k) ∩ K = P (k) \ P (K ). By definition of P (K ) and since k ∈ K , we know that q ∈ P (k) implies 
q ∈ P (K ) ∪ K and we therefore have that P (k) ⊆ P (K ) ∪ K . Since P (K ) and K are disjoint by definition, we infer that 
P (k) ∩ K = P (k) \ P (K ).

The final property is a direct consequence of the previous equality:

P (k) \ P K (k) = P (k) \ (
P (k) \ P (K )

) = P (k) ∩ P (K ). �
Lemma 20. Consider any closed18 K ⊆ G, k ∈ K , s ∈ G and t ∈ P N(s). Then the following statements hold:

(i) P (K ) ∩ D(K ) = ∅;
(ii) P (K ), N(K ), K and D(K ) constitute a partition19 of G;

(iii) P N(K ) and D(K ) are closed subsets of G;
(iv) P (t) ⊆ P N(s);
(v) P (P N(K )) = ∅;

(vi) P N(D(K )) = P N(K ) ∪ K ;
(vii) N(K ) = ⋂

q∈K N(q);
(viii) N(K ) ⊆ N(k);

(ix) P (K ) ⊆ P N(k);
(x) P N(K ) ⊆ P N(k);

(xi) P (K ) \ P (k) ⊆ N(k).

Proof. (i). Assume ex absurdo that q ∈ P (K ) and q ∈ D(K ). Then q ∈ D(K ) implies the existence of some r1 ∈ K such that 
r1 � q and q ∈ P (K ) implies the existence of some r2 ∈ K such that q � r2. We find that r1 � q � r2, with r1, r2 ∈ K . Since K
is closed, this implies that q ∈ K , contradicting both q ∈ P (K ) and q ∈ D(K ).

18 Statements (vii) and (viii) are true for general—not necessarily closed—sets K ⊆ G as well.
19 We use the term ‘partition’ in a somewhat looser sense than is usual, as we do not exclude that some of its elements may be empty.
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(ii). Direct consequence of (i) and the definition of P (K ), D(K ) and N(K ).
(iii). To prove that P N(K ) is closed, consider q1, q2 ∈ P N(K ) and r ∈ G such that q1 � r � q2 and assume ex absurdo

that r /∈ P N(K ), implying, due to (ii), that r ∈ K ∪ D(K ). This in turn implies that there is some u ∈ K such that u � r and 
therefore u � q2, which implies that q2 ∈ K ∪ D(K ), contradicting q2 ∈ P N(K ) due to (ii).

To prove that D(K ) is closed, consider q1, q2 ∈ D(K ) and r ∈ G such that q1 � r � q2 and assume ex absurdo that r /∈ D(K ). 
q1 ∈ D(K ) implies that there is some u ∈ K such that u � q1 and therefore u � r, implying that r ∈ K ∪ D(K ) and, since 
r /∈ D(K ), that r ∈ K . We thus find that u � q1 � r, with u, r ∈ K . Because K is closed, this tells us that q1 ∈ K , contradicting 
q1 ∈ D(K ).

(iv). Consider any q ∈ P (t). By the definition of P N(s), it suffices to show that q /∈ {s} ∪ D(s). Assume ex absurdo that 
s � q, then we derive from q � t (since q ∈ P (t)) that s � t , meaning that t ∈ D(s), contradicting t ∈ P N(s).

(v). Assume ex absurdo that q ∈ P (P N(K )), so there is some r ∈ P N(K ) such that q ∈ P (r). By definition of P (P N(K )), 
this implies that q /∈ P N(K ), which in turn implies, due to (ii), that q ∈ K ∪ D(K ). By definition of D(K ), this implies that 
there is some u ∈ K such that u � q. Since q � r (because q ∈ P (r)), we find that u � r, implying that r ∈ K ∪ D(K ). Due 
to (ii), this contradicts r ∈ P N(K ).

(vi). First notice that it suffices to show that D(D(K )) = ∅. Indeed, this implies P N(D(K )) = G \ D(K ) = P N(K ) ∪ K by 
applying (ii) once for the closed D(K ) and once for the closed K . So assume ex absurdo that q ∈ D(D(K )), implying that 
there is some r ∈ D(K ) such that r � q. Since r ∈ D(K ) in turn implies that there is some u ∈ K such that u � r, we find that 
u � q, implying that q ∈ K ∪ D(K ). But q /∈ D(K ) because we know that q ∈ D(D(K )), and therefore q ∈ K . Since u, q ∈ K
and u � r � q, we derive from K being closed that r ∈ K , contradicting r ∈ D(K ).

(vii). This follows at once from:

N(K ) := G \ (
P (K ) ∪ K ∪ D(K )

) = G \
( ⋃

q∈K

P (q) ∪ K ∪
⋃
q∈K

D(q)

)

= G \
( ⋃

q∈K

(
P (q) ∪ {q} ∪ D(q)

)) =
⋂
q∈K

(
G \ (

P (q) ∪ {q} ∪ D(q)
)) =

⋂
q∈K

N(q).

(viii). Direct consequence of (vii).
(ix). Choose q ∈ P (K ) and assume, ex absurdo, that q /∈ P N(k). This implies that q ∈ {k} ∪ D(k), or equivalently k � q, and 

therefore that q ∈ K ∪ D(K ), contradicting q ∈ P (K ) because of (ii).
(x). Direct consequence of (viii) and (ix).
(xi). Choose q ∈ P (K ) \ P (k) and assume ex absurdo that q /∈ N(k), implying that q ∈ P (k) ∪ {k} ∪ D(k) or, since q /∈ P (k), 

that q ∈ {k} ∪ D(k) and therefore k � q. This in turn implies that q ∈ K ∪ D(K ), contradicting q ∈ P (K ) because of (ii). �
Lemma 21. Consider any closed K ⊆ G, and any k ∈ K , s ∈ G \ K and t ∈ P N(s) ∩ K . Then the following statements hold:

(i) D K (k) = D(k) ∩ K ;
(ii) NK (k) = N(k) ∩ K ;

(iii) P NK (k) = P N(k) ∩ K ;
(iv) N(K ), P (K ) \ P (k) and NK (k) are disjoint subsets of N(k);
(v) P K (t) ⊆ P N(s) ∩ K ;

(vi) P (t) \ P K (t) ⊆ P N(s) ∩ P (K ).

Proof. (i). An element q ∈ D K (k) is by definition a descendant of k according to the sub-DAG that corresponds to K , there-
fore q is also a descendant of k in the original DAG: q ∈ D(k). Since q is an element of the sub-DAG, we have q ∈ K and 
therefore q ∈ D(k) ∩ K .

Conversely, if q ∈ D(k) ∩ K , then q ∈ D(k) implies the existence of a directed sequence of nodes k = r1, . . . , rn = q, n ≥ 1, 
in G . Since k ∈ K and q ∈ K , we can derive from K being closed that for all i ∈ {1, . . . , n}, ri ∈ K , implying that in the 
sub-DAG that corresponds to K , q is also a descendant of k: q ∈ D K (k).

(ii). This follows at once from the definitions of NK (k) and N(k):

NK (k) = K \ (
P K (k) ∪ {k} ∪ D K (k)

) = K \ ((
P (k) ∩ K

) ∪ {k} ∪ (
D(k) ∩ K

)) = K \ (
P (k) ∪ {k} ∪ D(k)

) = N(k),

where the second equality is due to Lemma 19 and (i).
(iii). This follows at once from the definitions of P NK (k) and P N(k):

P NK (k) = P K (k) ∪ NK (k) = (
P (k) ∩ K

) ∪ (
N(k) ∩ K

) = (
P (k) ∪ N(k)

) ∩ K =: P N(k) ∩ K ,

where the second equality is due to Lemma 19 and (ii).
(iv). N(K ), P (K ) and K are disjoint subsets of G because of Lemma 20(ii). Since P (K ) \ P (k) ⊆ P (K ) and NK (k) ⊆ K , this 

implies that N(K ), P (K ) \ P (k) and NK (k) are disjoint as well. It only remains to show that N(K ), P (K ) \ P (k) and NK (k)
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are subsets of N(k). For N(K ), this is due to Lemma 20(viii). For P (K ) \ P (k), this is due to Lemma 20(ix) and for NK (k), 
this follows from (ii).

(v). By definition, P K (t) ⊆ K . To show that P K (t) ⊆ P N(s), use Lemma 19 to find that P K (t) ⊆ P (t), and use Lemma 20(iv) 
to infer that P (t) ⊆ P N(s).

(vi). Due to Lemma 19, P (t) \ P K (t) ⊆ P (t) ∩ P (K ). Due to Lemma 20(iv), we have P (t) ⊆ P N(s) and therefore 
P (t) ∩ P (K ) ⊆ P N(s) ∩ P (K ). Combining them yields P (t) \ P K (t) ⊆ P N(s) ∩ P (K ). �
Lemma 22. Consider any closed K ⊆ G and s ∈ P N(K ) and let P1(K ) and P2(K ) be an arbitrary partition of P (K ).20 Let K2 :=
K ∩ D(P2(K )) and K1 := K \ K2 = K \ D(P2(K )) and choose any k1 ∈ K1 and k2 ∈ K2 . The following statements hold:

(i) K2 is a closed subset of G;
(ii) P (K1) ⊆ P1(K );

(iii) P2(K ) ⊆ P (K2);
(iv) K1 ⊆ P N(k2);
(v) P (k1) ∩ K = P (k1) ∩ K1;

(vi) P (k1) ∩ P (K ) = P (k1) ∩ P (K1);
(vii) P N(s) ∩ K1 = K \ D((P (K ) \ P N(s)) ∪ (P N(s) ∩ P2(K ))).

Proof. (i). Consider q1, q2 ∈ K ∩ D(P2(K )) and r ∈ G such that q1 � r � q2. Since K is closed, we have that r ∈ K , and we are 
left to show that r ∈ D(P2(K )). That q1 ∈ D(P2(K )) implies the existence of some u ∈ P2(K ) such that u � q1 and therefore 
u � r, implying that r ∈ P2(K ) ∪ D(P2(K )). Since r ∈ K , we know that r /∈ P (K ) and therefore r /∈ P2(K ). We infer that 
indeed r ∈ D(P2(K )).

(ii). Consider any q ∈ P (K1), implying the existence of some r ∈ K1 such that q ∈ P (r) and q /∈ K1. We are first going to 
show that q /∈ P2(K ) ∪ K2. Assume ex absurdo that q ∈ P2(K ) ∪ K2, implying that q ∈ P2(K ) ∪ D(P2(K )), which means that 
there is some u ∈ P2(K ) for which u � q and, since q ∈ P (r), that u � r. From this we infer that r ∈ P2(K ) ∪ D(P2(K )) and 
therefore that r ∈ D(P2(K )), since r ∈ K1 ⊆ K implies that r /∈ P (K ), which in turn implies that r /∈ P2(K ). We have thus 
found that r ∈ K ∩ D(P2(K )) = K2, contradicting r ∈ K1. Hence indeed q /∈ P2(K ) ∪ K2, implying q /∈ P2(K ) and q /∈ K2. Since 
also q /∈ K1, we find that q /∈ K , which implies that q ∈ P (K ), since q ∈ P (r) with r ∈ K1 ⊆ K . Since P1(K ) and P2(K ) form 
a partition of P (K ) and q /∈ P2(K ), we conclude that indeed q ∈ P1(K ).

(iii). Consider any q ∈ P2(K ) ⊆ P (K ), implying the existence of some r ∈ K such that q ∈ P (r). From this we infer that 
q � r and therefore r ∈ P2(K ) ∪ D(P2(K )). Since r ∈ K , we see that r /∈ P (K ) and therefore r /∈ P2(K ), whence r ∈ D(P2(K )). 
Together with r ∈ K , this implies that r ∈ K2. Since q ∈ P (K ) implies q /∈ K and therefore q /∈ K2, we can infer from q ∈ P (r)
that q ∈ P (K2).

(iv). Consider any q ∈ K1. Assume ex absurdo that q /∈ P N(k2), implying that q ∈ {k2} ∪ D(k2) and therefore that k2 � q. 
Since k2 ∈ K2, we infer that k2 ∈ D(P2(K )), implying the existence of some r ∈ P2(K ) such that r � k2 and therefore r � q, 
which in turn implies that q ∈ P2(K ) ∪ D(P2(K )). Since q ∈ K1 ⊆ K , we have that q /∈ P (K ) and therefore that q /∈ P2(K ). 
Hence q ∈ D(P2(K )) and therefore also q ∈ K2, since q ∈ K . This contradicts q ∈ K1, since K1 and K2 form a partition of K .

(v). Since it trivially holds that P (k1) ∩ K ⊇ P (k1) ∩ K1, we only need to prove that P (k1) ∩ K ⊆ P (k1) ∩ K1. So consider 
any q ∈ P (k1) ∩ K . By definition of P (K1), we derive from q ∈ P (k1) that either q ∈ P (K1) or q ∈ K1. Assume ex absurdo that 
q ∈ P (K1), then due to (ii), q ∈ P1(K ). Since q ∈ K implies q /∈ P (K ) and therefore q /∈ P1(K ), we have a contradiction. We 
have thus found that q ∈ K1 and, since q ∈ P (k1), that q ∈ P (k1) ∩ K1.

(vi). Since due to (ii), P (K1) ⊆ P1(K ), we find that P (K1) ⊆ P (K ) and therefore P (k1) ∩ P (K ) ⊇ P (k1) ∩ P (K1). To prove 
that P (k1) ∩ P (K ) ⊆ P (k1) ∩ P (K1), consider any q ∈ P (k1) ∩ P (K ). By definition of P (K1), we derive from q ∈ P (k1) that 
either q ∈ P (K1) or q ∈ K1. Since q ∈ P (K ), we have that q /∈ K and therefore also that q /∈ K1. Hence q ∈ P (K1) and 
therefore, since q ∈ P (k1), also q ∈ P (k1) ∩ P (K1).

(vii). First, notice that by subtracting both sides of the expression from K , we obtain the equivalent statement

K2 ∪ (
K1 \ P N(s)

) = K ∩ D
(

P (K ) \ P N(s)
) ∪ (

P N(s) ∩ P2(K )
)
.

Since we have that (P (K ) \ P N(s)) ∪ (P N(s) ∩ P2(K )) = P2(K ) ∪ (P (K ) \ P N(s)) and K2 ∪ (K1 \ P N(s)) = K2 ∪ (K \ P N(s)), 
this is in turn equivalent to:

K2 ∪ (
K \ P N(s)

) = K ∩ D
(

P2(K ) ∪ (
P (K ) \ P N(s)

))
.

We will prove this statement instead of the original one.
We start by proving that K2 ∪ (K \ P N(s)) ⊆ K ∩ D(P2(K ) ∪ (P (K ) \ P N(s))). Consider any q ∈ K2 ∪ (K \ P N(s)). On the 

one hand, if q ∈ K2, then q ∈ D(P2(K )). Since q /∈ P2(K ) ∪ (P (K ) \ P N(s)), because K and P2(K ) ∪ (P (K ) \ P N(s)) ⊆ P (K ) are 
disjoint, we can infer that indeed q ∈ K ∩ D(P2(K ) ∪ (P (K ) \ P N(s))). On the other hand, if q ∈ K \ P N(s), then q /∈ P N(s)
and therefore q ∈ {s} ∪ D(s). Since s ∈ P N(K ) and therefore due to Lemma 20(ii), s /∈ K , we know from q ∈ K that q �= s. We 

20 Here too, we allow that one of the sets P1(K ) or P2(K ) may be empty.
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can therefore infer that q ∈ D(s), implying the existence of a directed path s = r1, . . . , rn = q, n > 1. Now let j be the first 
index in {1, . . . , n} for which r j ∈ K . Since q ∈ K , such an index exists, and since s /∈ K , j > 1, and therefore we can consider 
the node r j−1. Since r j−1 ∈ P (r j), r j ∈ K and r j−1 /∈ K , we infer that r j−1 ∈ P (K ). Since s � r j−1, we have r j−1 ∈ {s} ∪ D(s)
and therefore r j−1 /∈ P N(s), whence r j−1 ∈ P (K ) \ P N(s) ⊆ P2(K ) ∪ (P (K ) \ P N(s)). Since q /∈ P2(K ) ∪ (P (K ) \ P N(s)) because 
q ∈ K , and since r j−1 � q, we obtain that q ∈ K ∩ D(P2(K ) ∪ (P (K ) \ P N(s))).

We now prove that K2 ∪ (K \ P N(s)) ⊇ K ∩ D(P2(K ) ∪ (P (K ) \ P N(s))). Consider any q ∈ K ∩ D(P2(K ) ∪ (P (K ) \ P N(s))). 
Then there is some r ∈ P2(K ) ∪ (P (K ) \ P N(s)) such that r � q. On the one hand, if r ∈ P2(K ), then q ∈ D(P2(K )) because q ∈
K and therefore q /∈ P (K ), whence indeed q ∈ K ∩ D(P2(K )) = K2 ⊆ K2 ∪ (K \ P N(s)). On the other hand, if r ∈ P (K ) \ P N(s), 
then since r /∈ P N(s), r ∈ {s} ∪ D(s) and therefore s � r, implying that s � q. We thus find that q ∈ {s} ∪ D(s), or equivalently, 
that q /∈ P N(s). Combined with q ∈ K , we obtain that q ∈ K \ P N(s) ⊆ K2 ∪ (K \ P N(s)). �
Proof of Theorem 10. Fix any closed set K ⊆ G , xP (K ) ∈ XP (K ) , g ∈ G(XN(K ))>0 and f ∈ G(XK ). Clearly, without loss of 
generality, we can assume f to be non-zero.

We first prove the converse implication: gI{xP (K )} f ∈Dirr
G ⇐ f ∈Dirr

K�xP (K )
.

Due to the coherence of Dirr
G and the definition of Dirr

K�xP (K )
and G(XN(K ))>0, we can assume, without loss of generality, 

that f ∈ Airr
K�xP (K )

and g = I{zN(K )} , with zN(K ) ∈ XN(K ) . Since f ∈ Airr
K�xP (K )

, f = I{zP NK (s)} f ′ for some s ∈ K , f ′ ∈ Ds�zP (s) and 
zP NK (s) ∈XP NK (s) with zP (s)∩P (K ) = xP (s)∩P (K ) . We need to prove that I{zN(K )}I{xP (K )}I{zP NK (s)} f ′ ∈Dirr

G . Due to Lemma 19,

I{zP (s)} = I{zP (K )∩P (s)}I{zP K (s)} = I{xP (K )∩P (s)}I{zP K (s)},

and therefore

I{zN(K )}I{xP (K )}I{zP NK (s)} f ′ = I{zN(K )}I{xP (K )}I{zP K (s)}I{zNK (s)} f ′ = I{zN(K )}I{xP (K )\P (s)}I{xP (K )∩P (s)}I{zP K (s)}I{zNK (s)} f ′

= I{zN(K )}I{xP (K )\P (s)}I{zP (s)}I{zNK (s)} f ′

= I{zN(K )}I{xP (K )\P (s)}I{zNK (s)}I{zP (s)} f ′ = g′
I{zP (s)} f ′,

in which g′ := I{zN(K )}I{xP (K )\P (s)}I{zNK (s)} . So we are left to prove that g′
I{zP (s)} f ′ ∈ Dirr

G . We have already explained, both in 
Section 4.2 and the proof of Proposition 1, that since f ′ ∈ Ds�zP (s) , I{yN(s)}I{zP (s)} f ′ ∈ Dirr

G for any yN(s) ∈ XN(s) . Therefore, 
the proof follows from the coherence of Dirr

G , since due to N(K ), P (K ) \ P (s) and NK (s) being disjoint subsets of N(s) by 
Lemma 21(iv), g′ is a finite (and non-empty) sum of indicators I{yN(s)} , yN(s) ∈XN(s) .

We now turn to the proof of the direct implication: gI{xP (K )} f ∈Dirr
G ⇒ f ∈Dirr

K�xP (K )
.

The proof is rather involved and uses ideas similar to the proof of Proposition 5. First of all, by assumption, f ′′ :=
gI{xP (K )} f ∈Dirr

G and therefore also, due to Proposition 3

f ′′ =
∑
s∈G

∑
zP N(s)∈XP N(s)

I{zP N(s)} f s,zP N(s) , (A.1)

where every f s,zP N(s) is an element of Ds�zP (s) ∪ {0} and at least one of them is non-zero.

Now assume ex absurdo that f /∈ Dirr
K�xP (K )

. We will show that this allows us to construct a probability mass function pG

on XG such that the corresponding expectation operator EG on G(XG ) yields both EG ( f ′′) > 0 and EG ( f ′′) < 0. Since this 
is a contradiction, we find that f ∈Dirr

K�xP (K )
, which concludes the proof.

As shown in the proof of Proposition 5, it is possible to find, for all s ∈ G and all zP (s) ∈ XP (s) , a local mass func-
tion ps(·|zP (s)) on Xs with expectation operator Es(·|zP (s)) on G(Xs), such that ps(zs|zP (s)) > 0 for all zs ∈ Xs , and 
Es( f s,zP N(s) |zP (s)) > 0 for all zN(s) ∈ XN(s) for which f s,zP N(s) �= 0. We will now use these local mass functions to create, for 
specific closed subsets S of G , Bayesian networks that have a graphical structure corresponding to this closed subset S . By an 
argument similar to the one for local sets of desirable gambles in Section 5, we see that in order to do so, all that is needed 
is for us to instantiate the value of X P (S) . Every choice of y P (S) ∈XP (S) then yields, for all s ∈ S and zP S (s) ∈XP S (s) , a condi-
tional local mass function ps(·|zP S (s)) and expectation operator Es(·|zP S (s)) obtained by identifying them with ps(·|zP (s))

and Es(·|zP (s)), where we let zP (s)\P S (s) = y P (s)\P S (s) . We denote the mass function of the resulting Bayesian network 
by pS (·|y P (S)) and its corresponding expectation operator by E S(·|y P (S)). In order to explicitly recall the specific choice 
of y P (S) ∈ XP (S) also in the notation used for the local models, we will also write ps(·|zP S (s), y P (S)) := ps(·|zP S (s)) and 
Es(·|zP S (s), y P (S)) := Es(·|zP S (s)). For every fixed y P (S) ∈XP (S) , this expectation operator has a number of useful properties.

A first and trivial property is that E S (1|y P (S)) = 1.
Secondly, consider any s ∈ S . S is a closed subset of G and therefore, due to Lemma 20(ix), P (S) ⊆ P N(s). It then holds 

for all zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0 and zP (S) = y P (S) , that E S(I{zP N(s)∩S } f s,zP N(s) |y P (S)) > 0. To see why, first notice 
that because S is closed, P N S (s) = P N(s) ∩ S due to Lemma 21(iii). It then follows from the conditional independence 
properties of Bayesian networks that indeed



J. De Bock, G. de Cooman / International Journal of Approximate Reasoning 56 (2015) 178–207 199
E S(I{zP N(s)∩S } f s,zP N(s) |y P (S)) = E S(I{zP N S (s)} f s,zP N(s) |y P (S)) = pS(zP N S (s)|y P (S))E S( f s,zP N(s) |zP N S (s), y P (S))

= pS(zP N S (s)|y P (S))Es( f s,zP N(s) |zP S (s), y P (S))

= pS(zP N S (s)|y P (S))Es( f s,zP N(s) |zP (s)) > 0,

where the inequality holds because Es( f s,zP N(s) |zP (s)) and pS (zP N S (s)|y P (S)) are strictly positive. For Es( f s,zP N(s) |zP (s)), this is 
true by construction, and for pS(zP N S (s)|y P (S)), this holds because all local probabilities are by construction strictly positive 
and therefore the global ones are too.

Thirdly, fix s ∈ G \ S and zP N(s) ∈XP N(s) such that zP (S)∩P N(s) = y P (S)∩P N(s) . By applying the factorisation and conditional 
independence properties of the resulting Bayesian network, we find that

E S(I{zP N(s)∩S }|y P (S)) =
∑

w S∈XS
w P N(s)∩S=zP N(s)∩S

pS(w S |y P (S)) =
∑

w S∈XS
w P N(s)∩S=zP N(s)∩S

∏
k∈S

pk(wk|w P S (k), y P (S))

=
∏

k∈P N(s)∩S

pk(zk|zP S (k), y P (S))
∑

w S∈XS
w P N(s)∩S=zP N(s)∩S

∏
k∈S\P N(s)

pk(wk|w P S (k), y P (S))

=
∏

k∈P N(s)∩S

pk(zk|zP S (k), y P (S)) =
∏

k∈P N(s)∩S

pk(zk|zP (k)).

To understand the third equality, notice that since S is closed, Lemma 21(v) implies, for all k ∈ P N(s) ∩ S , that P S (k) ⊆
P N(s) ∩ S . For the fifth equality, it suffices to apply Lemma 21(vi) to find that for all k ∈ P N(s) ∩ S , P (k) \ P S (k) ⊆ P N(s) ∩
P (S). The fourth equality is a bit more complicated. It is trivial if S \ P N(s) = ∅, so suppose that S \ P N(s) �= ∅. Pick any leaf 
� from the sub-DAG that corresponds to the nodes in S \ P N(s); this is possible because S \ P N(s) �= ∅ and a DAG always 
has at least one leaf. We then find that∑

w S∈XS
w P N(s)∩S=zP N(s)∩S

∏
k∈S\P N(s)

pk(wk|w P S (k), y P (S))

=
∑

w S\{�}∈XS\{�}
w P N(s)∩S=zP N(s)∩S

∑
w�∈X�

∏
k∈(S\P N(s))

pk(wk|w P S (k), y P (S))

=
∑

w S\{�}∈XS\{�}
w P N(s)∩S=zP N(s)∩S

∏
k∈(S\P N(s))\{�}

pk(wk|w P S (k), y P (S))
∑

w�∈X�

p�(w�|w P S (�), y P (S))

=
∑

w S\{�}∈XS\{�}
w P N(s)∩S=zP N(s)∩S

∏
k∈(S\P N(s))\{�}

pk(wk|w P S (k), y P (S)).

The first equality holds because � /∈ P N(s) ∩ S , and the second one because � /∈ P S (k) for k ∈ (S \ P N(s)) \ {�}, since �
was assumed to be a leaf of S \ P N(s). By repeating this argument for the sub-DAG that corresponds to the nodes in 
(S \ P N(s)) \ {�}, we can remove yet another node, and if we go on in this way until no node remains, we eventually obtain 
that indeed ∑

w S∈XS
w P N(s)∩S=zP N(s)∩S

∏
k∈S\P N(s)

pk(wk|w P S (k), y P (S)) = 1.

Hence, for any s ∈ G \ S and zP N(s) ∈XP N(s) such that zP (S)∩P N(s) = y P (S)∩P N(s):

E S(I{zP N(s)∩S }|y P (S)) =
∏

k∈P N(s)∩S

pk(zk|zP (k)).

We can derive two additional things from this result. First of all, E S(I{zP N(s)∩S }|y P (S)) is strictly positive because all local 
probabilities are strictly positive by construction. And secondly, E S (I{zP N(s)∩S }|y P (S)) does not depend on the particular value 
of y P (S)\P N(s) because for all k ∈ P N(s) ∩ S , P (k) ⊆ P N(s) due to Lemma 20(iv).

If we now no longer consider a fixed value of y P (S) ∈XP (S) , then the results mentioned above have a number of imme-
diate consequences. First of all, the gamble E S (1|X P (S)) is constant and equal to 1. Secondly, for all s ∈ S and zP N(s) ∈XP N(s)
such that f s,zP N(s) �= 0, E S(I{zP N(s)∩S } f s,zP N(s) |zP (S)) > 0. And thirdly, for all s ∈ G \ S and zP N(s) ∈XP N(s) the gamble

E S(I{zP N(s)∩S }|zP (S)∩P N(s), X P (S)\P N(s))

is constant and strictly positive: it is equal to 
∏

k∈P N(s)∩S pk(zk|zP (k)).
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We start, in a first stage, with the Bayesian networks that correspond with the subset S := D(K ) of G , closed due to 
Lemma 20(iii). Every y P (D(K )) ∈ XP (D(K )) yields a Bayesian network, and thus a mass function pD(K )(·|y P (D(K ))) on XD(K )

and an associated expectation operator E D(K )(·|y P (D(K ))) on G(XD(K )). If we do not fix the value of y P (D(K )) ∈XP (D(K )) , then 
E D(K )(·|X P (D(K ))) satisfies a number of properties, which have already been proven above for general closed subsets S of G . 
First of all, the gamble E D(K )(1|X P (D(K ))) is constant and equal to 1. Secondly, for all s ∈ D(K ) and zP N(s) ∈XP N(s) such that 
f s,zP N(s) �= 0, E D(K )(I{zP N(s)∩D(K )} f s,zP N(s) |zP (D(K ))) > 0. And thirdly, for all s ∈ G \ D(K ) and zP N(s) ∈XP N(s) the gamble

E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s))

is constant and strictly positive: it is equal to 
∏

k∈P N(s)∩D(K ) pk(zk|zP (k)).
Next, in the second stage, we consider the (single) Bayesian network that corresponds with the subset S := P N(K ) of G , 

closed due to Lemma 20(iii). Since K is closed, we infer from Lemma 20(v) that P (P N(K )) = ∅. Therefore, we do not need 
to instantiate X P (P N(K )) since it is deterministic. We thus obtain an unconditional mass function p P N(K ) on XP N(K ) and 
a corresponding expectation operator E P N(K ) on G(XP N(K )). Again, we derive a number of properties that will be needed 
further on in this proof.

First of all, since all local probabilities are strictly positive, we find that, for all zP N(K ) ∈XP N(K ) , p P N(K )(zP N(K )) > 0.
Secondly, for all s ∈ P N(K ) and zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0, we have E P N(K )(I{zP N(s)∩P N(K )} f s,zP N(s) ) > 0. To see 

why, first recall that, due to Lemma 20(iii), P N(K ) is closed. Therefore P N P N(K )(s) = P N(s) ∩ P N(K ) due to Lemma 21(iii), 
and P P N(K )(s) = P (s) because of Lemma 19 and P (P N(K )) = ∅. It then follows from the conditional independence proper-
ties of Bayesian networks that

E P N(K )(I{zP N(s)∩P N(K )} f s,zP N(s) ) = E P N(K )(I{zP N P N(K )(s)} f s,zP N(s) ) = p P N(K )(zP N P N(K )(s))E P N(K )( f s,zP N(s) |zP N P N(K )(s))

= p P N(K )(zP N P N(K )(s))Es( f s,zP N(s) |zP P N(K )(s))

= p P N(K )(zP N P N(K )(s))Es( f s,zP N(s) |zP (s)) > 0,

where the inequality holds because Es( f s,zP N(s) |zP (s)) and p P N(K )(zP N P N(K )(s)) are strictly positive. For Es( f s,zP N(s) |zP (s)), this 
is true by construction, and for p P N(K )(zP N P N(K )(s)), this holds because all local probabilities are by construction strictly 
positive and therefore the global ones are too.

Thirdly, we have E P N(K )(gI{xP (K )}) > 0. Indeed, since gI{xP (K )} ∈ G(XP N(K )>0 ), we can derive that E P N(K )(gI{xP (K )}) is a 
positive linear combination of probabilities p P N(K )(zP N(K )), with zP N(K ) ∈ XP N(K ) , for which we have already shown that 
they are strictly positive.

For the third stage, we start by associating with the gamble f the following collection of gambles on XK :

A f
K�xP (K )

:= {
I{zP N(s)∩K1 } f s,zP N(s) : s ∈ K , zP N(s) ∈ XP N(s), zP (s)\P K (s) = xP (s)\P K (s), P (s) ∩ K ⊆ K1 ⊆ K , f s,zP N(s) �= 0

}
,

which is a finite subset of Dirr
K�xP (K )

:= posi(Airr
K�xP (K )

). To see why, first notice that because P NK (s) = P N(s) ∩ K

due to Lemma 21(iii), I{zP N(s)∩K1 } is clearly the (finite) sum of all indicators I{y P NK (s)} such that y P NK (s) ∈XP NK (s) and 
y P N(s)∩K1 = zP N(s)∩K1 . By definition of the posi operator, we are now left to show that for any y P NK (s) ∈XP NK (s) such 
that y P N(s)∩K1 = zP N(s)∩K1 , we have I{y P NK (s)} f s,zP N(s) ∈ Airr

K�xP (K )
. By construction of A f

K�xP (K )
, zP (s)\P K (s) = xP (s)\P K (s) , and it 

therefore suffices to show that y P K (s) = zP K (s) . To see why this last equality holds, first notice that P K (s) = P (s) ∩ K due 
to Lemma 19. Also, P (s) ∩ K ⊆ P N(s) ∩ K1 because P (s) ∩ K ⊆ K1 by construction of A f

K�xP (K )
and P (s) ∩ K ⊆ P N(s) by 

definition of P N(s). Therefore, we find that P K (s) ⊆ P N(s) ∩ K1, implying that y P K (s) = zP K (s) is a direct consequence of 
y P N(s)∩K1 = zP N(s)∩K1 .

Due to the coherence of Dirr
K�xP (K )

and the assumption that the non-zero f /∈ Dirr
K�xP (K )

, 0 /∈ posi({− f } ∪ Dirr
K�xP (K )

). To 
see why this holds, assume ex absurdo that 0 ∈ posi({− f } ∪ Dirr

K�xP (K )
), then it follows from the coherence of Dirr

K�xP (K )
that 

we can find λ1, λ2 > 0 and h ∈ Dirr
K�xP (K )

such that λ1(− f ) + λ2h = 0 and therefore f = (λ2/λ1)h ∈ Dirr
K�xP (K )

, contradicting 
f /∈Dirr

K�xP (K )
.

Since A f
K�xP (K )

and G(XK )>0 are both subsets of Dirr
K�xP (K )

, we can infer from 0 /∈ posi({− f } ∪ Dirr
K�xP (K )

) that 0 /∈
posi({− f } ∪ A f

K�xP (K )
∪ G(XK )>0) =: E({− f } ∪A f

K�xP (K )
). We also know that {− f } ∪ A f

K�xP (K )
is a finite subset of G(XK )

and therefore, we can apply Lemma 18. This provides us with a mass function pK�xP (K )
on XK with expectation operator 

E K�xP (K )
on G(XK ) for which pK�xP (K )

(zK ) > 0 for all zK ∈XK , E K�xP (K )
(h) > 0 for all h ∈A f

K�xP (K )
and E K�xP (K )

( f ) < 0.
Using the mass function pK�xP (K )

on XK and the local mass functions, we will now construct, for every instantiation 
y P (K ) ∈ XP (K ) , a conditional mass function pK (·|y P (K )) on XK . So consider any y P (K ) ∈ XP (K ) . If y P (K ) = xP (K ) , we define 
pK (·|xP (K )) := pK�xP (K )

. If y P (K ) is such that yk �= xk for all k ∈ P (K ), then pK (·|y P (K )) is constructed in the same way as 
we have done several times before: we use the local mass functions and the instantiation y P (K ) of the parent variables 
X P (K ) to construct a Bayesian network that has a graphical structure corresponding to the subset K of G . Unlike the one 
in the preceding paragraphs, this construction does not take into account the gamble f . In all other cases, we need a more 
complex construction that includes the previous two as a special case.
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Let us denote by P1(K ) the largest subset of P (K ) such that yk = xk for all k ∈ P1(K ) and let P2(K ) := P (K ) \ P1(K ). 
We also let K2 := K ∩ D(P2(K )) and K1 := K \ D(P2(K )). These sets depend on y P (K ) , but we have not reflected this in the 
notation to avoid cluttering up the formulas and because y P (K ) is fixed in this part of the proof.

It should be clear by now that for any zP (K2) ∈ XP (K2) , we can construct a strictly positive mass function pK2 (·|zP (K2))

on XK2 and an associated expectation operator E K2 (·|zP (K2)) on G(XK2 ), by using the local mass functions to con-
struct a Bayesian network that has a graphical structure corresponding to the subset K2 of G . Since we know that 
K2 is a closed subset of G due to Lemma 22(i), we have for all s ∈ G and zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0 that 
E K2 (I{zP N(s)∩K2 } f s,zP N(s) |zP (K2)) > 0 if s ∈ K2 and that the gamble E K2 (I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s)) is constant, strictly 
positive and equal to 

∏
k∈P N(s)∩K2

pk(zk|zP (k)) if s /∈ K2. The proof for both these properties follows from the discussion 
above for general closed subsets S , by taking S = K2.

Next, we define the mass function pK1 (·|xP1(K )) on XK1 as the marginalisation of pK�xP (K )
to XK1 : for all zK1 ∈ XK1 , we 

let

pK1(zK1 |xP1(K )) :=
∑

w K ∈XK
w K1 =zK1

pK�xP (K )
(w K ).

Since all the terms in this sum are strictly positive by construction, we have that pK1 (zK1 |xP1(K )) > 0 for all zK1 ∈XK1 .
For the corresponding expectation operator E K1(·|xP1(K )) on G(XK1 ), we get that E K1 (h|xP1(K )) = E K�xP (K )

(h) for all h ∈
G(XK1 ).

We can now construct the mass function pK (·|y P (K )) by defining, for all zK ∈XK :

pK (zK |y P (K )) := pK1(zK1 |y P1(K ))pK2(zK2 |y P (K2)∩P (K ), zP (K2)\P (K ))

= pK1(zK1 |xP1(K ))pK2(zK2 |y P (K2)∩P (K ), zP (K2)\P (K )),

which makes sense because P (K2) \ P (K ) ⊆ K1. It should be clear that for all zK ∈XK , we have that pK (zK |y P (K )) > 0.
For the corresponding expectation operator E K (·|y P (K )), the law of iterated expectation yields for all h ∈ G(XK ) that

E K (h|y P (K )) = E K1

(
E K2(h|y P (K2)∩P (K ), X P (K2)\P (K ))|xP1(K )

)
. (A.2)

This expectation operator has two useful properties that we will need further on in this proof.
For the first property of E K (·|y P (K )), consider any s ∈ K , implying that P (K ) ⊆ P N(s) due to Lemma 20(ix). It then holds 

for all zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0 and zP (K ) = y P (K ) , that E K (I{zP N(s)∩K } f s,zP N(s) |zP (K )) > 0. To see why, consider 
two distinct cases: s ∈ K2 and s ∈ K1.

If s ∈ K2, then because K1 ⊆ P N(s) due to Lemma 22(iv), we get, using Eq. (A.2):

E K (I{zP N(s)∩K } f s,zP N(s) |y P (K )) = E K1

(
E K2(I{zK1 }I{zP N(s)∩K2 } f s,zP N(s) |y P (K2)∩P (K ), X P (K2)\P (K ))|xP1(K )

)
= E K1

(
I{zK1 }E K2(I{zP N(s)∩K2 } f s,zP N(s) |y P (K2)∩P (K ), zP (K2)\P (K ))|xP1(K )

)
= E K1(I{zK1 }|xP1(K ))E K2(I{zP N(s)∩K2 } f s,zP N(s) |y P (K2)∩P (K ), zP (K2)\P (K ))

= pK1(zK1 |xP1(K ))E K2(I{zP N(s)∩K2 } f s,zP N(s) |zP (K2)) > 0,

where the final expression is strictly positive because both factors have been proved above to be strictly positive.
If s ∈ K1, then because P (K ) ⊆ P N(s), we get, using Eq. (A.2):

E K (I{zP N(s)∩K } f s,zP N(s) |y P (K )) = E K1

(
E K2(I{zP N(s)∩K1 } f s,zP N(s)I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s))|xP1(K )

)
= E K1

(
I{zP N(s)∩K1 } f s,zP N(s) E K2(I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s))|xP1(K )

)
= E K1(I{zP N(s)∩K1 } f s,zP N(s) |xP1(K ))E K2(I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s)) > 0.

The third equality holds because E K2 (I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s)) has been shown to be a constant gamble 
earlier on and the final expression is strictly positive since the two constituting factors are strictly positive. For 
E K2 (I{zP N(s)∩K2 }|zP (K2)∩P N(s), X P (K2)\P N(s)), this has already been proved. For E K1 (I{zP N(s)∩K1 } f s,zP N(s) |xP1(K )), this follows from

E K1(I{zP N(s)∩K1 } f s,zP N(s) |xP1(K )) = E K�xP (K )
(I{zP N(s)∩K1 } f s,zP N(s) ) > 0,

where the final inequality is due to I{zP N(s)∩K1 } f s,zP N(s) being an element of A f
K�xP (K )

, which is in turn true because P (s) ∩ K =
P (s) ∩ K1 ⊆ K1 ⊆ K due to Lemma 22(v), and because P (s) ∩ P (K ) = P (s) ∩ P (K1) ⊆ P (K1) ⊆ P1(K ) due to Lemma 22(vi)
and (ii) and therefore zP (s)∩P (K ) = xP (s)∩P (K ) , implying that zP (s)\P K (s) = xP (s)\P K (s) due to Lemma 19.

The second property of E K (·|y P (K )) is that for all s ∈ P N(K ) and zP N(s) ∈ XP N(s) such that zP (K )∩P N(s) = y P (K )∩P N(s) , 
E K (I{zP N(s)∩K }|y P (K )) is strictly positive and does not depend on the particular value of y P (K )\P N(s) . To prove this, 
we start by recalling from the discussion above that, because s /∈ K2, E K2 (I{zP N(s)∩K }|zP (K2)∩P N(s), X P (K2)\P N(s)) is a 
2
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constant, strictly positive gamble that is furthermore equal to 
∏

k∈P N(s)∩K2
pk(zk|zP (k)). Hence, we also have that 

E K2 (I{zP N(s)∩K2 }|y P (K2)∩P (K ), z(P (K2)\P (K ))∩P N(s), X(P (K2)\P (K ))\P N(s)) is a constant, strictly positive gamble that is equal to ∏
k∈P N(s)∩K2

pk(zk|zP (k)) because

(y P (K2)∩P (K ), z(P (K2)\P (K ))∩P N(s), X(P (K2)\P (K ))\P N(s))

= (y(P (K2)∩P (K ))\P N(s), y P (K2)∩P (K )∩P N(s), z(P (K2)\P (K ))∩P N(s), X(P (K2)\P (K ))\P N(s))

= (y(P (K2)∩P (K ))\P N(s), zP (K2)∩P (K )∩P N(s), z(P (K2)\P (K ))∩P N(s), X(P (K2)\P (K ))\P N(s))

= (y(P (K2)∩P (K ))\P N(s), zP (K2)∩P N(s), X(P (K2)\P (K ))\P N(s))

= (y(P (K2)\P N(s))∩P (K ), zP (K2)∩P N(s), X(P (K2)\P N(s))\P (K )).

We therefore get that, using Eq. (A.2),

E K (I{zP N(s)∩K }|y P (K )) = E K1

(
E K2(I{zP N(s)∩K1 }I{zP N(s)∩K2 }|y P (K2)∩P (K ), X P (K2)\P (K ))|xP1(K )

)
= E K1

(
I{zP N(s)∩K1 }E K2(I{zP N(s)∩K2 }|y P (K2)∩P (K ), z(P (K2)\P (K ))∩P N(s), X(P (K2)\P (K ))\P N(s))|xP1(K )

)
= E K1(I{zP N(s)∩K1 }|xP1(K ))

∏
k∈P N(s)∩K2

pk(zk|zP (k)),

where the second equality is a consequence of P (K2) \ P (K ) ⊆ K1.
The property that we are trying to prove will therefore follow if we can show that both E K1 (I{zP N(s)∩K1 }|xP1(K )) and ∏

k∈P N(s)∩K2
pk(zk|zP (k)) are strictly positive and do not depend on the particular value of y P (K )\P N(s) ∈XP (K )\P N(s) .

We start with E K1 (I{zP N(s)∩K1 }|xP1(K )). It is by definition equal to E K�xP (K )
(I{zP N(s)∩K1 }) and therefore strictly positive be-

cause pK�xP (K )
is a strictly positive mass function. Since s ∈ P N(K ), we can use Lemma 22(vii) to infer that P N(s) ∩ K1 =

K \ D((P (K ) \ P N(s)) ∪ (P N(s) ∩ P2(K ))). We therefore find that P N(s) ∩ K1 does not depend on the particular value of 
y P (K )\P N(s) in XP (K )\P N(s) because P N(s) ∩ P2(K ) is fully determined by y P (K )∩P N(s) . Hence, E K�xP (K )

(I{zP N(s)∩K1 }) does not 
depend on y P (K )\P N(s) either.

For 
∏

k∈P N(s)∩K2
pk(zk|zP (k)), we start by noticing that P N(s) ∩ K2 does not depend on the particular choice of y P (K )\P N(s)

in XP (K )\P N(s) because, as we have shown in the previous paragraph, P N(s) ∩ K1 does not and because P N(s) ∩ K2 =
(P N(s) ∩ K ) \ (P N(s) ∩ K1). Next, for all k ∈ P N(s) ∩ K2, the factor pk(zk|zP (k)) will not depend on the particular value of 
y P (K )\P N(s) in XP (K )\P N(s) because P (k) ⊆ P N(s) due to Lemma 20(iv) and we therefore find that 

∏
k∈P N(s)∩K2

pk(zk|zP (k))

does not depend on the particular value of y P (K )\P N(s) in XP (K )\P N(s) .
If we now no longer consider a fixed value of y P (K ) ∈ XP (K ) , then the results mentioned above have two immediate 

consequences. First, for all s ∈ K and zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0, E K (I{zP N(s)∩K } f s,zP N(s) |zP (K )) > 0. And second, for 
all s ∈ P N(K ) and zP N(s) ∈XP N(s) , the gamble E K (I{zP N(s)∩K }|zP (K )∩P N(s), X P (K )\P N(s)) is constant and strictly positive.

We are now ready to define the mass function pG on XG that we have been after all along. For all zG ∈XG , we let

pG(zG) := p P N(K )(zP N(K ))pK (zK |zP (K ))pD(K )(zD(K )|zP (D(K ))),

where all three factors (mass functions) have been defined in earlier parts of this proof. Since P N(K ), K and D(K ) constitute 
a partition of G due to Lemma 20(ii), and since P (K ) ⊆ P N(K ) and P (D(K )) ⊆ P N(K ) ∪ K , we see that pG is indeed a mass 
function on XG . For the corresponding expectation operator EG , we know from the law of iterated expectation, and, again, 
P (K ) ⊆ P N(K ) and P (D(K )) ⊆ P N(K ) ∪ K , that for all h ∈ G(XG):

EG(h) = E P N(K )

(
E K

(
E D(K )(h|X P (D(K )))|X P (K )

))
.

Taking the expectation of the gamble f ′′ = gI{xP (K )} f , and recalling that g ∈ G(XN(K ))>0 and f ∈ G(XK ), we find that

EG
(

f ′′) = E P N(K )

(
E K

(
E D(K )

(
f ′′∣∣X P (D(K ))

)∣∣X P (K )

))
= E P N(K )

(
gI{xP (K )}E K

(
f E D(K )(1|X P (D(K )))|xP (K )

))
= E P N(K )

(
gI{xP (K )}E K ( f |xP (K ))

) = E K ( f |xP (K ))E P N(K )(gI{xP (K )}) < 0,

where the last inequality holds because E K ( f |xP (K )) < 0 and E P N(K )(gI{xP (K )}) > 0. For E K ( f |xP (K )), this is true by construc-
tion since E K ( f |xP (K )) = E K�xP (K )

( f ) < 0 and for E P N(K )(gI{xP (K )}), this has been shown earlier on in this proof.
All that is now left to do, is to show that also EG ( f ′′) > 0. Since f s,zP N(s) �= 0 for at least one s ∈ G and zP N(s) ∈ XP N(s) , 

Eq. (A.1) tells us that it suffices to show that EG (I{zP N(s)} f s,zP N(s) ) > 0 for all s ∈ G and zP N(s) ∈ XP N(s) such that f s,zP N(s) �= 0. 
So let us fix any such s ∈ G and zP N(s) ∈ XP N(s) and show that EG (I{zP N(s)} f s,zP N(s) ) > 0. We consider three exhaustive and 
mutually exclusive cases: s ∈ D(K ), s ∈ K and s ∈ P N(K ). The fact that these cases are indeed exhaustive and mutually 
exclusive follows from D(K ), K and P N(K ) constituting a partition of G , due to Lemma 20(ii).

If s ∈ D(K ), then, because D(K ) is closed due to Lemma 20(iii) and because P N(D(K )) = P N(K ) ∪ K due to 
Lemma 20(vi), we can use Lemma 20(x) to infer that P N(K ) ∪ K ⊆ P N(s) and therefore
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EG(I{zP N(s)} f s,zP N(s) ) = EG(I{zP N(K )}I{zK }I{zP N(s)∩D(K )} f s,zP N(s) )

= p P N(K )(zP N(K ))pK (zK |zP (K ))E D(K )(I{zP N(s)∩D(K )} f s,zP N(s) |zP (D(K ))) > 0,

where the inequality holds because all three constituting factors have been shown to be strictly positive earlier on.
If s ∈ K , then since P N(K ) ⊆ P N(s) due to Lemma 20(x), we get

EG(I{zP N(s)} f s,zP N(s) )

= EG(I{zP N(K )}I{zP N(s)∩K }I{zP N(s)∩D(K )} f s,zP N(s) )

= p P N(K )(zP N(K ))E K
(
I{zP N(s)∩K } f s,zP N(s) E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s))|zP (K )

)
= p P N(K )(zP N(K ))E K (I{zP N(s)∩K } f s,zP N(s) |zP (K ))E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s)) > 0.

The third equality holds because E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s)) has been shown to be a constant gamble 
earlier on (observe that s /∈ D(K ) because s ∈ K ), and the final expression is strictly positive since all three constituting 
factors have been shown to be strictly positive earlier on as well.

Finally, if s ∈ P N(K ), then

EG(I{zP N(s)} f s,zP N(s) )

= EG(I{zP N(s)∩P N(K )}I{zP N(s)∩K }I{zP N(s)∩D(K )} f s,zP N(s) )

= E P N(K )

(
I{zP N(s)∩P N(K )} f s,zP N(s)

E K
(
I{zP N(s)∩K }E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s))|zP (K )∩P N(s), X P (K )\P N(s)

))
= E P N(K )(I{zP N(s)∩P N(K )} f s,zP N(s) )

E K (I{zP N(s)∩K }|zP (K )∩P N(s), X P (K )\P N(s))E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s)) > 0,

where the third equality is a consequence of the earlier proven fact that both E K (I{zP N(s)∩K }|zP (K )∩P N(s), X P (K )\P N(s)) and 
E D(K )(I{zP N(s)∩D(K )}|zP (D(K ))∩P N(s), X P (D(K ))\P N(s)) are constant gambles. The inequality is again due to the three constituting 
factors being strictly positive, which was also shown earlier on in this proof. �
Proof of Corollary 11. Fix any closed K ⊆ G , xP (K ) ∈ XP (K ) , non-empty AN(K ) ⊆ XN(K ) and f ∈ G(XK ). Since IAN(K )

is an 
element of G(XN(K ))>0, we know from Eq. (1) and Theorem 10 that

f ∈ margK

(
Dirr

G �{xP (K )} × AN(K )

) ⇔ IAN(K )
I{xP (K )} f ∈ Dirr

G ⇔ f ∈ Dirr
K�xP (K )

. �
Proof of Corollary 12. Fix any closed K ⊆ G , and xP (K ) ∈XP (K ) and any non-empty AN(K ) ⊆XN(K ) . Then due to Corollary 11, 
margK (Dirr

G �{xP (K )} × AN(K )) =Dirr
K�xP (K )

. The special case AN(K ) =XN(K ) yields

margK

(
Dirr

G �xP (K )

) = margK

(
Dirr

G �{xP (K )} ×XN(K )

) = Dirr
K�xP (K )

. �
Proof of Proposition 13. Consider any partition G1, . . . , Gn of G such that P (Gi) = ∅ for all i ∈ {1, . . . , n}. Then, clearly, 
the sets Gi are disconnected from one another. Indeed, assume ex absurdo that there is an arrow from a node si ∈ Gi to 
a node s j ∈ G j , with i, j ∈ {1, . . . , n} and i �= j. Then si is an element of P (G j), which contradicts our assumption that 
P (G j) = ∅. Consequently, for any i ∈ {1, . . . , n} and all s ∈ Gi , we have that P Gi (s) = P (s) ⊆ Gi , D(s) ⊆ Gi and therefore also 
G \ Gi ⊆ N(s) and P N(s) = P NGi (s) ∪ (G \ Gi).

Now let Dirr
G be the irrelevant natural extension of the complete network, as given by Eq. (4), and, for all i ∈ {1, . . . , n}, let 

Dirr
Gi

be the irrelevant natural extension of the network that has the sub-DAG associated with Gi as its graphical structure, 
as given by Eq. (7). The result then follows from

n⊗
i=1

Dirr
Gi

= posi
({
I{zG\Gi } f : i ∈ {1, . . . ,n}, zG\Gi ∈ XG\Gi , f ∈ Dirr

Gi

})
= posi

({
I{zG\Gi } f : i ∈ {1, . . . ,n}, zG\Gi ∈ XG\Gi ,

f ∈ posi
({I{zP NGi

(s)} f : s ∈ Gi, zP NGi (s) ∈ XP NGi (s), f ∈ Ds�zP (s)}
)})

= posi
({
I{zG\Gi }I{zP NGi

(s)} f : i ∈ {1, . . . ,n}, zG\Gi ∈ XG\Gi , s ∈ Gi, zP NGi (s) ∈ XP NGi (s), f ∈ Ds�zP (s)

})
= posi

({I{z } f : s ∈ G, zP N(s) ∈ XP N(s), f ∈ Ds�z }) = Dirr.
P N(s) P (s) G
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The first equality in this derivation follows from Eq. (9). The second one follows from Eq. (7) and the earlier proven fact that, 
for all i ∈ {1, . . . , n} and every s ∈ Gi , P Gi (s) = P (s). The third equality is due to the definition of the posi operator and the 
fourth equality holds because G1, . . . , Gn is a partition of G and because we have already shown that, for all i ∈ {1, . . . , n}
and every s ∈ Gi , P N(s) = P NGi (s) ∪ (G \ Gi). The final equality follows from the definition of Dirr

G , as given by Eq. (4). �
Proof of Theorem 14. Fix i ∈ {1, . . . , n} and consider any s ∈ P (Ki). Then there is some q ∈ Ki such that s ∈ P (q) and s /∈ Ki . 
Due to our assumption that P K (Ki) = ∅, we find that s /∈ K and therefore s ∈ P (K ). Hence, we have for all i ∈ {1, . . . , n} that 
P (Ki) ⊆ P (K ).

The rest of the proof is now a direct consequence of Proposition 13. It suffices to apply Proposition 13 to a credal 
network that has the sub-DAG associated with K as its graphical structure and whose local models are given by Eq. (6). �
Proof of Theorem 15. Direct and reverse redundancy follow from the consideration that every path from I to O is blocked 
by I in its first node and by O in its last node.

To prove direct decomposition, notice that every path from I to O is also a path from I to O  ∪ S . It is therefore blocked 
by C due to AD(I, O  ∪ S|C). Reverse decomposition is proved analogously.

To verify direct weak union, consider any path from i ∈ I to o ∈ O . Since this is also a path from I to O  ∪ S , we know 
from AD(I, O  ∪ S|C) that it is blocked by C . Now let s be the first node in the path for which that path is blocked by C
in s. If the path from i to o is blocked by C in s using condition B1, B2 or B4, then s ∈ C ⊆ C ∪ S , implying that the path is 
blocked by C ∪ S in s and concluding the proof.

So suppose that the path is blocked by C in s using condition B3. We then have that s /∈ C and D(s) ∩ C = ∅. If s /∈ S
and D(s) ∩ S = ∅, then s /∈ C ∪ S and D(s) ∩ (C ∪ S) = ∅, implying that the path is blocked by C ∪ S in s and concluding the 
proof.

So suppose, and this is the only remaining possibility, that there is some node t ∈ {s} ∪ D(s) for which t ∈ S . In that case 
there is a directed path from s to t and one can concatenate the section from i to s with this directed path from s to t , 
obtaining a path from i ∈ I to t ∈ O  ∪ S . This however leads to a contradiction with AD(I, O  ∪ S|C) because this path from 
i to t is not blocked by C . To see why, first consider all the nodes in the part from i to s, excluding s. The path from i to 
t cannot be blocked by C in these nodes, because s was the first node in the original path from i to o for which this path 
was blocked by C in s. It also cannot be blocked by C in the nodes in the part from s to t because this part is directed, 
s /∈ C and D(s) ∩ C = ∅. This means that this possibility cannot occur, which concludes the proof of direct weak union.

Reverse weak union has a similar proof. Every path from i ∈ I to o ∈ O is also a path from I ∪ S to O and is thus blocked 
by C . Let s be the last node in the path for which that path is blocked by C in s. If the path from i to o is blocked by C in 
s using condition B1, B2 or B4, then s ∈ C ⊆ C ∪ S , implying that the path is blocked by C ∪ S in s and concluding the proof.

So suppose that the path is blocked by C in s by condition B3. We then have that s /∈ C and D(s) ∩ C = ∅. If s /∈ S and 
D(s) ∩ S = ∅, then s /∈ C ∪ S and D(s) ∩ (C ∪ S) = ∅, implying that the path is blocked by C ∪ S in s and concluding the 
proof.

So suppose, and this is the only remaining possibility, that there is some node t ∈ {s} ∪ D(s) for which t ∈ S . In that case 
there is a directed path from s to t and one can understand it as a reverse directed path from t to s and concatenate it with 
the section from s to o, obtaining a path from t ∈ I ∪ S to o ∈ O . This however leads to a contradiction with AD(I ∪ S, O |C)

because this path from t to o is not blocked by C . To see why, first consider all the nodes in the part from s to o, excluding s. 
The path from t to o cannot be blocked by C in these nodes, because s was the last node in the original path from i to o
for which this path was blocked by C in s. It also cannot be blocked by C in the nodes in the part from t to s because this 
part is a reverse directed path, s /∈ C and D(s) ∩ C = ∅. This means that this possibility cannot occur, which concludes the 
proof of reverse weak union.

To prove direct contraction, consider any path from i ∈ I to s ∈ O ∪ S . We need to show that it is blocked by C . If s ∈ O , 
this follows directly from AD(I, O |C), so we can assume that s ∈ S , implying that the path from i to s is blocked by C ∪ O
because of AD(I, S|C ∪ O ). Let t be one of the nodes for which the path from i to s is blocked by C ∪ O in t . If t ∈ C or 
t /∈ C ∪ O , then the path from i to s is blocked by C in t , concluding the proof. If t ∈ O , and this is the only remaining 
possibility, then AD(I, O |C) implies that the path from i to t must be blocked by C , from which one can also infer that the 
path from i to s is blocked by C .

Reverse contraction has a similar proof. Take any path from s ∈ I ∪ S to o ∈ O . We need to show that it is blocked by C . 
If s ∈ I , this follows directly from AD(I, O |C), so we can assume that s ∈ S , implying that the path from i to s is blocked by 
C ∪ I because of AD(S, O |C ∪ I). Let t be one of the nodes for which the path from s to o is blocked by C ∪ I in t . If t ∈ C
or t /∈ C ∪ I , then the path from s to o is blocked by C in t , concluding the proof. If t ∈ I , and this is the only remaining 
possibility, then AD(I, O |C) implies that the path from t to o is blocked by C , from which one can also infer that the path 
from s to o is blocked by C .

For the verification of direct intersection, consider any path from i ∈ I to s ∈ O ∪ S . We need to show that it is blocked 
by C . Due to the symmetry of the problem, we can assume without loss of generality that s ∈ S , implying that the path 
from i to s is blocked by C ∪ O because of AD(I, S|C ∪ O ). Now let t be the first node in the path from i to s for which 
this path is blocked by C ∪ O in t . If t ∈ C or t /∈ C ∪ O , then the path from i to s is blocked by C in t , concluding the 
proof. If t ∈ O , and this is the only remaining possibility, then this implies that t �= s, since O  ∩ S = ∅ by assumption. It also 
implies that the path from i to t is blocked by C ∪ S because of AD(I, O |C ∪ S). If it is blocked by some q for which q ∈ C
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or q /∈ C ∪ S , then the path from i to s is blocked by C in q, concluding the proof. If q ∈ S , then this implies that q �= t , since 
O  ∩ S = ∅ by assumption. It also implies that the path from i to q is blocked by C ∪ O because of AD(I, S|C ∪ O ). However, 
this would in turn imply that the path from i to s is blocked by C ∪ O in some node of the path from i to q, contradicting 
the earlier assumption that t is the first node for which this is the case.

Finally, to prove reverse intersection, consider any path from s ∈ I ∪ S to o ∈ O . We need to show that it is blocked by C . 
Due to the symmetry of the problem, we can assume without loss of generality that s ∈ S , implying that the path from s
to o is blocked by C ∪ I because of AD(S, O |C ∪ I). Now let t be the last node in the path from s to o for which this path 
is blocked by C ∪ I in t . If t ∈ C or t /∈ C ∪ I , then the path from s to i is blocked by C in t , concluding the proof. If t ∈ I , 
and this is the only remaining possibility, then this implies that t �= s, since I ∩ S = ∅ by assumption. It also implies that 
the path from t to o is blocked by C ∪ S because of AD(I, O |C ∪ S). If it is blocked by some q for which q ∈ C or q /∈ C ∪ S , 
then the path from s to o is blocked by C in q, concluding the proof. If q ∈ S , then this implies that q �= t , since I ∩ S = ∅ by 
assumption. It also implies that the path from q to o is blocked by C ∪ I because of AD(S, O |C ∪ O ). However, this would 
in turn imply that the path from s to o is blocked by C ∪ I in some node of the path from q to o, contradicting the earlier 
assumption that t is the last node for which this is the case. �

Our proof for Theorem 16 and Corollary 17 makes use of the following two subsets of G . For all I, C ⊆ G , we define

B(I, C) := {
k ∈ G: AD

(
I, {k}|C)}

and

BB(I, C) := {
r ∈ B(I, C):

(∃k ∈ B(I, C) \ C
)
k � r

}
.

Proposition 23. For all subsets I and C of G, it holds that P (BB(I, C)) ⊆ B(I, C) \ BB(I, C) ⊆ C , B(I, C) \ C ⊆ BB(I, C), D(BB(I, C)) ∩
C = ∅ and I \ C ⊆ N(BB(I, C)) \ C. Furthermore, BB(I, C) is closed.

Proof. We start by showing that any node r ∈ B(I, C) \ BB(I, C) is also an element of C , thus proving B(I, C) \ BB(I, C) ⊆ C . 
Indeed, suppose r /∈ C , then k = r is an element of B(I, C) such that k � r and k /∈ C , contradicting the assumption that 
r /∈ BB(I, C).

That B(I, C) \ C ⊆ BB(I, C), is a direct consequence of the result above. Indeed, B(I, C) \ BB(I, C) ⊆ C implies B(I, C) \ C ⊆
B(I, C) \ (B(I, C) \ BB(I, C)) = BB(I, C), where the last equality follows from BB(I, C) ⊆ B(I, C).

For the proof of P (BB(I, C)) ⊆ B(I, C) \ BB(I, C), consider any node p ∈ P (BB(I, C)) and let s be (one of) the child(ren) 
of p for which s ∈ BB(I, C) ⊆ B(I, C). Since p is by its definition not an element of BB(I, C), we only have to prove that 
p ∈ B(I, C). So let us assume ex absurdo that p /∈ B(I, C), implying the existence of a path from some i ∈ I to p that is not 
blocked by C . If s /∈ C , then the concatenation of the path from i to p with the node s, yields a path from i ∈ I to s ∈ B(I, C)

that is not blocked by C , a contradiction. If s ∈ C , then s ∈ BB(I, C) implies the existence of some k ∈ B(I, C) such that k � s
and k /∈ C . Since k � s, we can now construct a directed path from k to s, yielding a reverse directed path from s to k. If we 
concatenate the path from i to p with this reverse directed path from s to k, we obtain a path from i ∈ I to k ∈ B(I, C) that 
is not blocked by C , a contradiction.

To verify that D(BB(I, C)) ∩ C = ∅, assume ex absurdo that D(BB(I, C)) ∩ C �= ∅, and choose any s ∈ D(BB(I, C)) ∩ C . Then 
s ∈ C implies that s ∈ B(I, C), because any path from any i ∈ I to s is blocked by s ∈ C . On the other hand, s ∈ D(BB(I, C))

implies the existence of some r ∈ BB(I, C) such that r � s. Since r ∈ BB(I, C) in turn implies the existence of some k ∈ B(I, C)

such that k � r � s and k /∈ C , we obtain from s ∈ B(I, C) that s ∈ BB(I, C), contradicting s ∈ D(BB(I, C)).
I \ C ⊆ N(BB(I, C)) \ C follows trivially from I \ C ⊆ N(BB(I, C)), so it suffices to prove the latter statement. Consider any 

i ∈ I \ C , implying that i /∈ C . Since i ∈ G = N(BB(I, C)) ∪ P (BB(I, C)) ∪ BB(I, C) ∪ D(BB(I, C)), it suffices to prove that i /∈
P (BB(I, C)), i /∈ BB(I, C) and i /∈ D(BB(I, C)). First, i cannot be an element of P (BB(I, C)) because P (BB(I, C)) ⊆ C then yields 
a contradiction with i /∈ C . Second, i is not an element of BB(I, C) because then i ∈ B(I, C), implying that the trivial path 
from i to i should be blocked by C , again yielding a contradiction with i /∈ C . Third, suppose ex absurdo that i ∈ D(BB(I, C)). 
We have shown in the proof of D(BB(I, C)) ∩ C = ∅ that this would imply the existence of some k ∈ B(I, C) such that k � i
and k /∈ C . Since k � i, we can now construct a directed path from k to i, yielding a reverse directed path from i to k that is 
not blocked by C [because it is a reverse directed path, and because neither i nor k belong to C ], contradicting k ∈ B(I, C).

Finally, let us prove that BB(I, C) is a closed subset of G . Fix s, t ∈ BB(I, C) and r ∈ G such that s � r � t and assume 
ex absurdo that r /∈ BB(I, C). Since s ∈ BB(I, C), we can infer the existence of some k ∈ B(I, C) such that k /∈ C and k � s � r, 
implying that r /∈ B(I, C) because r ∈ B(I, C) would imply r ∈ BB(I, C), contradicting r /∈ BB(I, C). So we now know that there 
is a path from some i ∈ I to r that is not blocked by C . Since k � r, we also have a directed path from k to r and thus a 
reverse directed path from r to k. Concatenating the path both from i to r and the reverse directed path from r to k, we 
obtain a path from i ∈ I to k, which should be blocked by C since k ∈ B(I, C). The only way for this to be possible is if r /∈ C
and D(r) ∩ C = ∅. However, then the path from i ∈ I to t , formed by concatenating the path from i to r and a directed path 
from r to t , is not blocked by C , contradicting t ∈ BB(I, C) ⊆ B(I, C). �
Proof of Theorem 16. Fix I, O , C ⊆ G such that AD(I, O |C), xC ∈ XC , g ∈ G(XI )>0 and f ∈ G(XO ). Since we know from 
Proposition 23 that BB(I, C) is closed and that D(BB(I, C)) ∩ C = ∅, it follows from Lemma 20(ii) that
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C = (
C ∩ N

(
BB(I, C)

)) ∪ (
C ∩ P

(
BB(I, C)

)) ∪ (
C ∩ BB(I, C)

) = C1 ∪ C2 ∪ C3,

where C1 := C ∩ N(BB(I, C)), C2 := C ∩ P (BB(I, C)) and C3 := C ∩ BB(I, C) are disjoint. Now let g′ := g(·, xI∩C )I{xC1 } and 
f ′ := I{xC3 } f (·, xO∩C ) and notice that C2 = P (BB(I, C)) because P (BB(I, C)) ⊆ C due to Proposition 23. Then gI{xC } f =
g(·, xI∩C )I{xC } f (·, xO∩C ) = g′

I{xP (BB(I,C))} f ′ and I{xC } f = I{xC } f (·, xO∩C ) = I{xC1 }I{xP (BB(I,C))} f ′ . Since, again, BB(I, C) is a closed 
subset of G due to Proposition 23, the proof will follow directly from Theorem 10 if we can show that I{xC1 } ∈
G(XN(BB(I,C)))>0, g′ ∈ G(XN(BB(I,C)))>0 and f ′ ∈ G(XBB(I,C)).

That I{xC1 } ∈ G(XN(BB(I,C)))>0 is trivial, and g′ ∈ G(XN(BB(I,C)))>0 because I \ C ⊆ N(BB(I, C)) \ C due to Proposition 23. 
Finally, we know that O  ⊆ B(I, C) due to AD(I, O |C), implying that O  \ C ⊆ B(I, C) \ C ⊆ BB(I, C), where the last inclusion 
follows from Proposition 23. Therefore, f (·, xO∩I ) and also f ′ are elements of G(XBB(I,C)). �
Proof of Corollary 17. Fix I, O , C ⊆ G such that AD(I, O |C). As shown in the proof of Theorem 16, O  \ C ⊆ BB(I, C) and 
we know from Proposition 23 that I \ C ⊆ N(BB(I, C)). Therefore, I \ C and O  \ C are disjoint and the subset-irrelevance 
statement SIR(I, O |C) is thus well defined and by definition equivalent to SIR(I \ C, O  \ C |C).

To prove that SIR(I \ C, O  \ C |C), we choose xC ∈XC , non-empty AI\C ⊆XI\C and f ∈ G(XO\C ). Since IAI\C is an element 
of G(XI\C )>0, we know from Eq. (1) and Theorem 16 that

f ∈ margO\C

(
Dirr

G �{xC } × AI\C
) ⇔ IAI\C I{xC } f ∈ Dirr

G ⇔ I{xC } f ∈ Dirr
G ⇔ f ∈ margO\C

(
Dirr

G �xC
)
,

concluding the proof for the first part of this corollary. The last part is a direct consequence of Theorem 15. �
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