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Abstract

We provide representation theorems for both finite and countable sequences of finite-valued random variables that are considered 
to be partially exchangeable. In their most general form, our results are presented in terms of sets of desirable gambles, a very 
general framework for modelling uncertainty. Its key advantages are that it allows for imprecision, is more expressive than almost 
every other imprecise-probabilistic framework and makes conditioning on events with (lower) probability zero non-problematic. 
We translate our results to more conventional, although less general frameworks as well: lower previsions, linear previsions and 
probability measures. The usual, precise-probabilistic representation theorems for partially exchangeable random variables are 
obtained as special cases.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of this paper is to model finite as well as countable sequences of finite-valued random variables 
that are considered to be partially exchangeable. We derive representation theorems for such variables, in the style 
of de Finetti, but within a more general framework: that of imprecise probabilities. The usual precise-probabilistic 
representation theorems are recovered as special cases. Since partial exchangeability has never before been discussed 
within such a general framework, we mainly focus on theoretical aspects, discussing both mathematical and philo-
sophical issues in a rather high level of detail. The practical advantages of using our imprecise-probabilistic notion of 
partial exchangeability in an applied setting are briefly discussed in our conclusions. However, actual applications to 
statistical problems are left for future work.
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Loosely speaking, making a judgement of partial exchangeability means that the order in which certain groups of 
variables are observed is deemed irrelevant. De Finetti introduced this as a generalisation of (regular) exchangeability, 
useful in situations where a judgement of complete symmetry between all variables is unrealistic [1]. He proposed 
the following example: two people are tossing coins, or the same person tosses the same coin under two different 
conditions of temperature, atmospheric pressure, and so on. In this case, it makes sense to judge the tosses made by the 
same person, or under the same conditions, exchangeable. More generally, it may be possible to divide the experiments 
into g types that are considered exchangeable only with the other experiments of the same type. In that case, the 
corresponding variables are called g-fold partially exchangeable [2], which is the kind of partial exchangeability we 
consider in this paper.1 For g = 1, it reduces to regular exchangeability.

The most general framework in which we will study this concept of partial exchangeability is that of sets of 
desirable gambles; however, we translate our results to other, less expressive frameworks as well: lower previsions, 
linear previsions and probability measures. The central idea within the theory of sets of desirable gambles is to model 
a subject’s beliefs by considering the set of gambles—bets—that he finds desirable, in the sense that he prefers them 
over the status quo—no bet at all. Based on the ideas of de Finetti [8], the main concepts behind this theory were 
originally introduced by Smith [9] and Williams [10]. Instead of considering the two-sided bets of de Finetti, they 
used one-sided bets, thereby allowing them to move from linear subspaces of bets to general cones. Later, Walley [11]
further developed the theory and gave it its present name. For recent work on sets of desirable gambles, see for example 
Refs. [12–18].

Although sets of desirable gambles are not as well known as other probabilistic models, they have clear advantages. 
First of all, they allow for imprecisely specified probabilities. Loosely speaking: lower and upper probabilities; if both 
coincide, we obtain the usual case. As such, sets of desirable gambles can be used to model imprecision, indecision 
and partial or complete ignorance, all of which cannot be adequately dealt with using classical probability theory [11, 
Chapter 5]. Secondly, within the theory of imprecise probabilities, sets of desirable gambles are one of the most 
expressive models available: lower and upper previsions, lower and upper probabilities, belief functions, possibility 
measures and necessity measures can all be regarded as special cases [19]. Thirdly, and related to the second advan-
tage, conditioning a set of desirable gambles is non-problematic, even if the conditioning event has (lower) probability 
zero [16,19]. As we will argue in the conclusions, these advantages are particularly relevant to the present subject: 
partial exchangeability.

The idea of using sets of desirable gambles to model a structural assessment of symmetry, such as partial exchange-
ability, is not new. In Ref. [20], one of the authors conducted a general study on how to model symmetry assessments 
through sets of desirable gambles and in Ref. [15], the particular case of regular exchangeability was covered in detail. 
Similar studies have been conducted for lower previsions as well; see for example Refs. [20,21] and [11, Section 9.5]. 
Our main contribution consists in applying these ideas to the more involved case of partial exchangeability, thereby 
generalising previous results on regular exchangeability, mainly those in Refs. [15,21]. Besides this generalisation to 
partial exchangeability, there are some other notable differences with this previous work as well.2 Although—for the 
case of regular exchangeability—they lead to mathematically equivalent results, we consider our approach to be more 
elegant, as well as more intuitive. Of course, we leave this to the reader to decide.

This paper is organised as follows. We start in Section 2 with an introduction to sets of desirable gambles and lower 
previsions, and we relate the latter to expectation operators and probability measures. This section also includes a fresh 
look at the concept of indifferent gambles. In Section 3, we introduce our notation for (multiple) sequences of random 
variables, and we explain how to model a subject’s beliefs about these variables by means of the tools discussed in 
Section 2. Then, in Section 4, we provide a definition of partial exchangeability in terms of assessments of indifference, 
and we present finite representation theorems, which are stated in terms of count vectors and an operator related to 
the multivariate hypergeometric distribution. We also introduce polynomial gambles, explain how these are related to 
multivariate Bernstein polynomials, and translate our finite representation theorems to this framework. In Section 5, we 
move from finite to countable partial exchangeability and provide countable versions of our representation theorems. 
Here, the representation is expressed in terms of polynomial gambles, which are related to the random variables that 
we are modelling by means of an operator that is connected to the multinomial distribution. We comment on the 

1 There are other types of partial exchangeability; see for example Refs. [3–7].
2 We define (partial) exchangeability in terms of indifferent gambles (Section 2.3) rather than weakly desirable ones. Also, we model countable 

sequences by means of gambles of finite structure (Section 3.2) instead of using a time-consistent family of finite models.
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differences with more conventional (often measure-theoretic) representation theorems, and discuss the advantages of 
our approach. Section 6 closes with some remarks and perspectives for future research. We discuss the relevance of 
our results from a more applied point of view, and explain how our representation theorems could serve as a first 
step in developing an imprecise-probabilistic notion of predictive inference under partial exchangeability. In order to 
make our main argumentation as readable as possible, we have moved all technical proofs to Appendix A, which also 
contains a number of supplementary lemmas.

2. Sets of desirable gambles and related concepts

Consider a random variable X—for example, the outcome of some experiment—that assumes values in some non-
empty possibility space Ω .3 In the present section, we discuss a number of different but closely related frameworks 
that can be used to model a subject’s uncertainty associated with the value of X—the outcome of the experiment. We 
start with sets of desirable and sets of indifferent gambles—which constitute the most general framework considered 
here—and go on to discuss derived concepts such as coherent lower previsions, linear previsions and (finitely additive) 
probability measures.

2.1. Basic nomenclature: gambles

A gamble f is a bounded real-valued function on Ω . It is interpreted as an uncertain reward: if the value of X turns 
out to be ω, the gamble f results in a—positive or negative—payoff f (ω), expressed in some predetermined linear 
utility scale. We denote the set of all gambles on Ω as G(Ω). It is a linear space under pointwise addition of gambles 
and pointwise multiplication of gambles with real numbers.

For any two f1 and f2 in G(Ω), we write ‘f1 ≥ f2’ if (∀ω ∈ Ω) f1(ω) ≥ f2(ω) and ‘f1 > f2’ if f1 ≥ f2 and 
f1 �= f2. As an example: for any f ∈ G(Ω), we write ‘f ≥ 0’ if f is non-negative and ‘f > 0’ if, additionally, 
f (ω) > 0 for at least one ω ∈ Ω . Subsets of G(Ω) are denoted by using predicates as subscripts; e.g., G(Ω)≥0 :=
{f ∈ G(Ω): f ≥ 0} is the set of all non-negative gambles on Ω . We refer to subsets of linear subspaces K of G(Ω)

in a similar way; e.g., K>0 := {f ∈ K: f > 0}. Finally, for any subsets A, A1 and A2 of G(Ω), span(A) is the set 
of all finite linear combinations of gambles in A and the (Minkowski) sum of A1 and A2 is defined as A1 + A2 :=
{f1 + f2: f1 ∈ A1, f2 ∈A2}.

2.2. Sets of desirable gambles

As a basic tool to model a subject’s beliefs about the value of X, we consider a set D of gambles that he finds 
desirable. A subject is said to find a gamble f ∈ G(Ω) desirable if he prefers it to the zero gamble—the status quo. By 
this we mean that he is willing to engage in a transaction where (i) the actual value ω ∈ Ω of X is determined and (ii) 
he receives the payoff f (ω). Even stronger, he prefers this transaction to the status quo—no transaction at all. A set 
of desirable gambles is considered to represent a rational subject’s beliefs if it is coherent.

Definition 1 (Coherence for sets of desirable gambles). Consider any linear subspace K of G(Ω). A set of desirable 
gambles D ⊆K is called coherent relative to K if

D1. 0 /∈D,
D2. K>0 ⊆D, [desiring partial gain]
D3. λf ∈ D for all f ∈D and all λ ∈R>0, [positive scaling]
D4. f1 + f2 ∈ D for all f1, f2 ∈D [combination]

and, consequently [use D1, D2 and D4]

D5. K≤0 ∩D = ∅.

3 By random, we mean that its value is possibly uncertain or unknown. Unlike what is commonly done in statistics, the “values” of which we 
speak are not required to be numerical, nor do we impose some kind of measurability condition.
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Observe that we define coherence relative to some linear subspace K of G(Ω),4 which allows us to focus on 
linear subspaces of G(Ω) that are of particular interest, as we will do in, for example, Section 3.2. For K = G(Ω), 
our definition coincides with the more standard one; see for example Refs. [17,19]. In this case, we drop the words 
“relative to K”, which we also do when K is clear from the context.

2.3. Sets of indifferent gambles

In addition to a subject’s set D of desirable gambles—the ones he prefers to the zero gamble—we can also consider 
the gambles that he considers to be equivalent to the zero gamble. We call these gambles indifferent and collect them 
in a set I of indifferent gambles.5 Any reasonable set of indifferent gambles should satisfy at least the following four 
rationality criteria, each of which follows intuitively from the interpretation of I:

I1. 0 ∈ I ,6

I2. λf ∈ I for all f ∈ I and all λ ∈R, [scaling]
I3. f1 + f2 ∈ I for all f1, f2 ∈ I , [combination]
I4. f /∈ I if f > 0 or f < 0.

Together, requirements I1–I3 are equivalent to imposing that I should be a linear subspace of G(Ω).
The interaction between indifferent and desirable gambles is subject to rationality criteria as well. The most impor-

tant such criterion is what we call compatibility of D and I .

Definition 2 (Compatibility of D and I). Consider any linear subspace K of G(Ω), any set of desirable gambles 
D ⊆ K that is coherent relative to K, and any set of indifferent gambles I ⊆ K that satisfies I1–I4. Then D is said to 
be compatible with I if

ID1. f1 + f2 ∈ D for all f1 ∈ D and all f2 ∈ I . [compatibility]

Simply put, adding an indifferent gamble to a desirable one should result in a desirable gamble. Alternatively, 
this can be formulated as D + I ⊆ D. Since, due to I1, we also have that D ⊆ D + I , compatibility is equivalent 
to D + I = D. Hence, the indifferent gambles—similar to the zero gamble—are neutral elements with respect to 
Minkowski addition. We invite the interested reader to check that, by combining ID1 with D1 and I2, one can derive 
the following additional rationality criterion as well:

ID2. D ∩ I = ∅.

This means that a rational subject should not consider a gamble as both desirable—preferred to the zero gamble—and 
indifferent—equivalent to the zero gamble—at the same time.

2.4. Coherent lower previsions

When presented with a subject’s set D of desirable gambles, we can use it to derive his supremum buying price 
PD(f )—his lower prevision—and infimum selling price PD(f )—his upper prevision—for any gamble f on Ω [11]:

PD(f ) = sup{μ ∈ R:f − μ ∈D} and PD(f ) = inf{μ ∈ R:μ − f ∈D}. (1)

Instead of deriving them from a set of desirable gambles, these lower and upper previsions can also be given directly, 
in which case we drop the subscript D and simply write P(f ) and P(f ). In any case, due to their interpretation as 
a supremum buying price and infimum selling price, P(f ) and P(f ) should be related trough conjugacy: P(f ) =

4 This definition is a special case of the one given in Ref. [15, Definition 1], where the authors define coherence relative to (K, C). There, C ⊂ K is 
a convex cone that defines an order on all gambles. In this paper, our definition amounts to the special case for which C =K≥0. Similar definitions 
have been suggested by Walley as well; see Ref. [11].

5 The concept of indifferent gambles, as we introduce it in the present section, is a simplified version of an even more expressive framework, 
tailored towards our specific needs. For more information, we refer to Ref. [22] for a general overview of indifference and its connection to other 
types of assessments, and to Ref. [23, Chapter 1] for a study about reasoning with indifference assessments.

6 At first sight, it might seem as if this criterion is redundant because it is trivially implied by I2. However, this is only true if I �= ∅.
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−P(−f ).7 Given this connection, one can restrict attention to either one of them; in our case, we choose to focus on 
lower previsions.

Definition 3 (Coherence for lower previsions). A real-valued functional P , defined on some linear subspace K of
G(Ω),8 is called coherent if

P1. P(f ) ≥ inff for all f ∈ K, [accepting sure gain]
P2. P(λf ) = λP (f ) for all f ∈ K and all λ ∈R>0, [positive homogeneity]
P3. P(f1 + f2) ≥ P(f1) + P(f2) for all f1, f2 ∈ K. [super-additivity]

Again, we drop the reference to K whenever K is either clear from the context or equal to G(Ω). The following 
properties are direct consequences of coherence [11, Section 2.6.1], whenever the gambles involved are elements of K:

P4. inff ≤ P (f ) ≤ P(f ) ≤ supf ,
P5. P(f + μ) = P(f ) + μ and P(μ) = μ for any constant gamble μ ∈R,
P6. If sup |fn − f | → 0 as n → ∞, then P(fn) → P (f ).

Coherence of a lower prevision is closely related to the corresponding notion for sets of desirable gambles: if D is 
coherent, PD will be as well and, for every coherent P , there is some coherent D such that P = PD .

Proposition 1. Consider any linear subspace K of G(Ω) that includes all constant gambles. A lower prevision P on 
K is coherent if and only if there is some set of desirable gambles D ⊆K that is coherent relative to K and for which 
P = PD .9

Compatibility of a coherent lower prevision with a set of indifferent gambles is defined as follows.

Definition 4 (Compatibility of P and I). Consider any linear subspace K of G(Ω), any coherent lower prevision P
on K, and any set of indifferent gambles I ⊆K that satisfies I1–I4. Then P is said to be compatible with I if any (and 
hence all) of the following statements holds:

IP1. P(f ) = P (f ) = 0 for all f ∈ I; [compatibility]
IP2. P(f ) ≥ 0 for all f ∈ I;
IP3. P(f + g) = P (g) for all f ∈ I and g ∈ K.

The proofs of these equivalences are trivial, for instance, for the first two conditions, use conjugacy, P4 and I2.
The intuition behind Definition 4 is that, if a rational subject considers a gamble equivalent to the zero gamble, 

then his supremum buying price and infimum selling price for this gamble should both be zero. For f = 0, IP1 holds 
trivially because of P4. Alternatively, as follows from our next result, Definition 4 can be derived from Definition 2 as 
well.

Proposition 2. Consider any linear subspace K of G(Ω) that includes all constant gambles and any set of indifferent 
gambles I ⊆ K that satisfies I1–I4. Then a lower prevision P on K is coherent and compatible with I if and only 
if there is a set of desirable gambles D ⊆ K that is coherent relative to K and compatible with I , and for which 
P = PD .

2.5. Linear previsions

If for some gamble f on Ω , a subject’s lower and upper prevision coincide, then P(f ) := P(f ) = P(f ) is his fair 
price for that gamble: he is willing to buy f for any price strictly lower than P(f ) and sell it for any price strictly 

7 Conjugacy does not hinge on the subjective interpretation that is adopted in this paper. See Section 2.5 for an alternative interpretation, which 
naturally leads to conjugacy as well.

8 If K is not a linear subspace, coherence can still be defined [11]. However, this comes at the expense of a more elaborate definition. If K is a 
linear subspace—which will always be the case in the present paper, this general definition can be shown to reduce to requirements P1–P3.

9 Similar results, which use slightly different notions of desirability, can be found in, amongst others, Ref. [11, Section 3.8.1]. For completeness, 
and due to these small differences, we choose to provide a proof of our own.
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higher than P(f ). Following de Finetti, we refer to P(f ) as the subject’s prevision for f [8]. If this happens for 
all f ∈ K, with K some linear subspace of G(Ω), one obtains a real-valued operator P on K that is self-conjugate: 
P(f ) = −P(−f ) for all f ∈ K. If P is furthermore coherent (as a lower prevision), then this operator will be a real 
linear functional, and it is then called a linear prevision on K [11, Section 2.8]. We use P(K) to denote the set of all 
linear previsions on K.

Interestingly, linear previsions are tightly connected to finitely additive probabilities. Every linear prevision is the 
expectation operator—or, in case K �= G(Ω), its restriction to K—of a finitely, but not necessarily countably additive 
probability measure [11, Section 3.2]. For every event E—some subset of Ω , its probability P(E) is given by the 
prevision of the indicator IE , which is a gamble on Ω that assumes the value 1 on E and 0 elsewhere. If K = G(Ω), 
this probability measure is furthermore unique.10

Linear previsions—and consequently, finitely additive probability measures—are closely related to coherent lower 
previsions, and not only because the former are a special case of the latter: every coherent lower prevision is a lower 
envelope of linear ones.

Theorem 3 (Lower envelope theorem). (See [11, Section 3.3.3].) A lower prevision P on K, with K a linear subspace 
of G(Ω), is coherent if and only if it is the lower envelope of the (convex set of) linear previsions that dominate it:11

P(f ) = min
{
P(f ):P ∈M(P )

}
for all f in K, (2)

with

M(P ) := {
P ∈ P(K): (∀f ∈ K)P (f ) ≥ P (f )

}
. (3)

Furthermore, since coherence is preserved under taking lower envelopes [11, Section 2.6.3(b)], we have in particu-
lar that the lower envelope of any set of linear previsions will be a coherent lower prevision. Hence, we conclude that 
a lower prevision is coherent if and only if it is the lower envelope of a set of linear previsions or, equivalently, the 
lower envelope of a set of expectation operators.

Due to this result, the reader can, if wanted, interpret the coherent lower previsions in this paper as lower envelopes 
of expectation operators. This so-called sensitivity analysis interpretation serves as an alternative to the behavioural 
interpretation in terms of supremum buying prices [11, Section 2.10.4], which we introduced in Section 2.4. Let us 
illustrate the difference between these two interpretations by applying them to the concept of conjugacy: P(f ) =
−P(−f ). Under the behavioural interpretation, and as we saw in Section 2.4, conjugacy is motivated by the fact that 
the supremum buying price of −f should be equal to minus the infimum selling price of f . Under the sensitivity 
analysis interpretation, conjugacy is motivated by the fact that it is equivalent to adopting the following expression for 
the upper prevision:

P(f ) = −P(−f ) = max
{
P(f ):P ∈ M(P )

}
for all f in K.

In other words, the conjugate of the lower envelope of a set of linear previsions is its upper envelope. As such, under 
the sensitivity analysis interpretation, we can interpret upper previsions as upper envelopes of expectation operators.

Although we prefer, and mainly focus on the behavioural interpretation—in part, due to its close connection with 
sets of desirable gambles, which we consider as more fundamental—we want to stress that all of our results on 
coherent lower previsions, and in particular our representation theorems, are valid regardless of their interpretation.

3. Modelling countable sequences of variables

Sets of desirable gambles and coherent lower previsions are versatile tools. By choosing the possibility space Ω
and domain K appropriately, it is possible to cover a diverse range of settings. In the present section, we show how 
they can be used to model countable sequences of variables. The fact that partial exchangeability deals with multiple 

10 As illustrated in Section 5.1, uniqueness can sometimes be obtained for cases where K �= G(Ω) as well, by restricting the domain of the 
probability measure.
11 Technically, in order for it to be a lower envelope, the minimum in Eq. (2) should be an infimum. However, in this case, Walley has shown that 
the infimum is always attained and, therefore, it can be replaced by a minimum [11, Section 3.3.3].
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such sequences at the same time, gives rise to some notational challenges. Most papers on partial exchangeability tend 
to avoid these, by using as little notation as possible. However, given the theoretical nature of this paper, the generality 
of our imprecise-probabilistic framework, and the high level of formalism that is required for the proofs, we have 
chosen not to follow this tradition. Instead, we introduce a highly detailed notation.

3.1. Countable sequences of variables: notational conventions

Consider g ∈N countable sequences Xi1, . . . , Xij , . . . of random variables that assume values in a finite, non-empty 
possibility space Xi . The first index i is used to refer to the particular sequence and takes values in G := {1, . . . , g}. 
Variables within the same sequence—with the same i—are said to belong to the same group or, alternatively, to be 
of the same type. The second index j refers to the different variables within a single sequence—a group—and takes 
values in N. For every i ∈ G and j ∈ N, the random variable Xij assumes values in its possibility space Xij = Xi . 
Generic elements of Xij are denoted as xij . If Xij assumes some value xij ∈ Xi , we write Xij = xij . In practice, Xi

is often taken to be the same set X for all i ∈ G. However, there is no a priori reason, in principle, to restrict the 
framework to this case.

Running example. Consider a clinical trial in which some new drug is tested on both men and women. We use 
i = 1 and i = 2 as indices to refer to the experiments on men and women respectively. For a single test person, 
the experiment may result in just one of two states: “cured” or “not cured”. Therefore, we have g = 2, G = {1, 2}
and X1 = X2 = {0, 1}, denoting “cured” by 1. Since both state spaces are identical, we simply say that X = {0, 1}. 
The random variable X23 represents the outcome of the experiment on the third woman and may take any value in 
X23 = X = {0, 1}. After conducting the experiment, one could find that X23 = 1, meaning that the third woman was 
“cured”. �

For any i ∈ G and Ji ⊆N, we denote by Xi(Ji) the vector that has the random variables Xij , j ∈ Ji , as its elements, 
ordered with respect to the indices j , in increasing order. This vector Xi(Ji) can be regarded as a single random variable 
that takes values xi(Ji) in the possibility space Xi(Ji) :=×j∈Ji

Xij . If Ji is a singleton, consisting of a single element 
j ∈ N, then we obtain Xi({j}) = Xij as a special case. As another example, consider the set Ni := {1, . . . , ni}, with 
ni ∈ N, for which we obtain a random variable Xi(Ni) = (Xi1, . . . , Xini

) that takes values in Xi(Ni) =×ni

j=1 Xij =X ni

i . 
Here, generic values are denoted as xi(Ni) = (xi1, . . . , xini

). Finally, the complete sequence corresponds to Ji = N, 
resulting in a random variable Xi(N) = (Xi1, . . . , Xij , . . .) that assumes values in Xi(N) =×j∈NXij = XN

i . We will 
denote generic elements of this set as xi(N) = (xi1, . . . , xij , . . .).

Running example. Consider again our running example and suppose that four men have been tested so far, yielding 
the outcomes X11 = 0, X12 = 1, X13 = 1 and X14 = 0. If we choose n1 = 4 and use our convention that N1 :=
{1, . . . , n1}, this can be denoted compactly as X1(N1) = (0, 1, 1, 0). For this particular outcome, and with J1 = {2, 4}, 
we obtain X1(J1) = (X12, X14) = (1, 0). In much the same way, the (potentially) infinite sequence of experiments 
could result in X1(N) = (0, 1, 1, 0, 0, 1, 0, 1, . . .). �

We extend this notation towards multiple sequences as follows. We denote by XG(J) the tuple of variables (with 
one component Xi(Ji) for every i ∈ G) that takes values in XG(J ) =×i∈G

Xi(Ji ). With a slight abuse of notation, this 
also allows us to use XG(N) to refer to the tuple consisting of the variables Xi(Ni), i ∈ G. Similarly, we use XG(N) to 
refer to the tuple consisting of the variables Xi(N), i ∈ G, which is perhaps the most important special case. Indeed, 
this results in a single random variable XG(N), representing all the variables Xij , i ∈ G and j ∈ N, in a very compact 
manner.

Running example. Suppose that apart from the four men, so far, three women have been tested as well. The outcomes 
of these additional experiments were X21 = 1, X22 = 1 and X23 = 0. With n2 = 3, and using the convention that 
N2 = {1, . . . , n2}, this can be denoted compactly as X2(N2) = (1, 1, 0). We refer to all seven experiments at once by 
writing XG(N), which, using our notational conventions, is equal to the tuple (X1(N1), X2(N2)). As a final example, 
consider J1 = {2, 4} and J2 = {2, 3}. Then XG(J) = (X1(J1), X2(J2)), with X1(J1) as given earlier on and X2(J2) =
(X22, X23) = (1, 0). �
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3.2. Modelling beliefs about countable sequences of variables

As explained in the previous section, sequences of variables can be regarded as a single (joint) variable as well. 
Hence, we can easily use the tools from Section 2 to model a subject’s beliefs about such sequences. For the joint 
variable XG(N), the most straightforward approach would be to use a coherent set DG(N) of desirable gambles on 
XG(N) or a coherent lower prevision PG(N) on G(XG(N)).

However, we believe that this would make little sense from a behavioural point of view. Let us consider a single 
countable sequence of variables, each of which corresponds to a coin toss. Does it make sense to bet on the event that 
the outcome of every toss will be heads? We follow de Finetti in thinking that it does not: it is impossible to observe 
the outcome of every coin toss, as there are infinitely many. It does however make sense to bet on the event that the 
outcome of the first n coin tosses is heads, and one can do so for any n ∈N. In much the same way, it also makes sense 
to consider bets on any finite subset of a countable sequence of coin tosses. For this reason, we do not consider all the 
gambles in G(XG(N)) as relevant. We will restrict ourselves to those gambles that are of finite structure,12 meaning 
that they depend upon the value of a finite subset of the variables Xij only, with i ∈ G and j ∈N, rather than the value 
of XG(N), which depends upon all of them. We denote the set of all gambles of finite structure by G(XG(N)).

In order to be able to formally define this set, we introduce an important simplifying device called cylindrical 
extension. For all i ∈ G, let Ji and J ′

i be disjoint subsets of N and denote their union as J ∗
i . Then for any gamble f

on XG(J ), its so-called cylindrical extension f̃ to XG(J ∗) is defined as follows:

f̃ (xG(J ∗)) = f̃ (xG(J ), xG(J ′)) := f (xG(J )) for all xG(J ∗) ∈XG(J ∗). (4)

Formally, f belongs to G(XG(J )), whereas f̃ belongs to G(XG(J ∗)). In practice however, both gambles clearly co-
incide: they both depend upon the value of XG(J) only and, as such, correspond to the same bet. We will therefore, 
in the sequel, repeatedly identify f with its cylindrical extension f̃ , in which case we denote this extension by f
as well. Using this convention, we can for example identify G(XG(J )) with a subset of G(XG(N)). Similarly, for any 
K ⊆ G(XG(N)), we can write K ∩ G(XG(J )) to denote the set of those gambles in K that depend upon the value of 
XG(J) only.

The set of all gambles of finite structure can now be defined as follows:

G(XG(N)) := {
f ∈ G(XG(N)):f ∈ G(XG(J )) for some Ji � N, i ∈ G

}
=

⋃
Ji�N,i∈G

G(XG(J )), (5)

where Ji � N is taken to mean that Ji is a finite subset of N. In other words, every gamble in G(XG(N)) is the 
cylindrical extension to XG(N) of some gamble on XG(J ), where for all i ∈ G, Ji is an arbitrary but finite subset of N. 
Clearly, G(XG(N)) is a linear subspace of G(XG(N)) that includes all constant gambles. Therefore, all the results of 
Section 2 apply. In particular, we can model a subject’s beliefs about XG(N) by means of a set of desirable gambles 
DG(N) ⊆ G(XG(N)) that is coherent relative to G(XG(N)) or, alternatively, by means of a coherent lower prevision 
P G(N) on G(XG(N)).

Now that we know how to model all variables at once, let us see what happens if we focus on a subset. Consider, 
for all i ∈ G, some Ji � N or, in other words, choose a finite number of variables from every sequence. Then we can 
model a subject’s beliefs about these variables by means of a coherent set DG(J ) of desirable gambles on XG(J ) or a 
coherent lower prevision on PG(J ) on G(XG(J )). If besides a model for XG(J), we also have a joint model for XG(N), 
then both of these should be related. For example, if a subject considers a gamble f on XG(J ) as desirable, he should 
consider its cylindrical extension to XG(N) as desirable as well, since, in practice, these gambles are indistinguishable. 
More generally, DG(J ) should be the marginalisation of DG(N) to G(XG(J )), as defined by13

margG(J ) DG(N) := {
f ∈ G(XG(J )):f ∈DG(N)

} =DG(N) ∩ G(XG(J )). (6)

12 In choosing this terminology, we were inspired by Dubins and Savage [24, Chapter 2.7], who introduce functions of finite structure as functions 
that depend upon only a finite subset of a countable set of coordinates.
13 Ref. [17] includes a general introduction to marginalisation for sets of desirable gambles.
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More or less the same can be said for lower previsions. Let P G(J ) be a lower prevision on G(XG(J )) and P G(N) be 
a lower prevision on G(XG(N)). Then these are said to be related trough marginalisation if

P G(J )(f ) = P G(N)(f ) for all f in G(XG(J )). (7)

As is to be expected from a rationality requirement, coherence is preserved under marginalisation. Within our 
finitary context, where we only consider gambles of finite structure, we can even establish a converse result.

Proposition 4. A set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) is coherent relative to G(XG(N)) if and only if 
for every choice of Ji � N, with i ∈ G, the marginal set of desirable gambles DG(J ), as given by Eq. (6), is coherent.

A similar result holds for coherent lower previsions as well.

Proposition 5. A lower prevision PG(N) on G(XG(N)) is coherent if and only if for every choice of Ji � N, with i ∈ G, 
the marginal lower prevision PG(J ), as given by Eq. (7), is coherent.

4. Finite partially exchangeable sequences

Armed with the tools introduced in the two previous sections, we can now start with the main topic of this paper: 
investigating the consequences of a judgement of partial exchangeability. We start with finite partially exchangeable 
sequences. In order to treat this problem in its full generality, we will consider in all instances, for all i ∈ G, some 
Ji �N or, in other words, choose a finite number of variables from every group. We use the shorthand notation ni =
|Ji | to refer to the number of variables chosen from group i and collect these numbers in the vector nG = (n1, . . . , ng).

4.1. Defining finite partial exchangeability

As mentioned in the introduction, we model variables that are considered to be (g-fold) partially exchangeable. In 
terms of gambles, if a subject regards g sequences as partially exchangeable, we take this to mean that he considers the 
exchange of any gamble f on those sequences for its permuted form—the same gamble, after permuting the variables 
within their groups—to be equivalent to no transaction at all. In order to turn this into a formal definition, we introduce 
some extra notation.

For any i ∈ G, let Pi(Ji ) be the set of all permutations πi of the index set Ji . Then, for every x ∈ Xi(Ji ) and every 
πi ∈ Pi(Ji ), we can consider the permuted sequence πix, as given by (πix)ij = xiπi(j) for every j ∈ Ji . As such, 
Pi(Ji ) can be identified with a group of permutations of Xi(Ji). If for all i ∈ G, we have a permutation πi ∈Pi(Ji ), we 
use the shorthand notation π to refer to the tuple (π1, . . . , πg). Clearly, π is an element of PG(J ) :=×i∈G

Pi(Ji ). If 
we let x = (x1(J1), . . . , xg(Jg)) be a generic element of XG(J ), we define, by considering permutations within groups, 
πx := (π1x1(J1), . . . , πgxg(Jg)).

Running example. Consider the following permutation: π = (π1, π2), where π1 = (2, 1, 4, 3) and π2 = (3, 2, 1). 
Then for x = (x1(N1), x2(N2)) = ((0, 1, 1, 0), (1, 1, 0)) we have πx = ((1, 0, 0, 1), (0, 1, 1)). We can also permute sub-
sequences. For instance, for J1 = {2, 4} and J2 = {2, 3}, we now write x′ = (x1(J1), x2(J2)) = ((1, 0), (1, 0)). With 
π ′

1 = (4, 2) a permutation of J1 and π ′
2 = (3, 2) a permutation of J2, we find that π ′

1(2) = 4, π ′
1(4) = 2, π ′

2(2) = 3, 
π ′

2(3) = 2 and therefore π ′x′ = (π ′
1(1, 0), π ′

2(1, 0)) = ((0, 1), (0, 1)). �
Next, we lift any permutation π ∈PG(J ) to a linear transformation πt of the set G(XG(J )) of all gambles on XG(J ). 

For any gamble f ∈ G(XG(J )), πtf := f ◦π is given, for all x ∈XG(J ), by πtf (x) = f (πx), and this is the permuted 
gamble to which we referred above in our informal description of partial exchangeability.

Using our newly acquired notation, this description can now be formalised: if a subject judges the variables XG(J)

to be partially exchangeable, this means that for any gamble f ∈ G(XG(J )) and any permutation π ∈ PG(J ), he 
considers the gamble f −πtf to be equivalent to the zero gamble. Using the terminology in Section 2.3: the gambles 
in

Apar := {
f − πtf :f ∈ G(XG(J )),π ∈PG(J )

}

G(J )
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belong to the subject’s set of indifferent gambles. We denote by Ipar
G(J ) the smallest, most conservative, set of indifferent 

gambles that reflects such a judgement of partial exchangeability—includes Apar
G(J )

—and furthermore satisfies the 
rationality criteria of indifference. It is not hard to see that [use I2 and I3]

Ipar
G(J ) = span

(
Apar

G(J )

)
. (8)

The only non-trivial problem is whether Ipar
G(J ) satisfies I4. The following result establishes that this is indeed the case.

Proposition 6. Ipar
G(J ) is a linear subspace of G(XG(J )) that satisfies I1–I4.

Given the discussion in Section 2, it is now straightforward to define finite partial exchangeability, both in terms of 
sets of desirable gambles and in terms of lower previsions. We simply require compatibility with Ipar

G(J ).

Definition 5 (Finite partial exchangeability). A coherent set DG(J ) of desirable gambles on XG(J ) is called partially 
exchangeable if it is compatible with Ipar

G(J ). In that case, the variables XG(J) are said to be partially exchangeable 
with respect to DG(J ).

Definition 6 (Finite partial exchangeability). A coherent lower prevision PG(J ) on G(XG(J )) is called partially ex-
changeable if it is compatible with Ipar

G(J ). In that case, the variables XG(J) are said to be partially exchangeable with 
respect to P G(J ).

Due to Proposition 2, both definitions are closely related to each other. Each of them is also related to a number of 
alternative definitions for (partial) exchangeability, some of which are perhaps better known to the reader. Indeed, Def-
inition 5 is a generalisation of Definition 3(iii) in Ref. [15], which considers the particular case of exchangeability.14

Similarly, the following result both generalises and strengthens Definition 3(i) in Ref. [15] by providing conditions 
that appear to be increasingly weaker, but are actually equivalent to the condition in Definition 5. It uses the following 
subset of Apar

G(J ):

AG(J ) := {
I{x} − πt I{x}:x ∈ XG(J ),π ∈PG(J )

}
.

Proposition 7. A coherent set DG(J ) of desirable gambles on XG(J ) is partially exchangeable if and only if any of the 
following two equivalent conditions holds:

(i) f1 + f2 ∈DG(J ) for all f1 ∈DG(J ) and all f2 ∈ Apar
G(J );

(ii) f1 + f2 ∈DG(J ) for all f1 ∈DG(J ) and all f2 ∈ AG(J ).

For lower previsions, Definition 6 is a generalisation of the definition that was used in Ref. [15],15 which—as 
already mentioned before—was concerned with the particular case of exchangeability. In order to relate the condition 
in Definition 6 to other definitions in the literature, we consider the following three equivalent conditions.

Proposition 8. A coherent lower prevision PG(J ) on G(XG(J )) is partially exchangeable if and only if any of the 
following equivalent conditions holds:

(i) P G(J )(f ) ≥ 0 for all f ∈Apar
G(J );

(ii) P G(J )(f ) ≥ 0 for all f ∈AG(J );
(iii) All the linear previsions PG(J ) in M(P G(J )) are partially exchangeable.

14 Exchangeability corresponds to the special case where only one sequence of variables is considered: g = 1 and G = {1}.
15 This follows by combining the condition in Definition 5 with Theorem 11(iii) in Ref. [15] or, alternatively, with Proposition 2 and Definition 3 
in Ref. [15].
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For the case of exchangeability, Ref. [21] used condition (i) as a definition. In that same setting, Walley imposes 
an apparently stronger version of condition (i), which replaces the inequality by an equality [11, Section 9.5.1]; 
it should be clear that this definition is equivalent as well. For two sequences that are considered to be partially 
exchangeable—g = 2 and G = {1, 2}—Cozman proposed condition (ii) [25, Section 3.5.3].

Conditions (i) and (ii) both imply that partial exchangeability of a lower prevision, similarly to coherence, is 
preserved under taking lower envelopes. Hence, by combining this with condition (iii), we find that a coherent lower 
prevision PG(J ) is partially exchangeable if and only if it is the lower envelope of some set of partially exchangeable 
linear previsions and, in that case, every other linear prevision that dominates PG(J ) will be partially exchangeable as 
well. This connection is important because partial exchangeability of a linear prevision is closely related to the usual, 
precise-probabilistic definition of partial exchangeability for probability measures.

As explained in Section 2.5, every linear prevision PG(J ) on G(XG(J )) is the expectation operator of a unique prob-
ability measure, which we denote by PG(J ) as well. In this case, since XG(J ) is finite, the distinction between finite and 
countable additivity disappears and, furthermore, PG(J ) has a unique corresponding probability mass function pG(J )

on XG(J ) from which it can be derived in the usual way. The following result establishes that partial exchangeability 
of the linear prevision—in the sense of Definition 6—is equivalent to partial exchangeability of the corresponding 
probability measure—in the usual sense [1].

Proposition 9. A linear prevision PG(J ) on G(XG(J )) is partially exchangeable if and only if the corresponding 
probability mass function pG(J ) satisfies:

pG(J )(πx) = pG(J )(x) for all x ∈XG(J ) and all π ∈PG(J ). (9)

4.2. From sequences to count vectors

In a precise-probabilistic setting, a judgement of partial exchangeability turns frequency counts into sufficient 
statistics. In order to show that such a result extends to our setting as well—as we will do in Section 4.3, we need tools 
that enable us to count, for each element of Xi , i ∈ G, how many times it occurs within a given sequence of outcomes. 
We start by defining the following sets of count vectors:

N ni :=
{
mi ∈ NXi :

∑
z∈Xi

(mi)z = ni

}
for all i ∈ G,

where we denoted the z-component of mi as (mi)z. Recalling the notational convention for nG in the very beginning 
of this section, we extend this notation towards multiple sequences by defining N nG :=×i∈G

N ni . A generic element 
m of N nG is a G-tuple, consisting of count vectors mi ∈ N ni , one for every i ∈ G.

The reason why we call them count vectors is because they are the result of so-called counting operators. The 
counting operator Ti(Ji) is a map from Xi(Ji ) to N ni . It maps any x ∈ Xi(Ji ) to a count vector Ti(Ji)(x) ∈ N ni of which 
the z-component is given by

Ti(Ji )(x)z := ∣∣{j ∈ Ji :xij = z}∣∣ for all z ∈Xi .

It should be clear that Ti(Ji)(x)z is the number of times the element z occurs in the sequence x, hence the term count 
vector. It is also useful to extend the domain of Ti(Ji) to XG(J ). For all x ∈ XG(J ), this extended version is given 
by Ti(Ji )(x) := Ti(Ji )(xi(Ji )). This makes it particularly easy to introduce the operator TG(J ): XG(J ) → N nG . For all 
x ∈XG(J ), TG(J )(x) is a G-tuple that has the count vectors Ti(Ji)(x) as its components, one for every i ∈ G.

Running example. Consider again our running example with four men and three women. For the men, we have that 
n1 = 4, J1 = N1 = {1, 2, 3, 4} and X1 = {0, 1}. Hence, the set of possible count vectors is

N n1 =N 4 = {
m1 ∈N{0,1}: (m1)0 + (m1)1 = 4

}
.

For the women, we have n2 = 3, J2 = N2 = {1, 2, 3} and X2 = {0, 1} and therefore, the set of possible count vectors 
is

N n2 =N 3 = {
m2 ∈N{0,1}: (m2)0 + (m2)1 = 3

}
.
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Let us denote the outcome of the experiments on both sexes as x = (x1(N1), x2(N2)), and recall that in this running 
example, the outcome is x1(N1) = (0, 1, 1, 0) for the men and x2(N2) = (1, 1, 0) for the women. We then obtain a joint 
count vector m := TG(N)(x) = (T1(N1)(x), T2(N2)(x)) =: (m1, m2), where

m1 = T1(N1)(x) = (
T1(N1)(x)0, T1(N1)(x)1

) = (2,2)

and, similarly, m2 = T2(N2)(x) = (1, 2). Despite the admittedly rather cumbersome notation, the meaning of these 
formulas should be clear. To give an example: T1(N1)(x)0 = 2 simply means that amongst the four tested men, two 
were “not cured”. �

Count vectors are useful to identify what we call permutation invariant atoms: for all x ∈ XG(J ), the atom [x] :=
{πx: π ∈ PG(J )} consists of all the permutations of x, obtained by permuting its elements xij—within their respective 
groups i ∈ G—in all possible ways. These atoms are the smallest permutation invariant subsets of XG(J ). Since y
belongs to [x] if and only TG(J )(y) = TG(J )(x), the atom [x] is completely determined by the count vector m =
TG(J )(x), allowing us to identify [x] with [m] := T −1

G(J )(m) = {y ∈XG(J ): TG(J )(y) = m}. The number of elements in 
[m] is given by

∣∣[m]∣∣ =
∏
i∈G

∣∣[mi]
∣∣, where

∣∣[mi]
∣∣ :=

(
ni

mi

)
:= ni !∏

z∈Xi
(mi)z! for all i ∈ G. (10)

Each [mi] := {xi ∈ Xi(Ji ): Ti(Ji )(xi) = mi} is the permutation invariant atom of Xi(Ji) with count vector mi , associated 
with the permutation group Pi(Ji). Observe that [m] =×i∈G

[mi], which justifies Eq. (10).

Running example. Consider again the particular case of our running example where J1 = {2, 4}, J2 = {2, 3} and 
x = (x1(J1), x2(J2)) = ((1, 0), (1, 0)) ∈ XG(J ). Besides x, the invariant atom [x] contains three additional elements of 
XG(J ), obtained by permuting the individual values of x within their respective groups: ((1, 0), (0, 1)), ((0, 1), (1, 0))

and ((0, 1), (0, 1)). �
4.3. Finite representation theorems for partial exchangeability

In the previous section, we established that there is a strong connection between permutations and count vectors. 
In the present section, we exploit this connection to derive finite representation theorems for partial exchangeability. 
We start by introducing a linear transformation exG(J ) of the linear space G(XG(J )):

exG(J )(f ) := 1

|PG(J )|
∑

π∈PG(J)

π tf for all f ∈ G(XG(J )),

where |PG(J )| = ∏
i∈G |Pi(Ji )| and |Pi(Ji )| = ni !. This operator is the uniform average of the gambles πtf , taken over 

all the permutations π ∈ PG(J ) and, in this way, it makes any gamble f insensitive to permutations: we invite the 
reader to check that for all f ∈ G(XG(J )) and all π ∈ PG(J ):

exG(J )

(
πtf

) = πt
(
exG(J )(f )

) = exG(J )(f ) = exG(J )

(
exG(J )(f )

)
. (11)

The third equality tells us that exG(J ) is a projection operator, and the second equality guarantees that it maps gambles 
to gambles that are permutation invariant. Hence, the value of exG(J )(f ) is constant on the permutation invariant 
atoms, that is, it assumes the same value in any element of such an atom. For any x ∈XG(J ), the constant value that is 
assumed by exG(J )(f ) on the elements of [x] is

1

|PG(J )|
∑

π∈PG(J)

π tf (x) = 1

|PG(J )|
∑

π∈PG(J)

f (πx) = 1

|PG(J )|
∑
y∈[x]

∑
π∈PG(J):

πx=y

f (y)

= 1

|PG(J )|
∑ |PG(J )|

|[x]| f (y) = 1

|[x]|
∑

f (y).
y∈[x] y∈[x]
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If we recall that [x] = [m] for m = TG(J )(x), this means that we can identify exG(J )(f ) with a gamble on the count 
vectors in N nG . Inspired by this observation, we introduce an operator HyG(J ) that maps G(XG(J )) to G(N nG). For 
every gamble f on XG(J ), we define HyG(J )(f ) by

HyG(J )(f )(m) := HyG(J )(f |m) := 1

|[m]|
∑

x∈[m]
f (x) for all m ∈N nG

Consequently, we have that

exG(J )(f ) = HyG(J )(f ) ◦ TG(J ). (12)

For each given m ∈ N nG , HyG(J )(·|m) is the expectation operator associated with the uniform distribution on [m]. 
This uniform distribution is the independent joint of the uniform distributions on the invariant atoms [mi], i ∈ G, and 
each of these independent uniform distributions is essentially a multivariate hypergeometric distribution, associated 
with random sampling, without replacement, from an urn that contains ni balls, (mi)x of which are of type x, with 
x ∈Xi . In summary, HyG(J )(·|m) is the expectation operator for an independent joint of g multivariate hypergeometric 
distributions, and is associated with random sampling, without replacement, independently from g urns.

Running example. Using once more the data from our example, we illustrate the operator HyG(J ). If we let 
J1 = {1, 2, 3} and J2 = {1, 2}, then x = ((0, 1, 1), (1, 1)) and m = TG(J )(x) = ((1, 2), (0, 2)). The atom [m] con-
tains |[m]| = 3 elements, one of which is x. The other two are x ′ = ((1, 0, 1), (1, 1)) and x′′ = ((1, 1, 0), (1, 1)). If we 
let E be the event that, amongst the first two men and first woman tested, two people are cured and one is not, then 
the intersection of E and [m] consists of two elements: x and x′. Hence, with f = IE ∈ G(XG(J )), we find that

HyG(J )(IE |m) = 1

3

∑
y∈[m]

IE(y) = 1

3

(
IE(x) + IE

(
x′) + IE

(
x′′)) = 1

3
(1 + 1 + 0) = 2

3
.

This is the probability of extracting one white ball when drawing two balls, without replacement, from an urn with 
two white balls and one black ball multiplied by the probability of extracting one white ball from an urn with two 
white balls, if we consider the extraction of every ball equally probable. �

The linear operators exG(J ) and HyG(J ), which essentially transform gambles to permutation invariant ones, owe 
their importance to the following results, which clearly illustrate their connection to partial exchangeability.

Proposition 10. Ipar
G(J ) is the kernel of both exG(J ) and HyG(J ):

f ∈ Ipar
G(J ) ⇔ exG(J )(f ) = 0 ⇔ HyG(J )(f ) = 0 for all f ∈ G(XG(J )).

Proposition 11. A coherent set DG(J ) of desirable gambles on XG(J ) is partially exchangeable if and only if

f ∈ DG(J ) ⇔ exG(J )(f ) ∈ DG(J ) for all f ∈ G(XG(J )). (13)

This last result is particularly important. It means that, under an assessment of exchangeability, the desirability of 
a gamble f is fully determined by the desirability of its permutation invariant counterpart exG(J )(f ). Given that, by 
Eq. (12), exG(J )(f ) is completely characterised by the gamble HyG(J )(f ) on N nG , Proposition 11 suggests that an 
exchangeable set of desirable gambles can be fully represented by means of gambles on count vectors only, which 
significantly reduces the dimension of the model, and suggests the role of count vectors as sufficient statistics. The 
following representation theorem shows that this is indeed the case.

Theorem 12 (Finite representation). A set DG(J ) of desirable gambles on XG(J ) is coherent and partially exchange-
able if and only if there is some coherent set RnG

of desirable gambles on N nG such that

DG(J ) = Hy−1
G(J )(RnG

)

and, in that case, this RnG
is uniquely determined by RnG

= HyG(J )(DG(J )), and referred to as the count representa-
tion of DG(J ).
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Using Proposition 2, it is relatively easy to derive a similar result in terms of coherent lower previsions.

Theorem 13 (Finite representation). A lower prevision PG(J ) on G(XG(J )) is coherent and partially exchangeable 
if and only if there is some coherent lower prevision QnG

on G(N nG) such that PG(J ) = QnG
◦ HyG(J ) and, in that 

case, this QnG
is uniquely determined by

QnG
(r) = P G(J )(r ◦ TG(J )) for all r ∈ G

(
N nG

)
and referred to as the count representation of PG(J ).

These theorems tell us that for imprecise probability models also, making observations under partial exchange-
ability is essentially equivalent to independent random sampling without replacement from a number of urns with 
uncertain compositions.

If we apply Theorem 13 to a partially exchangeable linear prevision PG(J ), then, clearly, the resulting count rep-
resentation will be a linear prevision as well. Given the discussion in Section 2.5, this representation QnG

is the 
expectation operator with respect to a probability mass function on the count vectors in N nG , so we obtain in this 
way the usual finite representation theorem for partial exchangeability as a special case.16 By combining this special 
case with Proposition 8(iii), we see that, in general, QnG

is the lower envelope of the count representations QnG
of 

the linear previsions PG(J ) that dominate P G(J ). Hence, we find that within our imprecise-probabilistic context, we 
no longer have a single representing probability mass function on N nG , but rather a (convex) set of them.

From a practical point of view, the main advantage of Theorems 12 and 13 is that they result in representations that 
can be expressed in terms of a lower dimensional space. The dimension of G(N nG) is typically much smaller than that 
of G(XG(J )). For example, with G = {1, 2}, X1 and X2 binary, and n1 = n2 = n, the dimension of G(XG(J )) is 22n, 
whereas G(N nG) has dimension (n + 1)2.

4.4. Polynomial gambles

We have just seen that judging a finite number of random variables to be partially exchangeable allows us to express 
beliefs about these variables by means of gambles on count vectors rather than gambles on finite sequences. In the 
sequel, we will show that similar results can be obtained for countable sequences as well. However, in order to do 
so, we can no longer use count vectors: it does not make sense to ‘count’ in infinite sequences. Instead, our infinite 
representation theorems will be expressed in terms of a more abstract framework, which we introduce in the present 
section.

For all i ∈ G, we consider the set Σi consisting of all probability mass functions on Xi . We call it the Xi -simplex, 
and define it as

Σi :=
{
θi ∈RXi : (∀x ∈Xi )

(
(θi)x ≥ 0

)
and

∑
x∈Xi

(θi)x = 1

}
.

The cross product of these simplices is denoted by ΣG :=×i∈G
Σi . Clearly, choosing θ ∈ ΣG is equivalent to speci-

fying, for every i ∈ G, a probability mass function θi on Xi . The set of all gambles on ΣG is denoted by G(ΣG).
As a special subset of G(ΣG), we consider the set V(ΣG) consisting of all polynomial gambles h on ΣG, which 

are those gambles that are the restriction to ΣG of a (multivariate) polynomial p on ×i∈G
RXi , in the sense that 

h(θ) = p(θ) for all θ ∈ ΣG. We call p a representation of h. Clearly, for a given polynomial gamble h, there can be 
many such representations.

For every polynomial p on ×i∈G
RXi , we denote by degi (p) the total degree in the variables (θi)x , with x ∈ Xi . We 

use degG(p) to refer to the tuple that has degi (p) as its components. Using this notation, we define VnG(ΣG) as the 
set consisting of those polynomial gambles h on ΣG that have at least one representation p for which degG(p) ≤ nG, 
by which we mean that, for all i ∈ G, degi (p) ≤ ni . We say that VnG(ΣG) is the set of polynomial gambles of degree 
up to nG.

16 For partially exchangeable binary random variables, a finite version of de Finetti’s representation theorem can be found in Refs. [26, Section 3]
and [27, p.213].
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VnG(ΣG) and V(ΣG) are both linear subspaces of G(ΣG) that include the constant gambles. This is important, 
because it allows us to apply the results discussed in Section 2.

An important subclass of polynomial gambles are the Bernstein gambles. Consider, for any mi ∈ N ni , the associ-
ated Bernstein basis polynomial Bmi

on RXi , given by

Bmi
(θi) :=

(
ni

mi

) ∏
x∈Xi

(θi)
(mi)x
x for all θi ∈ RXi ,

where 
(
ni

mi

)
, as in Eq. (10), is the multinomial coefficient. We generalise this by defining, for all m ∈ N nG , Bm =∏

i∈G Bmi
, which we call a Bernstein basis polynomial as well. The restriction of Bm to ΣG is called a Bernstein 

gamble and will also be denoted as Bm. The distinction between the polynomial and the polynomial gamble should 
be clear from the context. The importance of Bernstein gambles is due to the following result.

Proposition 14. The set of Bernstein gambles {Bm: m ∈ N nG} constitutes a basis for the linear space VnG(ΣG) of all 
polynomial gambles of degree up to nG.

4.5. Finite representation in terms of polynomial gambles

As a first example of the use of polynomial gambles, we translate one of the finite representation theorems of 
Section 4.3 into this framework. An important tool that will help us to achieve this goal is the linear map CoMnnG

from G(N nG) to VnG(ΣG) that is defined for all r ∈ G(N nG) by

CoMnnG(r) :=
∑

m∈N nG

r(m)Bm,

where, for all θ ∈ ΣG, CoMnnG(r|θ) := CoMnnG(r)(θ) is the expectation of r with respect to an independent joint 
of multinomial distributions whose parameters are ni and θi , for i ∈ G. Since by Proposition 14, every h ∈ VnG(ΣG)

has a unique corresponding count gamble bnG

h ∈ G(N nG) for which CoMnnG(b
nG

h ) = h, we find that CoMnnG is a 
linear isomorphism between the linear spaces G(N nG) and VnG(ΣG). Hence, bnG

h is the unique gamble given by 
b

nG

h := (CoMnnG)−1(h).
By applying the operator CoMnnG to every element of some set RnG

of desirable gambles on N nG , we obtain 
a set HnG

= CoMnnG(RnG
) of polynomial gambles on ΣG, which clearly is a subset of VnG(ΣG). We show in 

Proposition 15 that HnG
is Bernstein coherent at degree nG if and only if RnG

is coherent.

Definition 7 (Bernstein coherence at degree nG). A set HnG
of polynomial gambles in VnG(ΣG) is called Bernstein 

coherent at degree nG if

BnG
1. 0 /∈HnG

,
BnG

2. Bm ∈ HnG
for all m ∈ N nG ,

BnG
3. λh ∈HnG

for all h ∈HnG
and all λ ∈R>0,

BnG
4. h1 + h2 ∈ HnG

for all h1, h2 ∈ HnG
.

Alternatively, as in Ref. [15],17 BnG
2 can be replaced by

BnG
2′. b

nG

h > 0 ⇒ h ∈ HnG
,

which contains BnG
2 as a special case. Since BnG

2′ is implied by BnG
2, BnG

3 and BnG
4, both definitions of Bern-

stein coherence at degree nG are equivalent. We prefer our present version because it is stated entirely in terms of 
polynomial gambles, without using count gambles.

17 They consider the particular case of exchangeability rather than partial exchangeability.
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Proposition 15. Consider a set RnG
of desirable gambles on N nG and a set HnG

of polynomial gambles on ΣG up 
to degree nG such that HnG

= CoMnnG(RnG
) or, equivalently, such that RnG

= (CoMnnG)−1(HnG
). Then RnG

is 
coherent if and only if HnG

is Bernstein coherent at degree nG.

We also introduce the map MnG(J ) := CoMnnG ◦ HyG(J ) from G(XG(J )) to VnG(ΣG). For all f ∈ G(XG(J )) and 
θ ∈ ΣG,

MnG(J )(f |θ) := MnG(J )(f )(θ) = CoMnnG
(
HyG(J )(f )

)
(θ) =

∑
x∈XG(J)

f (x)
∏
i∈G

∏
j∈Ji

(θi)xij

is the expectation of f with respect to an independent joint of categorical distributions, ni = |Ji | of which are defined 
on Xi , with θi as their vector of probabilities, for i ∈ G.

With these tools in hand, we can now present our finite representation theorem in terms of polynomial gambles. 
Due to Proposition 15, it is an almost immediate consequence of Theorem 12.

Theorem 16. A set of desirable gambles DG(J ) on XG(J ) is coherent and partially exchangeable if and only if there 
is some Bernstein coherent set HnG

of polynomial gambles on ΣG up to degree nG such that

DG(J ) = Mn−1
G(J )(HnG

)

and, in that case, this HnG
is uniquely determined by HnG

= MnG(J )(DG(J )) and referred to as the polynomial rep-
resentation of DG(J ).18 Furthermore, the count representation of DG(J ) is then given by RnG

= (CoMnnG)−1(HnG
).

5. Countable partially exchangeable sequences

From now on, we no longer restrict ourselves to finite numbers of variables within each group. Instead, we will 
consider the complete set of all variables Xij , with i ∈ G and j ∈ N, compactly represented by the single variable 
XG(N). We will explain what it means to consider these variables as partially exchangeable and derive representation 
theorems that include the usual precise-probabilistic versions as special cases. As a model for XG(N), we consider 
either a set of desirable gambles DG(N) ⊆ G(XG(N)) that is coherent relative to G(XG(N)) or, alternatively, a coherent 
lower prevision P G(N) on G(XG(N)). For every choice of Ji �N, with i ∈ G, the corresponding marginal models will 
be denoted by DG(J ) and P G(J ) and are taken to be derived from DG(N) and P G(N) by means of marginalisation, as 
defined by Eqs. (6) and (7) respectively. Also, whenever ni is not explicitly defined, it is taken to be equal to |Ji| and, 
as such, Ni and nG are silently instantiated as {1, . . . , |Ji |} and (|J1|, . . . , |Jg|) respectively.19

5.1. Defining countable partial exchangeability

Our definition for countable partial exchangeability is completely analogous to the finite version that was presented 
in Section 4.1. The only difference is that here, instead of using the set of indifferent gambles Ipar

G(J )
, we use the 

following superset:

Ipar
G(N)

:= {
f ∈ G(XG(N)):f ∈ Ipar

G(J ) for some Ji � N, i ∈ G
}
. (14)

Recalling the discussion on cylindrical extension in Section 3.2, Ipar
G(N)

is simply the union of the sets Ipar
G(J )

, taken 
over all possible selections of a finite number of variables Xij . The next result establishes that Ipar

G(N)—similarly to 
Ipar

G(J )—is a valid set of indifferent gambles.

Proposition 17. Ipar
G(N) is a linear subspace of G(XG(N)) that satisfies I1–I4.

18 For the particular case of regular exchangeability, Ref. [15] calls this the frequency representation. We prefer not to use this terminology 
because, in statistics, frequencies are counts. Our representation here is instead related to limiting relative frequencies. By calling it the polynomial 
representation, we avoid any confusion that might arise.
19 Theorems 22 and 23 serve as nice examples of how we use these conventions.
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Partial exchangeability is now easily defined. Similarly to what we did in the finite case, we require compatibility 
with Ipar

G(N)
.

Definition 8 (Countable partial exchangeability). A set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) that is 
coherent relative to G(XG(N)) is called partially exchangeable if it is compatible with Ipar

G(N)
. In that case, the variables 

XG(N) are said to be partially exchangeable with respect to DG(J ).

Definition 9 (Countable partial exchangeability). A coherent lower prevision PG(N) on G(XG(N)) is called partially 
exchangeable if it is compatible with Ipar

G(N)
. In that case, the variables XG(N) are said to be partially exchangeable 

with respect to PG(N).

By Proposition 2, these two definitions are tightly connected with each other. Furthermore, as is to be expected 
from the definition of Ipar

G(N)
, both of these definitions for countable partial exchangeability are closely related to their 

finite counterparts.

Proposition 18. A set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) that is coherent relative to G(XG(N)) is 
partially exchangeable if and only if for every choice of Ji � N, i ∈ G, the marginal model DG(J ) is partially ex-
changeable.

Proposition 19. A coherent lower prevision PG(N) on G(XG(N)) is partially exchangeable if and only if for every 
choice of Ji � N, i ∈ G, the marginal model PG(J ) is partially exchangeable.

This connection with the finite versions of the definitions should not come as a surprise. In fact, partial exchange-
ability of countable sequences is often defined exactly in this way, by imposing finite partial exchangeability on every 
finite subset of variables.

Due to this connection, and given the discussion in Section 4.1, it is now easy to derive alternative characterisations 
for our notion of countable partial exchangeability. It suffices to combine Propositions 18 and 19 with Propositions 7
and 8 to obtain appropriate countable versions of the characterisations that are provided by Propositions 7 and 8. In 
particular, one finds that a coherent lower prevision PG(N) on G(XG(N)) is partially exchangeable if and only if every 
dominating linear prevision PG(N) is.

For every such linear prevision PG(N) on G(XG(N)), we can furthermore establish an equivalence with the usual 
precise-probabilistic notion of partial exchangeability [1,2], similarly to what we did in Proposition 9. However, care 
should be taken in defining the probability measure that is used to state such a result. As explained in Section 2.5, 
PG(N) is an expectation operator with respect to a finitely additive probability measure, defined on all events E ⊆
XG(N). However, since PG(N) is defined on G(XG(N)) rather than G(XG(N)), many such measures may (and do) exist. 
Uniqueness can be obtained by considering the restriction of these measures to what could be called events of finite 
structure: those events that depend on the outcome a finite number of variables only. These are the only events whose 
indicators are of finite structure and, therefore, elements of G(XG(N)), thereby allowing us to define the probability 
of E as PG(N)(E) := PG(N)(IE). As such, PG(N) has a unique corresponding probability measure of which it is the 
expectation functional. It is denoted by PG(N) as well, and is defined on the set of all events E ⊆ XG(N) that are of 
finite structure.20 For every choice of Ji � N, i ∈ G, the corresponding marginal measure is denoted by PG(J )—just 
like its corresponding marginal linear prevision—and defined on all events E ⊆XG(J ). Note that PG(N) is completely 
characterised by these marginals, and vice versa. With these correspondence in mind, we can now state the following 
countable version of Proposition 9.

Proposition 20. A linear prevision PG(N) on G(XG(N)) is partially exchangeable if and only if for every choice of 
Ji � N, i ∈ G, the corresponding marginal probability measure PG(J ) is partially exchangeable in the usual sense, 
meaning that its probability mass function pG(J ) satisfies Eq. (9).

20 See Ref. [11, Section 3.2] for a general discussion of the connection between linear previsions, expectations and probability measures, and the 
conditions under which the correspondence is unique.
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5.2. Representation theorems for countable partial exchangeability

We now turn to the final and perhaps most important contribution of this paper: representation theorems for count-
able sequences of random variables that are considered to be partially exchangeable. These variables will be modelled 
by means of sets of desirable gambles or lower previsions. For the representations themselves, we use the framework of 
polynomial gambles, as introduced in Section 4.4. In order to move from the finite case—as treated in Section 4.5—to 
the countable one, we start by extending the notion of Bernstein coherence (at degree nG) to sets of polynomials that 
may be of arbitrary degree.

Definition 10 (Bernstein coherence). A set H of polynomial gambles on ΣG is called Bernstein coherent if

B1. 0 /∈ H,
B2. Bm ∈H for all nG ∈NG and m ∈N nG ,
B3. λh ∈ H for all h ∈H and all λ ∈R>0,
B4. h1 + h2 ∈H for all h1, h2 ∈ H.

Equivalently, B2 can be replaced by a more stringent axiom, similar to what is done in Ref. [15]; see the com-
ment after Definition 7 as well. The following proposition establishes a connection between Bernstein coherence and 
Bernstein coherence at degree nG.

Proposition 21. A set H of polynomial gambles on ΣG is Bernstein coherent if and only if, for all nG ∈ NG, HnG
:=

H ∩ VnG(ΣG) is Bernstein coherent at degree nG.

Using this connection, and by combining it with Theorem 16, we obtain the following representation theorem for 
countable partial exchangeability, in terms of sets of desirable gambles.

Theorem 22 (Countable representation). A set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) is coherent relative 
to G(XG(N)) and partially exchangeable if and only if there is a Bernstein coherent set H of polynomial gambles on 
ΣG such that for every choice of Ji � N, i ∈ G,

DG(J ) = Mn−1
G(J )

(HnG
), with HnG

:= H ∩ VnG(ΣG)

and, in that case, this H is uniquely determined by H = ⋃
nG∈NG MnG(N)(DG(N)) and referred to as the polynomial 

representation of DG(N).

Although this result may come across as less intuitive than its finite version, the main idea is identical to that 
of Theorem 12. Due to the assumption of partial exchangeability, every gamble f ∈ DG(J ) has a corresponding 
polynomial gamble MnG(J )(f ) ∈ V(ΣG) that acts as a ‘condensed representation’21 for f . The connection between 
f and MnG(J )(f ) is established by means of the multinomial distribution. Furthermore, coherence of DG(N) relative 
to G(XG(N)) corresponds to Bernstein coherence of the polynomial representation H.

By combining Theorem 22 with Proposition 2, we obtain a similar result in terms of lower previsions. Interestingly, 
in this case, Bernstein coherence of the representation is replaced by ‘normal’ coherence.

Theorem 23 (Countable representation). A lower prevision PG(N) on G(XG(N)) is coherent and partially exchange-
able if and only if there is a coherent lower prevision R on V(ΣG) such that for every choice of Ji �N, i ∈ G,

P G(J )(f ) = R
(
MnG(J )(f )

)
for all f ∈ G(XG(J ))

and, in that case, this R is uniquely determined by

R(h) = P G(N)

(
b

nG

h ◦ TG(N)

)
for all nG ∈NG and h ∈ VnG(ΣG)

and referred to as the polynomial representation of PG(N).

21 We could even call MnG(J )(f ) a ‘sufficient statistic’ for f as it allows us to perform all relevant inferences about the function f of the 
observations or data.
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If we apply Theorem 23 to a partially exchangeable linear prevision PG(N), then the resulting polynomial repre-
sentation will be a linear prevision R on V(ΣG), the set of all polynomial gambles on ΣG. Due to its coherence, 
R can also be extended to the set C(ΣG) of all continuous gambles on ΣG: by the Stone–Weierstraß theorem, every 
continuous gamble on ΣG is the uniform limit of some sequence of polynomial gambles on ΣG and, by coherence 
[P6], the prevision of this uniform limit is the limit of the previsions. By the Riesz–Markov–Kakutani representation 
theorem, this extension of R to C(ΣG) has a unique corresponding σ -additive probability measure on the Borel sets 
of ΣG such that, for all f ∈ C(ΣG), R(f ) is the (Lebesgue) integral of f with respect to this measure. Hence, we see 
that the usual, precise-probabilistic, measure-theoretic representation theorems for partial exchangeability [2,3]—at 
least for finite possibility spaces Xi , i ∈ G—correspond to a special case of Theorem 23.

However, this should not be taken to mean that they are equivalent. In order to obtain a unique representing proba-
bility measure, one needs to assume σ -additivity; we fail to see how, in the present context, such an assumption could 
be motivated by anything other than mathematical convenience. If this assumption is dropped, there will be many 
(finitely additive) representing probability measures, only one of which will be σ -additive on the Borel sets. Their ex-
pectation operators coincide on C(ΣG), but may differ for gambles that are not continuous; see for example Ref. [28]. 
Our version of the representation theorem has the advantage of avoiding both (a) an assumption of σ -additivity and 
(b) the non-uniqueness that usually comes with dropping that assumption. As can be seen from Theorem 23, all that is 
really needed in order to fully represent a partially exchangeable (lower) prevision on the set G(XG(N)) of all gambles 
of finite structure is a (lower) prevision on the polynomial gambles on ΣG or, equivalently, the continuous ones.

De Finetti avoided making an assumption of σ -additivity as well [8, Section 6.3], which is why in his original 
version of the representation theorem for (partially) exchangeable random variables, the representing object was a 
distribution function rather than a measure [1].22 However, here as well, one needs to impose additional technical 
assumptions—regarding discontinuity points of the representing distribution function—to obtain uniqueness.23 One 
particular option is to consider distribution functions as indeterminate at discontinuity points, as suggested by de 
Finetti [8, Section 6.5].24 In any case, again, by using a linear prevision on V(ΣG) instead of a distribution function, 
these issues need not be considered, and uniqueness is obtained automatically, without the need for any additional 
technical assumptions.

Let us now leave the issue of uniqueness, and take a closer look at the general case, where PG(N) is coherent and 
partially exchangeable, but not necessarily linear. In that case, we find that the representation consists of a coherent 
lower prevision R on V(ΣG). Taking into account the discussion after Proposition 19, we see that this R is the lower 
envelope of the polynomial representations R that correspond to the linear previsions PG(N) that dominate PG(N). 
Therefore, one could also consider using this (convex) set of linear previsions R as a representation. The advan-
tage of using their lower envelope R is that it provides a far more compact representation—a single operator instead 
of a possibly infinite number of them—which, nevertheless, still contains all relevant information. Similarly, given 
the connection described above, one could also consider using a set of distribution functions or a set of σ -additive 
probability measures. However, on top of the aforementioned issues related to uniqueness, these sets have the addi-
tional disadvantage that it is not always possible to recover R or, equivalently, PG(N) from their lower (and/or upper) 
envelope.25

6. Conclusions

This paper has studied the notion of partial exchangeability within the frameworks of sets of desirable gambles and 
lower previsions. Its main contributions are four representation theorems: two for every framework, covering both the 
finite and countable case. The usual precise-probabilistic representation theorems for partially exchangeable random 
variables were obtained as special cases, as were the representation theorems in Refs. [15,21], which considered reg-
ular exchangeability. Apart from their generality, and the fact that they allow for imprecision, a distinctive feature of 

22 Similar representation theorems for partially exchangeable random variables can also be found in Refs. [26] and [27, p. 212].
23 For example, for the particular case of exchangeable random variables that are binary, uniqueness of the representing distribution function can 
be obtained by assuming that it is right-continuous; see for example Ref. [29, p. 675].
24 See Ref. [30] for some related results.
25 This is because lower previsions are more general than lower and upper probabilities [19], of which lower and upper distribution functions 
(which, when combined, are sometimes referred to as a probability box or p-box [31]) are in turn a special case [11, Section 4.6.6].
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our results is that they clearly indicate what the representation actually consists of. It all comes down to the simple 
fact that, due to the assumption of partial exchangeability, every gamble on the observable variables has a correspond-
ing gamble on some lower-dimensional parameter space. Therefore, all relevant information can be represented in 
terms of (gambles on) this parameter space. For the countable case, it suffices to consider polynomial gambles on a 
cross-product of simplices.

Although our representation theorems in terms of lower previsions might come across as more intuitive—in part 
due to our effort of relating them to the usual precise-probabilistic case—we want to stress that the versions in terms 
of sets of desirable gambles are more fundamental. In the introduction, we already mentioned a number of general 
advantages of sets of desirable gambles, some of which they share with lower previsions. However, there is one feature 
that they do not share: a set of desirable gambles can always be conditioned in a unique way, even if the conditioning 
event has (lower) probability zero [16,19].26 Consequently, our representation theorems for sets of desirable gambles 
lead to a representation—or ‘prior’—that truly represents all relevant information about a sequence of partially ex-
changeable variables, including all conditional models.27 For representations that are expressed in terms of (lower) 
previsions or probability measures, this is only true if the conditioning event has positive (lower) probability.28

From a more practical point of view, sets of desirable gambles and lower previsions have an important advantage 
in common: they both allow for imprecision.29 Consequently, these frameworks allow for the use of imprecise-
probabilistic priors or, loosely speaking, sets of precise-probabilistic priors. For the case of regular exchangeability, 
Walley’s IDM(M)—Imprecise Dirichlet (Multinomial) Model—is a prime example [36,37]30; see Ref. [42] for an 
introduction, including an overview of some of its applications. Rather than using a single Dirichlet prior, the IDM 
considers the set of all Dirichlet priors with some fixed strength.A key feature of such imprecise-probabilistic priors 
is that they are able to distinguish between ignorance and symmetry, a distinction which cannot be made using a sin-
gle precise-probabilistic prior [20,36]. The corresponding inferences are, or rather can be, initially imprecise—even 
vacuous, in case of prior near-ignorance—but become more and more precise as the number of observations increases.

We believe that the use of imprecise-probabilistic priors—be it sets of probability measures, lower prevision or sets 
of desirable gambles—is particularly relevant in case of a judgement of partial exchangeability. The main reason is 
that, when modelling partially exchangeable data, the assessment and interpretation of a prior is usually more difficult 
than in situations where regular exchangeability is assumed. While in the latter setting one could come up with a 
prior density over the parameter space (a single simplex)—which is often easier to interpret—in the present context 
the subject has to specify a prior distribution over a cross-product of simplices. One approach is, for instance, to 
combine separate priors on the individual simplices by means of a copula [43]. However, the interpretation of these 
copula’s is far from straightforward, making it difficult to choose one. Other approaches for coming up with a prior 
over a cross-product of simplices can be found in, amongst others, Ref. [44, chap. 9] and Refs. [45–50]. A common 
characteristic of these methods is that they are rather technical, and that the resulting priors are hard to interpret from 
a behavioural point of view. In order to reflect the arbitrariness that is implied by these difficulties in choosing a prior, 
one would be inclined to assess his beliefs more cautiously, leading to the use of an imprecise-probabilistic prior. 
Related to this, one could also consider using sets of copulas rather than a single one [51]; see Ref. [52] for some 
recent work on so-called imprecise copulas.

In order to truly exploit the aforementioned advantages, much work remains to be done. As far as theory is con-
cerned, the results in the present paper should be used as a starting point to develop a general theory of conservative 
predictive inference under partial exchangeability. An important first step would be to extend some of the results in 
Ref. [15, Sections 5.2, 5.5 and 6] to the present context of partial exchangeability: in particular, the results on how 
to update an infinite representation, and how to extend (local) expert assessments—natural extension. In a next step, 

26 Within the context of imprecise probabilities, such a condition is rather weak: events with lower probability zero can have positive upper 
probability. This in contrast with precise probabilities, where the implications of assessing a (lower) probability to be zero are much stronger.
27 For the particular case of exchangeable variables, see Refs. [15,32] for more information.
28 Problems with probability zero can be avoided within those frameworks by considering conditional (lower) previsions and probabilities as 
primitive notions, rather than as derived concepts, relating them—not necessarily uniquely—to unconditional ones by means of coherence; see for 
instance Refs. [8,11,33–35]. However, even within these extended theories, the problem still persists that, in the presence of (lower) probability 
zero, an unconditional prior does not lead to unique conditional posterior models.
29 Furthermore, they generalise almost every other framework that is capable of doing so [19].
30 Other examples can be found in, amongst others, Refs. [32,38–41].
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these results could then be applied to predictive inference. Reasonable inference principles could be imposed, and the 
implications of combining these (global) principles with (local) expert assessments could be studied; for the particular 
case of regular exchangeability, see for example Refs. [32,41]. From a more applied side, the most important question 
is whether, in the context of partial exchangeability, using imprecise-probabilistic priors can lead to useful inferences 
that are, despite the conservatism of the prior, informative enough to be used in practice. In order to answer this ques-
tion, it is necessary to develop such priors, and to apply them to real-life problems. An obvious first suggestion is to 
generalise the IDM, extending it to the framework of partial exchangeability.
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Appendix A. Proofs

Proof of Proposition 1. First, consider any set D ⊆K that is coherent relative to K and let PD be the corresponding 
lower prevision on K, as given by Eq. (1). We show that PD is coherent, meaning that it satisfies P1–P3. For P1, it 
suffices to realise that due to D2, f − μ ∈ D for all f ∈K and μ < inff . P2 follows easily from D3. For P3, consider 
any f1, f2 ∈ K. Then

PD(f1) + PD(f2) = sup{μ1 + μ2:μ1,μ2 ∈R, f1 − μ1 ∈ D, f2 − μ2 ∈D}
≤ sup

{
μ1 + μ2:μ1,μ2 ∈ R, f1 + f2 − (μ1 + μ2) ∈ D

}
= sup{α ∈ R:f1 + f2 − α ∈D} = PD(f1 + f2),

where the inequality is due to D4.
Next, consider any coherent lower prevision P on K and define

D′ := {
f ∈K:f ∈K>0 or P(f ) > 0

}
. (A.1)

We then find that, for all f ∈ K,

PD′(f ) = sup
{
μ ∈ R:f − μ ∈D′} = sup

{
μ ∈R:f − μ > 0 or P(f − μ) > 0

}
= sup

{
μ ∈R:f > μ or P(f ) > μ

}
where the third equality is due to P5. Since f > μ implies inff ≥ μ, which, due to P1, in turn implies P(f ) ≥ μ, we 
find that

P(f ) = sup
{
μ ∈ R:P (f ) > μ

} ≤ PD′(f ) ≤ sup
{
μ ∈ R:P (f ) ≥ μ

} = P (f ).

To conclude the proof, we are left to show that D′ is coherent relative to K, meaning that it satisfies D1–D4. D1 
follows from the fact that, due to P5, P(0) = 0. D2 is trivial and D3 follows from P2. For D4, it suffices to combine 
P3 and P1. �
Proof of Proposition 2. First, consider any set D ⊆ K that is coherent relative to K and compatible with I and let 
PD be the corresponding lower prevision on K, as given by Eq. (1). We know from Proposition 1 that PD is coherent. 
We now show that it is compatible with I as well. Consider therefore any f ∈ I . For all ε < 0, we know from D2 that 
−ε ∈D and therefore, due to ID1, that f − ε ∈D. Hence, PD(f ) ≥ 0. Assume ex absurdo that PD(f ) > 0, implying 
the existence of some μ > 0 for which f − μ ∈ D. Since μ ∈ D because of D2, we can use D4 to find that f ∈ D, 
contradicting ID2.

Next, consider any coherent lower prevision P on K that is compatible with I . Let D′ be the set of desirable 
gambles that is given by Eq. (A.1) and define D := D′ + I . Recall from the proof of Proposition 1 that D′ is coherent 
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and that P = PD′ . Since I satisfies I3, we have that I + I = I and therefore D + I = D, implying that D and I
satisfy ID1. Using ID1 and I1–I3, it is easy to infer from the coherence of D′ that D is coherent as well. D2 and D3 
are trivial [use I2 and I3]. For D1, assume ex absurdo that 0 ∈ D, implying the existence of some f ∈ D′ such that 
−f ∈ I and therefore, due to I2, f ∈ I . Since f ∈ D′, we know that either f > 0 or P (f ) > 0, which, since f ∈ I , 
contradicts either I4 or IP1, respectively. Hence, we know that D is both coherent relative to K and compatible with I . 
To conclude the proof, we show that P = PD . So choose any f ∈ K. Since, due to I1, 0 ∈ I and therefore D′ ⊆ D, 
we have that PD(f ) ≥ PD′(f ) = P(f ). Consider now any μ ∈ R for which f − μ ∈ D, implying the existence 
of f1 ∈ D′ and f2 ∈ I such that f − μ = f1 + f2 and therefore f = μ + f1 + f2. Using P3 and P5, we find that 
P(f ) ≥ μ +P(f1) +P(f2). Since f1 ∈D′, we have that P(f1) = PD′(f1) ≥ 0 and, since f2 ∈ I , P (f2) = 0 because 
of IP1. Hence, P(f ) ≥ μ. Since this holds for all μ such that f − μ ∈D, we find that PD(f ) ≤ P(f ). �
Proof of Proposition 4. The ‘only if’ part is a trivial consequence of Eq. (6). For the ‘if’ part, consider any set 
DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) and assume that, for every choice of Ji � N, with i ∈ G, the 
marginal set of desirable gambles DG(J ), as given by Eq. (6), is coherent. We need to prove that DG(N) is coherent 
relative to G(XG(N)) or, equivalently, that DG(N) satisfies D1–D4. Properties D1–D3 follow directly from Eqs. (5)
and (6) and the coherence of the marginal models DG(J ). For D4, consider any f1, f2 ∈ G(XG(N)). Then due to 
Eq. (5), f1 and f2 each depend upon the value of a finite number of variables Xij , with i ∈ G and j ∈ N. Hence, it 
is clearly possible to find Ji � N, with i ∈ G, such that f1 and f2 are both (cylindrical extensions of) elements of
G(XG(J )) and therefore also, due to Eq. (6), elements of DG(J ). Due to the coherence of DG(J ), f1 + f2 ∈ DG(J ) and 
hence, by applying Eq. (6) again, we find that f1 + f2 ∈DG(N). �
Proof of Proposition 5. The ‘only if’ part is a trivial consequence of Eq. (7). For the ‘if’ part, consider any lower 
prevision PG(N) on G(XG(N)) and assume that, for every choice of Ji � N, with i ∈ G, the marginal lower pre-
vision P G(J ), as given by Eq. (7), is coherent. We need to prove that PG(N) is coherent, or equivalently, that it 
satisfies P1–P3. Properties P1 and P2 follow directly from Eqs. (5) and (7) and the coherence of the marginal 
models P G(J ). For P3, consider any f1, f2 ∈ G(XG(N)). Then due to Eq. (5), and as explained in the proof of 
Proposition 4, there are Ji � N, i ∈ G, such that f1 and f2 are both elements of G(XG(J )). Hence, we infer from 
the coherence of PG(J ) that P G(J )(f1 + f2) ≥ P G(J )(f1) + P G(J )(f2) and therefore also, due to Eq. (7), that 
P G(N)(f1 + f2) ≥ P G(N)(f1) + P G(N)(f2). �
Proof of Proposition 6. It suffices to prove I1–I4. Note that I1–I3 are direct consequences of Eq. (8). For I4, consider 
any gamble f ∈ Ipar

G(J ), and assume ex absurdo that f > 0 or f < 0. If f > 0, then πtf > 0 for all permutations 
π ∈ PG(J ). This tells us that 

∑
π∈PG(J)

π tf > 0, whence exG(J )(f ) > 0, contradicting Proposition 10. If f < 0, then 
similarly, exG(J )(f ) < 0, again contradicting Proposition 10. �
Proof of Proposition 7. Consider any coherent set DG(J ) of desirable gambles on XG(J ). Then taking into account 
Definitions 5 and 2, and because AG(J ) ⊆ Apar

G(J ) ⊆ Ipar
G(J ), we immediately find that the partial exchangeability of 

DG(J ) implies condition (i), which in turn implies condition (ii). It therefore suffices to prove that condition (ii) 
implies the partial exchangeability of DG(J ). Assume that condition (ii) holds and consider any f1 ∈ DG(J ) and any 
f2 ∈ Ipar

G(J ). We need to prove that f1 +f2 ∈ DG(J ). Due to Lemma 24, f2 is a finite sum of gambles λf , with λ ∈R>0
and f ∈ AG(J ). Hence, the proof will follow by induction if we can show that f1 + λf ∈DG(J ) for any such λ and f . 
By D3, 1/λf1 ∈ DG(J ) and therefore, by condition (ii), 1/λf1 + f ∈ DG(J ). Using D3 again, this leads to the desired 
result: f1 + λf = λ(1/λf1 + f ) ∈ DG(J ). �
Lemma 24. Every f ∈ Ipar

G(J ) is a finite positive linear combination of elements in AG(J ): f = ∑m
k=1 λkfk , with m ∈ N

and, for all k ∈ {1, . . . , m}, λk ∈ R>0 and fk ∈ AG(J ).

Proof. Consider any f ∈ Ipar
G(J )

. Then due to Eq. (8), f is a finite sum of gambles λ(f ′ − πtf ′) = f ′′ − πtf ′′, with 
λ ∈R, f ′ ∈ G(XG(J )), f ′′ := λf ′ ∈ G(XG(J )) and π ∈ PG(J ). For any such gamble f ′′ − πtf ′′, we have that

f ′′ − πtf ′′ =
∑

x∈X
f ′′(x)I{x} − πt

∑
x∈X

f ′′(x)I{x} =
∑

x∈X
f ′′(x)

[
I{x} − πt I{x}

]
.

G(J) G(J ) G(J )



JID:FSS AID:6674 /FLA [m3SC+; v1.200; Prn:11/11/2014; 15:20] P.23 (1-30)

J. De Bock et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 23
Furthermore, for any x ∈XG(J ), we have that

−[
I{x} − πt I{x}

] = πt I{x} − I{x} = I{x′} − (
π ′)t

I{x′},

where π ′ := π−1 ∈ PG(J ) and x′ := π−1x = π ′x ∈XG(J ). Hence, f can be written as a non-negative linear combina-
tion of gambles in AG(J ).

This implies the desired result because we can write any term whose coefficient is zero as a new one that has a 
positive coefficient and 0 = I{x} − (π∗)t I{x} ∈ AG(J ) as its gamble, with π∗ the identity permutation. �
Proof of Proposition 8. Partial exchangeability of PG(J ) means that PG(J ) is compatible with Ipar

G(J ). As mentioned 
in Definition 4, this is equivalent to IP2: PG(J )(f ) ≥ 0 for all f ∈ Ipar

G(J )
. We prove that IP2 ⇔ (iii) and IP2 ⇒ (i) ⇒

(ii) ⇒ IP2.
We start with IP2 ⇔ (iii). First, assume that P G(J ) satisfies IP2. Then for all PG(J ) ∈ M(P G(J )), we can use 

Eq. (3) to infer that PG(J )(f ) ≥ P G(J )(f ) ≥ 0 for all f ∈ Ipar
G(J ). Hence, PG(J ) satisfies IP2 and therefore, is partially 

exchangeable. Conversely, if every PG(J ) ∈M(P G(J )) is partially exchangeable and therefore, satisfies IP2, we infer 
from Eq. (2) that P G(J ) does as well.

Since clearly, IP2 ⇒ (i) ⇒ (ii), we are left to prove that (ii) ⇒ IP2. So assume that (ii) holds and consider any 
f ∈ Ipar

G(J ). We need to prove that PG(J )(f ) ≥ 0. Due to Lemma 24, we know that f = ∑m
k=1 λkfk , with m ∈ N and, 

for all k ∈ {1, . . . , m}, λk ∈R>0 and fk ∈AG(J ). Hence, the result follows from P3, P2 and condition (ii). �
Proof of Proposition 9. We start by reformulating Eq. (9). For all x ∈ XG(J ) and all π ∈ PG(J ), we know from the 
discussion in Section 2.5 that pG(J )(x) := PG(J )(I{x}) and pG(J )(πx) := PG(J )(I{πx}). Furthermore, with y = πx, 
we have that πtI{y} = I{π−1y} = I{x}. Hence, given the linearity of PG(J ), we find that Eq. (9) is equivalent to

PG(J )

(
I{y} − πt I{y}

) = 0 for all y ∈ XG(J ) and all π ∈ PG(J ). (A.2)

This makes the ‘only if’-part of this proof a trivial consequence of Definition 4. The ‘if’-part follows directly from 
Eq. (A.2) and Proposition 8(ii). �
Proof of Proposition 10. The second equivalence follows directly from Eq. (12). Also, for any f ∈ Ipar

G(J ), 
exG(J )(f ) = 0 because of the linearity of exG(J ) and Eqs. (8) and (11). So consider any f ∈ G(XG(J )) for which 
exG(J )(f ) = 0, then

f = f − exG(J )(f ) = f − 1

|PG(J )|
∑

π∈PG(J)

π tf = 1

|PG(J )|
∑

π∈PG(J)

(
f − πtf

)
,

and therefore, by Eq. (8), f ∈ Ipar
G(J ). �

Proof of Proposition 11. We begin by assuming that DG(J ) is partially exchangeable, implying that ID1 holds. 
Consider any f ∈ G(XG(J )) and let f ′ := f − exG(J )(f ). Then by Eq. (11), exG(J )(f

′) = exG(J )(−f ′) = 0 and 
therefore, by Proposition 10, f ′ ∈ Ipar

G(J ) and −f ′ ∈ Ipar
G(J ). If f ∈ DG(J ), then exG(J )(f ) = f − f ′ ∈ DG(J ) because 

of ID1. Conversely, if exG(J )(f ) ∈ DG(J ), then f = exG(J )(f ) + f ′ ∈DG(J ), again because of ID1.
Conversely, suppose that Eq. (13) holds and let us prove that DG(J ) satisfies ID1. So consider any f ∈ DG(J )

and any f ′ ∈ Ipar
G(J ). Then exG(J )(f ) ∈ DG(J ) by Eq. (13), and exG(J )(f

′) = 0 by Proposition 10. By combining the 
two, we find that exG(J )(f + f ′) = exG(J )(f ) + exG(J )(f

′) = exG(J )(f ) ∈ DG(J ) and therefore, by Eq. (13), that 
f + f ′ ∈DG(J ). �
Proof of Theorem 12. We start with sufficiency. Let RnG

be a coherent set of desirable gambles on N nG such that 
DG(J ) = Hy−1

G(J )(RnG
), or in other words,

f ∈ DG(J ) ⇔ HyG(J )(f ) ∈ RnG
for all f ∈ G(XG(J )). (A.3)

We need to show that DG(J ) is both coherent and exchangeable. For D1, infer from Eq. (A.3) that 0 ∈ DG(J ) ⇔
0 = HyG(J )(0) ∈ RnG

, and use the coherence of RnG
. For D2, notice that f > 0 implies that HyG(J )(f ) > 0, which 
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in turn implies, since RnG
is coherent, that HyG(J )(f ) ∈ RnG

and therefore by Eq. (A.3) that f ∈ DG(J ). For D4, 
consider any f1, f2 ∈ DG(J ), meaning that HyG(J )(f1) and HyG(J )(f2) both belong to RnG

. Using the coherence of 
RnG

and the linearity of HyG(J ), we find that HyG(J )(f1 +f2) = HyG(J )(f1) +HyG(J )(f2) ∈ RnG
and therefore, that 

f1 + f2 ∈ DG(J ), again using Eq. (A.3). The proof for D3 is similar. To show that DG(J ) is partially exchangeable, 
consider any f ∈ DG(J ) and f ′ ∈ Ipar

G(J ). We prove that f + f ′ ∈ DG(J ). Using Proposition 10 and the linearity of 
HyG(J ), we find that HyG(J )(f + f ′) = HyG(J )(f ) ∈ RnG

and, therefore indeed, that f + f ′ ∈DG(J ).
We now turn to necessity. Assume that DG(J ) is coherent and partially exchangeable. We will show that RnG

:=
HyG(J )(DG(J )) is a coherent set of desirable gambles on N nG for which DG(J ) = Hy−1

G(J )(RnG
). Firstly, we prove 

coherence of RnG
. For D1, assume, ex absurdo, that 0 ∈ RnG

implying that there is some f ∈ DG(J ) such that 
HyG(J )(f ) = 0. Proposition 10 implies that f ∈ Ipar

G(J )
, which contradicts ID2. For D2, consider any r ∈ G(N nG)>0. 

Then one can easily construct a gamble f > 0 for which HyG(J )(f ) = r . Due to the coherence of DG(J ), f ∈ DG(J )

and therefore indeed r ∈ RnG
. For D4, consider r1, r2 ∈ RnG

, implying that there are f1, f2 ∈ DG(J ) such that r1 =
HyG(J )(f1) and r2 = HyG(J )(f2). Since DG(J ) is coherent, f1 + f2 ∈ DG(J ) and therefore, using the linearity of 
HyG(J ), it follows that, indeed, r1 + r2 = HyG(J )(f1) + HyG(J )(f2) = HyG(J )(f1 + f2) ∈ RnG

. The proof for D3 
is similar. We finish the proof by showing that Hy−1

G(J )(RnG
) = DG(J ). Clearly, DG(J ) is a subset of Hy−1

G(J )(RnG
). 

To show that Hy−1
G(J )

(RnG
) ⊆ DG(J ), choose any f ∈ Hy−1

G(J )
(RnG

), implying that r := HyG(J )(f ) ∈ RnG
. Then, by 

definition of RnG
, there is some f ′ ∈ DG(J ) such that HyG(J )(f

′) = r , whence HyG(J )(f − f ′) = 0. Proposition 10
now implies that f −f ′ ∈ Ipar

G(J ), which, since DG(J ) is partially exchangeable, in turn implies that f = f −f ′ +f ′ ∈
DG(J ). To prove that RnG

is unique, it suffices to realise that HyG(J ) is a surjective (onto) map and that, consequently, 
DG(J ) = Hy−1

G(J )(RnG
) implies that RnG

= HyG(J )(DG(J )). �
Proof of Theorem 13. We start with sufficiency. Let QnG

be a coherent lower prevision on G(N nG) such that 
P G(J ) = QnG

◦ HyG(J ). We first prove that P G(J ) is coherent. For P1, consider any f ∈ G(XG(J )). Then P G(J )(f ) =
QnG

(HyG(J )(f )) ≥ min(HyG(J )(f )) ≥ minf , where the first inequality follows from the coherence of QnG
and the 

second from the definition of HyG(J )(f ). For P3, consider any f1, f2 ∈ G(XG(J )). Then

P G(J )(f1 + f2) = QnG

(
HyG(J )(f1 + f2)

) = QnG

(
HyG(J )(f1) + HyG(J )(f2)

)
≥ QnG

(
HyG(J )(f1)

) + QnG

(
HyG(J )(f2)

)
,

where the final inequality follows, again, from the coherence of QnG
. The proof for P2 is similar. To prove that P G(J )

is partially exchangeable, it is enough to realise that, for any f ∈ Ipar
G(J ), P G(J )(f ) = QnG

(HyG(J )(f )) = QnG
(0) = 0, 

where the second equality follows from Proposition 10 and the last one from the coherence of QnG
.

For necessity, we exploit Proposition 2 to find that, given the coherence and partial exchangeability of PG(J ), there 
is a coherent and partially exchangeable DG(J ) for which PDG(J)

= P G(J ). Then Theorem 12 guarantees that there is 

a coherent set RnG
:= HyG(J )(DG(J )) of desirable gambles on N nG such that DG(J ) = Hy−1

G(J )
(RnG

). Furthermore, 
by Proposition 1, QnG

:= PRnG
is a coherent lower prevision on G(N nG). Given the relationship between RnG

and 
DG(J ), it holds for all f ∈ G(XG(J )) that

P G(J )(f ) = PDG(J)
(f ) = sup{α:f − α ∈ DG(J )} = sup

{
α: HyG(J )(f ) − α ∈RnG

} = QnG

(
HyG(J )(f )

)
.

Hence, P G(J ) = QnG
◦ HyG(J ).

To prove uniqueness, assume that PG(J ) = QnG
◦ HyG(J ) and consider any gamble r ∈ G(N nG). Since, for all 

m ∈ N nG

HyG(J )(r ◦ TG(J ))(m) = 1

|[m]|
∑

x∈[m]
r
(
TG(J )(x)

) = 1

|[m]|
∑

x∈[m]
r(m) = r(m),

we find that HyG(J )(r ◦ TG(J )) = r , whence indeed

QnG
(r) = QnG

(
HyG(J )(r ◦ TG(J ))

) = P G(J )(r ◦ TG(J )). �
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Proof of Proposition 14. We first prove that the set {Bm: m ∈ N nG} generates VnG(ΣG), meaning that every h ∈
VnG(ΣG) can be written as a linear combination of Bernstein gambles Bm, m ∈ N nG . So consider any h ∈ VnG(ΣG). 
Then, by definition of VnG(ΣG), h is the restriction to ΣG of a polynomial p on ×i∈G

RXi for which deg(p) ≤ nG. 
Since p is a polynomial, it is a linear combination of monomials in the variables (θi)x , i ∈ G and x ∈ Xi . Clearly, 
up to some non-zero coefficient, such a monomial is simply a Bernstein polynomial Bm∗ , with m∗ ∈ N n∗

G for some 
n∗

G ∈ NG. Since deg(p) ≤ nG, we also know that n∗
G ≤ nG. Consequently, h is a linear combination of Bernstein 

gambles Bm∗ , with m∗ ∈ N n∗
G for some n∗

G ∈ NG such that n∗
G ≤ nG. Hence, it suffices to show that any such Bm∗ can 

be written as a linear combination of Bernstein gambles Bm, m ∈ N nG . Since Bm∗ = ∏
i∈G Bm∗

i
and Bm = ∏

i∈G Bmi
, 

it clearly even suffices for each Bm∗
i

to be a linear combination of Bmi
, mi ∈N ni . So consider any of those Bm∗

i
. Then 

since n∗
i ≤ ni and 

∑
x∈Xi

(θi)x = 1, we have for all θi ∈ Σi that

Bm∗
i
(θi) =

(
n∗

i

m∗
i

) ∏
x∈Xi

(θi)
(m∗

i )x
x =

(
n∗

i

m∗
i

) ∏
x∈Xi

(θi)
(m∗

i )x
x

( ∑
x∈Xi

(θi)x

)ni−n∗
i

,

where the last expression, after some elaborate but obvious and therefore omitted steps, can be written as a linear 
combination of Bmi

(θi), mi ∈N ni . Hence, Bm∗
i

is a linear combination of Bmi
, mi ∈N ni .

By the definition of a basis, the only thing left to prove now is that the Bernstein gambles Bm, m ∈ N nG are 
linearly independent. So consider real coefficients b(m), m ∈N nG such that 

∑
m∈N nG b(m)Bm(θ) = 0 for all θ ∈ ΣG

and assume ex absurdo that b(m) �= 0 for at least one m ∈ N nG . Consider the polynomial p on ×i∈G
RXi given 

by p = ∑
m∈N nG b(m)Bm. Clearly, p(θ) = 0 for all θ ∈ ΣG. Furthermore, if we denote the non-negative reals by 

R≥0, choose any λG = (λ1, . . . , λg) ∈ RG
≥0 and define λGθ := (λ1θ1, . . . , λgθg), then for every θ ∈ ΣG, we have 

that Bm(λGθ) = Bm(θ) 
∏

i∈G λ
ni

i for all m ∈ N nG and hence also p(λGθ) = p(θ) 
∏

i∈G λ
ni

i = 0. Since every θ ∈
×i∈G

R
Xi

≥0 can be written as λGθ for some θ ∈ ΣG and λG ∈ RG
≥0, we find that p is zero on ×i∈G

R
Xi

≥0 and therefore, 
since p is a polynomial, that all of its coefficients are zero31: b(m) = 0 for all m ∈ N nG . This is a contradiction. �
Proof of Proposition 15. The equivalence of the equalities HnG

= CoMnnG(RnG
) and RnG

= (CoMnnG)−1(HnG
)

follows from CoMnnG being a linear isomorphism between the linear spaces G(N nG) and VnG(ΣG). For that same 
reason, HnG

satisfies BnG
1, BnG

3 and BnG
4 if and only if RnG

satisfies D1, D3 and D4. Hence, the proof is concluded 
if we can show that HnG

satisfies BnG
2′ if and only if RnG

satisfies D2. Suppose that RnG
satisfies D2 and consider any 

h ∈ VnG(ΣG) such that bnG

h > 0. Then due to D2, bnG

h ∈ RnG
and therefore h = CoMnnG(b

nG

h ) ∈ CoMnnG(RnG
) =

HnG
. Conversely, suppose that HnG

satisfies BnG
2′ and consider any r ∈ G(N nG) such that r > 0. Then since h =

CoMnnG(r) is such that bnG

h = r > 0, we can use BnG
2′ to infer that h ∈ HnG

, which in turn implies that r = b
nG

h =
(CoMnnG)−1(h) ∈ (CoMnnG)−1(HnG

) =RnG
. �

Proof of Theorem 16. Due to Theorem 12, DG(J ) is coherent and partially exchangeable if and only if there is 
some coherent set RnG

of desirable gambles on N nG such that DG(J ) = Hy−1
G(J )(RnG

). Due to Proposition 15, and 
since Mn−1

G(J ) = Hy−1
G(J ) ◦(CoMnnG)−1, this last requirement is in turn equivalent to the existence of some Bern-

stein coherent set HnG
of polynomial gambles on ΣG up to degree nG such that DG(J ) = Mn−1

G(J )
(HnG

). Since 

HyG(J ) and CoMnnG and therefore also MnG(J ) are surjective maps, HyG(J ) ◦ Hy−1
G(J ) and MnG(J ) ◦ Mn−1

G(J ) are iden-

tity maps. Therefore, DG(J ) = Mn−1
G(J )(HnG

) implies both HnG
= MnG(J )(DG(J )) and RnG

:= HyG(J )(DG(J )) =
(CoMnnG)−1(HnG

). �
Proof of Proposition 17. It suffices to prove I1–I4. I1 is trivial. For I2 and I3, consider any f, f1, f2 ∈ Ipar

G(N)
and 

λ ∈R. Then, by Lemma 25, for large enough J ∗
i � N, i ∈ G, we have that f, f1, f2 ∈ Ipar

G(J ∗). Applying Proposition 6, 

31 This intuitive result can be proven in multiple ways. One way is to consider a point θ∗ ∈×i∈G
R
Xi
>0 and to realise that, since p is zero on 

×i∈G
R
Xi≥0, all of the (mixed) partial derivatives of p in θ∗ are zero. Evaluating these partial derivatives in θ∗ leads to a homogeneous linear 

system of equalities in the coefficients of p which, when solved, leads to the desired result. Alternatively, one can also apply the Combinatorial 
Nullstellensatz [53, Theorem 1.2].
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we find that λf ∈ Ipar
G(J ∗) and f1 + f2 ∈ Ipar

G(J ∗). Hence, by Eq. (14), λf ∈ Ipar
G(N)

and f1 + f2 ∈ Ipar
G(N)

. For I4, consider 
any f ∈ Ipar

G(N)
. Then, there are Ji � N, i ∈ G, for which f ∈ Ipar

G(J ). By Proposition 6, we know that f ≯ 0 and 
f ≮ 0. �
Lemma 25. For all i ∈ G, consider Ji, J ∗

i � N such that Ji ⊆ J ∗
i . Then Ipar

G(J ) ⊆ Ipar
G(J ∗).

Proof. Consider any gamble f ′ ∈ Apar

G(J ), so f ′ = f − πtf for some f ∈ G(XG(J )) and some π ∈ PG(J ). Then 

f ′ ∈ Ipar
G(J ∗) because its cylindrical extension to XG(J ∗) is equal to f̃ ′ = f̃ − π̃ t f̃ , where f̃ is the cylindrical extension 

of f to XG(J ∗) and π̃ ∈ PG(J ∗) is chosen such that it coincides with π on the indices in Ji , i ∈ G, and, on all other 
indices, coincides with the identity permutation. The result now follows from Eq. (8) and the fact that Ipar

G(J ∗) is a 
linear space [Proposition 6]. �
Proof of Proposition 18. For necessity, assume that DG(N) is partially exchangeable, and consider any Ji � N, with 
i ∈ G. It suffices to prove that DG(J ) + Ipar

G(J ) ⊆ DG(J ). Take any f ∈ DG(J ) and any f ′ ∈ Ipar
G(J ). Due to marginal-

isation [Eq. (6)], we know that f ∈ DG(N) ∩ G(XG(J )) and, due to Eq. (14), we know that f ′ ∈ Ipar
G(N)

∩ G(XG(J )). 
Combining these observations, we infer that f + f ′ ∈ (DG(N) + Ipar

G(N)
) ∩ G(XG(J )) = DG(N) ∩ G(XG(J )), where the 

last equality holds because DG(N) is partially exchangeable by assumption. Hence, using marginalisation [Eq. (6)], 
we find that f + f ′ ∈DG(J ).

Next, we turn to sufficiency. Consider any f ∈ DG(N) ⊆ G(XG(N)) and f ′ ∈ Ipar
G(N)

. Clearly, both f and f ′ depend 
only upon the values of a finite number of variables. This means that there are Ji, J ′

i � N, i ∈ G, such that f ∈DG(J )

and f ′ ∈ Ipar
G(J ′). Let J ∗

i := Ji ∪ J ′
i for all i ∈ G. Then f ∈ DG(J ∗) because of marginalisation [Eq. (6)], and f ′ ∈

Ipar
G(J ∗) by Lemma 25. Since DG(J ∗) is partially exchangeable by assumption, we have that f + f ′ ∈ DG(J ∗). Using 

marginalisation [Eq. (6)], we find that f + f ′ ∈ DG(N). Hence, DG(N) is partially exchangeable. �
Proof of Proposition 19. For necessity, assume that PG(N) is partially exchangeable, meaning that PG(N)(f ) =
P G(N)(f ) = 0 for all f ∈ Ipar

G(N)
. Fix any Ji � N, with i ∈ G. Then, due to Eq. (14) and marginalisation [Eq. (7)], we 

find that P G(J )(f ) = P G(J )(f ) = 0 for all f ∈ Ipar
G(J )

, meaning that PG(J ) is partially exchangeable.

Next, we turn to sufficiency. Consider any f ∈ Ipar
G(N)

. By definition [Eq. (14)], there are Ji � N, i ∈ G such that f ∈
Ipar

G(J )
. Because P G(J ) is partially exchangeable by assumption, we have that PG(J )(f ) = P G(J )(f ) = 0. By Eq. (7), 

and because f ∈ G(XG(J )), this implies that P G(N)(f ) = P G(N)(f ) = 0. Hence, PG(N) is partially exchangeable. �
Proof of Proposition 20. This is a direct consequence of Propositions 9 and 19. �
Proof of Proposition 21. We only prove the converse implication since the direct one is trivial. So consider any 
set H of polynomial gambles on ΣG such that, for all nG ∈ NG, HnG

:= H ∩ VnG(ΣG) is Bernstein coherent at 
degree nG. Then clearly, H satisfies B2 and B1. For B3 and B4, consider any h, h1, h2 ∈H and λ ∈R>0. If we choose 
nG ∈ NG such that its components ni , i ∈ G are high enough, we have that h, h1, h2 ∈ HnG

. Since, by assumption, 
HnG

satisfies BnG
3 and BnG

4, we find that λh ∈HnG
⊆H and h1 + h2 ∈ HnG

⊆H. �
Proof of Theorem 22. Consider any set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) and recall that for every 
choice of Ji � N, with i ∈ G, DG(J ) is the corresponding marginal model for XG(J), as given by Eq. (6).

We start by proving the converse implication (sufficiency). Assume that there is some Bernstein coherent set H of 
polynomial gambles on ΣG such that for every choice of Ji � N, with i ∈ G, DG(J ) = Mn−1

G(J )(HnG
), with HnG

:=
H ∩ VnG(ΣG). Now consider any such choice of Ji � N, with i ∈ G. Then, by Proposition 21, HnG

is Bernstein 
coherent at degree nG and therefore, by Theorem 16, DG(J ) is coherent and partially exchangeable. Since this holds 
for every choice of Ji � N, with i ∈ G, we derive from Proposition 4 that DG(N) is coherent relative to G(XG(N)) and 
from Proposition 18 that DG(N) is partially exchangeable.

Next, we show that H = ⋃
nG∈NG MnG(N)(DG(N)), thus making it unique. Consider any h ∈ H. Then, by the 

definition of a polynomial gamble, there is some n∗ ∈ NG such that h ∈ H ∩ Vn∗
G(ΣG) = Hn∗ . Since, by as-
G G
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sumption, DG(N∗) = Mn−1
G(N∗)(Hn∗

G
), there is some f ∈ DG(N∗) for which MnG(N∗)(f ) = h. Hence, we find that 

h ∈ MnG(N∗)(DG(N∗)) ⊆ ⋃
nG∈NG MnG(N)(DG(N)). Conversely, consider any nG ∈ NG. Then, since by assumption, 

DG(N) = Mn−1
G(N)(HnG

), we find that

MnG(N)(DG(N)) = MnG(N)

(
Mn−1

G(N)(HnG
)
) ⊆HnG

⊆H.

We complete the proof by proving the direct implication (necessity). Assume that DG(N) is coherent relative to 
G(XG(N)) and partially exchangeable. We then derive from Propositions 4 and 18 that, for every choice of Ji �
N with i ∈ G, DG(J ) is coherent and partially exchangeable. Therefore, by Theorem 16, DG(J ) has a polynomial 
representation HnG

= MnG(J )(DG(J )) that is Bernstein coherent at degree nG and for which DG(J ) = Mn−1
G(J )(HnG

). 
Furthermore, by Lemma 27, HnG

does not depend on the particular choice of the Ji , i ∈ G, as long as |Ji | = ni . Now 
let H := ⋃

nG∈NG MnG(N)(DG(N)) = ⋃
nG∈NG HnG

. Then the direct implication will follow from Proposition 21, 

provided we can show that, for all n∗
G ∈ NG, H ∩ Vn∗

G(ΣG) = Hn∗
G

. So consider any n∗
G ∈ NG. Then Hn∗

G
= Hn∗

G
∩

Vn∗
G(ΣG) ⊆ H ∩ Vn∗

G(ΣG), so we are left to prove that, conversely, H ∩ Vn∗
G(ΣG) ⊆ Hn∗

G
or, equivalently, that, 

for all nG ∈ NG, HnG
∩ Vn∗

G(ΣG) ⊆ Hn∗
G

. So consider any nG ∈ NG and any h ∈ HnG
∩ Vn∗

G(ΣG) and let n′
G be 

the pointwise maximum of nG and n∗
G. Since h ∈ HnG

, there is some f ∈ DG(N) such that MnG(N)(f ) = h. Now 
let f̃ be the cylindrical extension of f to XG(N ′). Then, due to marginalisation, f̃ ∈ DG(N ′) and, by Lemma 26, 
MnG(N ′)(f̃ ) = MnG(N)(f ) = h. Hence, h ∈ Hn′

G
and Mn−1

G(N ′)({h}) ⊆ DG(N ′). Since h ∈ Vn∗
G(ΣG), there is some 

f ∗ ∈ G(XG(N∗)) such that MnG(N∗)(f ∗) = h. Now let f̃ ∗ be the cylindrical extension of f ∗ to XG(N ′). Then we infer 
from Lemma 26 that MnG(N ′)(f̃ ∗) = MnG(N∗)(f ∗) = h, implying that f̃ ∗ ∈ Mn−1

G(N ′)({h}) ⊆ DG(N ′). Since DG(N ′)
and DG(N∗) are related through marginalisation, this in turn implies that f ∗ ∈DG(N∗) and therefore h ∈Hn∗

G
. �

Lemma 26. For all i ∈ G, consider subsets Ji, J ∗
i � N such that Ji ⊆ J ∗

i . It then holds for all f ∈ G(XG(J )) that 
MnG(J ∗)(f̃ ) = MnG(J )(f ), where f̃ is the cylindrical extension of f to XG(J ∗).

Proof. For all i ∈ G, let J ′
i := J ∗

i \ Ji . Then, for all θ in ΣG,

MnG(J ∗)(f̃ )(θ) =
∑

xG(J∗)∈XG(J∗)

f̃ (xG(J ∗))
∏
i∈G

∏
j∈J ∗

i

(θi)xij

=
∑

xG(J )∈XG(J)

∑
xG(J ′)∈XG(J ′)

f̃ (xG(J ), xG(J ′))
∏
i∈G

(∏
j∈Ji

(θi)xij

)(∏
j∈J ′

i

(θi)xij

)

=
∑

xG(J )∈XG(J)

f (xG(J ))
∏
i∈G

∏
j∈Ji

(θi)xij

∑
xG(J ′)∈XG(J ′)

∏
i∈G

∏
j∈J ′

i

(θi)xij

= MnG(J )(f )(θ)
∏
i∈G

∏
j∈J ′

i

∑
xij ∈Xij

(θi)xij
= MnG(J )(f )(θ),

where the third equality follows from Eq. (4) and the final equality from the fact that, for all i ∈ G and j ∈ J ′
i , ∑

xij ∈Xij
(θi)xij

= ∑
x∈Xi

(θi)x = 1. �
Lemma 27. Consider a set DG(N) ⊆ G(XG(N)) of desirable gambles on XG(N) that is coherent relative to G(XG(N))

and partially exchangeable. Then, for every choice of Ji � N, with i ∈ G, MnG(J )(DG(J )) = MnG(N)(DG(N)).

Proof. We start by proving that MnG(J )(DG(J )) ⊆ MnG(N)(DG(N)) or, equivalently, that h ∈ MnG(J )(DG(J )) im-
plies that h ∈ MnG(N)(DG(N)). So consider any h ∈ MnG(J )(DG(J )). Then there is some f ∈ DG(J ) for which 
MnG(J )(f ) = h. Define now, for all i ∈ G, J ∗

i = Ji ∪Ni and let f̃ be the cylindrical extension of f to XG(J ∗). Choose 
π ∈ PG(J ∗) such that, for all i ∈ G, πi(Ji) = Ni . Then clearly, πt(f̃ ) can be identified with a gamble f ′ ∈ G(XG(N)), 
meaning that πt(f̃ ) = f̃ ′, with f̃ ′ the cylindrical extension of f ′ to XG(J ∗). We now have that

h = MnG(J )(f ) = MnG(J ∗)(f̃ ) = MnG(J ∗)
(
πt f̃

) = MnG(J ∗)
(
f̃ ′) = MnG(N)

(
f ′),
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where the third equality follows from the definition of MnG(J ∗), and the second and last equalities from Lemma 26. 
Furthermore, since DG(J ) and DG(J ∗) are related through marginalisation, f ∈ DG(J ) implies that f̃ ∈ DG(J ∗). Since 
DG(N) is partially exchangeable, we know from Proposition 18 that DG(J ∗) is partially exchangeable as well. Using 
ID1, we now infer from f̃ ∈ DG(J ∗) that πt f̃ = f̃ − (f̃ − πt f̃ ) ∈ DG(J ∗) or, equivalently, that f̃ ′ ∈DG(J ∗). Since 
DG(N) and DG(J ∗) are related through marginalisation, this in turn implies that f ′ ∈ DG(N). Hence, we find that, 
indeed, h = MnG(N)(f

′) ∈ MnG(N)(DG(N)).
The proof for the converse inclusion is completely analogous. It suffices to interchange J and N in the reasoning 

above. �
Proof of Theorem 23. Consider any lower prevision PG(N) on G(XG(N)) and recall that for every choice of Ji � N

with i ∈ G, P G(J ) is the corresponding marginal lower prevision on G(XG(J )), as given by Eq. (7).
We start by proving the converse implication (sufficiency). Assume that there is some coherent lower prevision R

on V(ΣG) such that for every choice of Ji � N, with i ∈ G, and every f ∈ G(XG(J )), P G(J )(f ) = R(MnG(J )(f )). We 
will show that each of these PG(J ) is coherent and partially exchangeable, which, due to Propositions 5 and 19, will 
then imply that PG(N) is coherent and partially exchangeable. So choose Ji � N with i ∈ G. Then since MnG(J )

is a linear operator, P G(J ) clearly satisfies coherence properties P2 and P3 because R does. Furthermore, since 
min MnG(J )(f ) ≥ minf for all f ∈ G(XG(J )), P G(J ) satisfies P1 because R does. Hence, P G(J ) is coherent. To 
show that it is also partially exchangeable, consider any f ∈ Ipar

G(J ). By Proposition 17 and Definition 4, it suffices to 
show that P G(J )(f ) ≥ 0 or, equivalently, that R(MnG(J )(f )) ≥ 0. Since MnG(J )(f ) = 0 by Proposition 10 and the 
definition of MnG(J ), this follows trivially from the coherence of R.

To prove the uniqueness of R, consider any nG ∈ NG and any h ∈ VnG(ΣG). Then, as shown near the end of 
our proof for Theorem 13, HyG(N)(b

nG

h ◦ TG(N)) = b
nG

h . Since we also know that CoMnnG(b
nG

h ) = h, we find that 
MnG(N)(b

nG

h ◦ TG(N)) = CoMnnG(HyG(N)(b
nG

h ◦ TG(N))) = h and, consequently, that

R(h) = R
(
MnG(N)

(
b

nG

h ◦ TG(N)

)) = P G(N)

(
b

nG

h ◦ TG(N)

)
.

To complete the proof, we now turn to the direct implication (necessity). Assume that PG(N) is coherent and 
partially exchangeable. Then we infer from Propositions 2 and 17 that there is some set DG(N) ⊆ G(XG(N)) of desirable 
gambles on XG(N) that is coherent relative to G(XG(N)) and partially exchangeable, and for which PG(N) = PDG(N)

. 
Due to Theorem 22, this in turn implies the existence of a Bernstein coherent set H of polynomial gambles on ΣG

such that for every choice of Ji � N with i ∈ G, DG(J ) = Mn−1
G(J )(HnG

), with HnG
:= H ∩ VnG(ΣG). We now let 

R := PH, with PH given by Eq. (1). Then, by Lemma 28, R is a coherent lower prevision on V(ΣG). Furthermore, 
for every choice of Ji � N with i ∈ G, we find for all f ∈ G(XG(J )) that

P G(J )(f ) = sup{α ∈ R:f − α ∈DG(J )} = sup
{
α ∈R:f − α ∈ Mn−1

G(J )
(HnG

)
}

= sup
{
α ∈R: MnG(J )(f − α) ∈ HnG

}
= sup

{
α ∈R: MnG(J )(f ) − α ∈ H

} = R
(
MnG(J )(f )

)
. �

Lemma 28. For any Bernstein coherent set H of polynomial gambles on ΣG, the corresponding lower prevision PH
on V(ΣG), as defined through Eq. (1), is coherent.

Proof. Due to Eq. (1), and since H satisfies B3 and B4, PH clearly satisfies P2 and P3. To prove that PH satis-
fies P1, we need to show, for all h ∈ V(ΣG), that PH(h) ≥ infh or, equivalently, due to Eq. (1), that for all ε > 0, 
h∗ := h − infh +ε ∈ H. So consider any ε > 0 and any h ∈ V(ΣG), meaning that there is some nG ∈NG such that h ∈
VnG(ΣG). Let h′ := h − infh and let p′ be the polynomial on ×i∈G

RXi that is given by p′ := ∑
m∈N nG b

nG

h′ (m)Bm. 
Then clearly, p′(θ) = h′(θ) ≥ 0 for all θ ∈ ΣG and therefore, by an argument similar to that used near the end of the 
proof of Proposition 14, p′(θ) ≥ 0 for all θ ∈×i∈G

R
Xi

≥0. Hence, if we let p := p′ + ε(1/g
∑

i∈G

∑
x∈Xi

(θi)x)
∑

i∈G ni , 

then p(θ) > 0 for all θ ∈×i∈G
R
Xi

≥0 \ {0}. Because p is also homogeneous, we can apply Pólya’s result [54, Theo-

rem 5.5.1] to infer that there is some k ∈ N such that all of the coefficients of (
∑

i∈G

∑
x∈X (θi)x)

kp and therefore 

i
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also those of p∗ := (1/g
∑

i∈G

∑
x∈Xi

(θi)x)
kp are non-negative, implying that p∗ is a positive linear combina-

tion of Bernstein polynomials [clearly it is not possible for all the coefficients to be zero]. Since, for all θ ∈ ΣG, 
1/g

∑
i∈G

∑
x∈Xi

(θi)x = 1 and h′(θ) = p′(θ), and therefore also p∗(θ) = p(θ) = h′(θ) + ε = h∗(θ), we find that h∗
is a positive linear combination of Bernstein gambles. Hence, since H satisfies B2, B3 and B4, indeed h∗ ∈ H. �
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